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Abstract

We present a new deep learning architecture
Bi-CNN-MI for paraphrase identification (PI).
Based on the insight that PI requires compar-
ing two sentences on multiple levels of granu-
larity, we learn multigranular sentence repre-
sentations using convolutional neural network
(CNN) and model interaction features at each
level. These features are then the input to a
logistic classifier for PI. All parameters of the
model (for embeddings, convolution and clas-
sification) are directly optimized for PI. To ad-
dress the lack of training data, we pretrain the
network in a novel way using a language mod-
eling task. Results on the MSRP corpus sur-
pass that of previous NN competitors.

1 Introduction

In this paper, we address the problem of paraphrase
identification. It is usually formalized as a binary
classification task: for two sentences (S1, S2), deter-
mine whether they roughly have the same meaning.

Inspired by recent successes of deep neural
networks (NNs) in fields like computer vision
(Neverova et al., 2014), speech recognition (Deng
et al., 2013) and natural language processing (Col-
lobert and Weston, 2008), we adopt a deep learning
approach to paraphrase identification in this paper.

The key observation that motivates our NN archi-
tecture is that the identification of a paraphrase rela-
tionship between S1 and S2 requires an analysis at
multiple levels of granularity.

(A1) “Detroit manufacturers have raised vehicle
prices by ten percent.” – (A2) “GM, Ford and
Chrysler have raised car prices by five percent.”

Example A1/A2 shows that paraphrase identifica-
tion requires comparison at the word level. A1 can-
not be a paraphrase of A2 because the numbers “ten”
and “five” are different.

(B1) “Mary gave birth to a son in 2000.” – (B2)
“He is 14 years old and his mother is Mary.”

PI for B1/B2 can only succeed at the sentence
level since B1/B2 express the same meaning using
very different means.

Most work on paraphrase identification has fo-
cused on only one level of granularity: either on low-
level features (e.g., Madnani et al. (2012)) or on the
sentence level (e.g., ARC-I, Hu et al. (2014)).

An exception is the RAE model (Socher et al.,
2011). It computes representations on all levels of
a parse tree: each node – including nodes corre-
sponding to words, phrases and the entire sentence
– is represented as a vector. RAE then computes
a n1 × n2 comparison matrix of the two trees de-
rived from S1 and S2 respectively, where n1, n2 are
the number of nodes and each comparison is the Eu-
clidean distance between two vectors. This is then
the basis for paraphrase classification.

RAE (Socher et al., 2011) is one of three prior NN
architectures that we draw on to design our system.
It embodies the key insight that paraphrase identi-
fication involves analysis of information at multiple
levels of granularity. However, relying on parsing
has limitations for noisy text and for other applica-
tions in which highly accurate parsers are not avail-
able. We extend the basic idea of RAE by explor-
ing stacked convolution layers which on one hand
use sliding windows to split sentences into flexible
phrases, furthermore, higher layers are able to ex-
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tract more abstract features of longer-range phrases
by combining phrases in lower layers.

A representative way of doing this in deep learn-
ing is the work by Kalchbrenner et al. (2014), the
second prior NN architecture that we draw on. They
use convolution to learn representations at multiple
levels (Collobert and Weston, 2008). The motiva-
tion for convolution is that natural language con-
sists of long sequences in which many short sub-
sequences contribute in a stable way to the struc-
ture and meaning of the long sequence regardless
of the position of the subsequence within the long
sequence. Thus, it is advantageous to learn con-
volutional filters that detect a particular feature re-
gardless of position. Kalchbrenner et al. (2014)’s ar-
chitecture extends this idea in two important ways.
First, k-max pooling extracts the k top values from
a sequence of convolutional filter applications and
guarantees a fixed length output. Second, they stack
several levels of convolutional filters, thus achieving
multigranularity. We incorporate this architecture as
the part that analyzes an individual sentence.

The third prior NN architecture we draw on is
ARC proposed by Hu et al. (2014) who also attempt
to exploit convolution for paraphrase identification.
Their key insight is that we want to be able to di-
rectly optimize the entire system for the task we are
addressing, i.e., for paraphrase identification. Hu et
al. (2014) do this by adopting a Siamese architec-
ture: their NN consists of two shared-weight sen-
tence analysis NNs that feed into a binary classi-
fier that is directly trained on labeled sentence pairs.
As we will show below, this is superior to separat-
ing the two steps: first learning sentence represen-
tations, then training binary classification for fixed,
learned sentence representations as Bromley et al.
(1993), Socher et al. (2011) and many others do.

We can now give an overview of our NN architec-
ture (Figure 1). We call it Bi-CNN-MI: “Bi-CNN”
stands for double CNNs used in Siamese frame-
work, “MI” for multigranular interaction features.
Bi-CNN-MI has three parts: (i) the sentence anal-
ysis network CNN-SM, (ii) the sentence interaction
model CNN-IM and (iii) a logistic regression on top
of the network that performs paraphrase identifica-
tion. We now describe these three parts in detail.

(i) Following Kalchbrenner et al. (2014), we de-
sign CNN-SM, a convolutional sentence analysis

NN that computes representations at four different
levels: word, short ngram, long ngram and sentence.
This multigranularity is important because para-
phrase identification benefits from analyzing sen-
tences at multiple levels.

(ii) Following Socher et al. (2011), CNN-IM, the
interaction model, computes interaction features as
s1 × s2 matrices, where si is the number of items of
a certain granularity in Si. In contrast to Socher et
al. (2011), CNN-IM computes these features at fixed
levels and only for comparable units; e.g., we do not
compare single words with entire sentences.

(iii) Following Hu et al. (2014), we integrate two
copies of CNN-SM into a Siamese architecture that
allows to optimize all parameters of the NN for para-
phrase identification. In our case, these parameters
include parameters for word embedding, for convo-
lution filters, and for the classification of paraphrase
candidate pairs. In contrast to Hu et al. (2014), the
inputs to the final paraphrase candidate pair classifi-
cation layer are interaction feature matrices at mul-
tiple levels – as opposed to single-level features that
do not directly compare an element of S1 with a po-
tentially corresponding element of S2.

There is one other problem we have to address to
get good performance. Training sets for paraphrase
identification are small in comparison with the high
complexity of the task. Training a complex network
like Bi-CNN-MI with a large number of parameters
on a small training set is not promising due to sparse-
ness and likely overfitting.

In order to make full use of the training data, we
propose a new unsupervised training scheme CNN-
LM (CNN Language Model) to pretrain the largest
part of the model, the sentence analysis network
CNN-SM. The key innovation is that we use a lan-
guage modeling task in a setup similar to autoen-
coding for pretraining (see below for details). This
means that embedding and convolutional parameters
can be pretrained on very large corpora since no hu-
man labels are required for pretraining.

We will show below that this pretraining is critical
for getting good performance in the paraphrase task.
However, the general design principle of this type of
unsupervised pretraining should be widely applica-
ble given that next-word prediction training is possi-
ble in many NLP applications. Thus, this new way
of unsupervised pretraining could be an important
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contribution of the paper independent of paraphrase
identification.

Section 2 discusses related work. Sections 3 and
4 introduce the sentence model CNN-SM and the
sentence interaction model CNN-IM. Section 5 de-
scribes the training regime. The experiments are
presented in Section 6. Section 7 concludes.

2 Related work

Bi-CNN-MI is closely related to NN models for sen-
tence representations and for text matching.

A pioneering work using CNN to model sentences
is (Collobert and Weston, 2008). They conducted
convolutions on sliding windows of a sentence and
finally use max pooling to form a sentence represen-
tation. Kalchbrenner et al. (2014) introduce k-max
pooling and stacking of several CNNs as discussed
in Section 1.

Lu and Li (2013) developed a deep NN to match
short texts, where interactions between components
within the two objects were considered. These inter-
actions were obtained via LDA (Blei et al., 2003).
A two-dimensional interaction space is formed, then
those local decisions will be sent to the correspond-
ing neurons in upper layers to get rounds of fusion,
finally logistic regression in the output layer pro-
duces the final matching score. Drawbacks of this
approach are that LDA parameters are not optimized
for the paraphrase task and that the interactions are
formed on the level of single words only.

Gao et al. (2014) model interestingness between
two documents with deep NNs. They map source-
target document pairs to feature vectors in a latent
space in such a way that the distance between the
source document and its corresponding interesting
target in that space is minimized. Interestingness
is more like topic relevance, based mainly on the
aggregate meaning of lots of keywords. Addition-
ally, their model is a document-level model and is
not multigranular.

Madnani et al. (2012) treated paraphrase relation-
ship as a kind of mutual translation, hence combined
eight kinds of machine translation metrics including
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), TER (Snover et al., 2006), TERp (Snover
et al., 2009), METEOR (Denkowski and Lavie,
2010), SEPIA (Habash and Elkholy, 2008), BAD-

GER (Parker, 2008) and MAXSIM (Chan and Ng,
2008). These features are not multigranular; rather
they are low-level only; high-level features – e.g., a
representation of the entire sentence – are not con-
sidered.

Bach et al. (2014) claimed that elementary dis-
course units obtained by segmenting sentences play
an important role in paraphrasing. Their conclu-
sion also endorses Socher et al. (2011)’s and our
work, for both take similarities between component
phrases into account.

We discussed Socher et al. (2011)’s RAE and Hu
et al. (2014)’s ARC-I in Section 1. In addition to
similarity matrices there are two other important as-
pects of (Socher et al., 2011). First, the similarity
matrices are converted to a fixed size feature vector
by dynamic pooling. We adopt this approach in Bi-
CNN-MI; see Section 4.2 for details.

Second, (Socher et al., 2011) is partially based on
parsing as is some other work on paraphrase iden-
tification (e.g., Wan et al. (2006), Ji and Eisenstein
(2013)). Parsing is a potentially powerful tool for
identifying the important meaning units of a sen-
tence, which can then be the basis for determining
meaning equivalence. However, reliance on parsing
makes these approaches less flexible. For example,
there are no high-quality parsers available for some
domains and some languages. Our approach is in
principle applicable for any domain and language.
It is also unclear how we would identify compara-
ble units in the parse trees of S1 and S2 if the parse
trees have different height and the sentences differ-
ent lengths. A key property of Bi-CNN-MI is that it
is designed to produce units at fixed levels and only
units at the same level are compared with each other.

3 Convolution sentence model CNN-SM

Our network Bi-CNN-MI for paraphrase detection
(Figure 1) consists of four parts. On the left and
on the right there are two multilayer NNs with seven
layers, from “initialized word embeddings: sentence
1/2” to “k-max pooling”. The weights of these two
NNs are shared. This part of Bi-CNN-MI is based
on (Kalchbrenner et al., 2014) and we refer to it as
convolutional sentence model CNN-SM.

Between the two CNN-SMs there is the interac-
tion model CNN-IM, consisting of four feature ma-
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Figure 1: The paraphrase identification architecture Bi-CNN-MI
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trices (unigram, short ngram, long ngram, sentence).
CNN-IM feeds into a logistic classifier that performs
paraphrase detection. See Sections 4 and 5 for these
two parts of Bi-CNN-MI.

3.1 Wide convolution
We use Kalchbrenner et al. (2014)’s wide one-
dimensional convolution. Denoting the number of
tokens of Si as |Si|, we convolve weight matrix
M ∈ Rd×m over sentence representation matrix S ∈
Rd×|Si| and generate a matrix C ∈ Rd×(|Si|+m−1)

each column of which is the representation of an m-
gram. d is the dimension of word (and also ngram)
embeddings. m is filter width.

Our motivation for using convolution is that af-
ter training, a convolutional filter corresponds to a
feature detector that learns to recognize a class of
m-grams that is useful for paraphrase detection.

3.2 Averaging
After convolution, to build simple relations across
rows, each odd row and the row behind im-
mediately are averaged, generating matrix A ∈
R

d
2
×(|Si|+m−1). Namely:

A = (Codd + Ceven)/2 (1)

where Codd, Ceven denote the odd and even rows of
C, respectively. Finally, this convolution layer will
output matrix B whose jth column is defined thus:

B:,j = tanh(A:,j + bT ) 0 ≤ j < (|Si|+m− 1)
(2)

b is a bias vector with dimension d/2, same for each
column.

3.3 Dynamic k-max pooling
We use Kalchbrenner et al. (2014)’s dynamic k-
max pooling to extract features for variable-length
sentences. It extracts kdy top values from each di-
mension after the first layer of averaging and ktop =
4 top values after the top layer of averaging. We set

kdy = max(ktop, |Si|/2 + 1) (3)

Thus, kdy depends on the length of Si.
The sequence of layers in (Kalchbrenner et al.,

2014) is convolution, folding, k-max pooling, tanh.
We experimented with this sequence and found that

after k-max pooling many tanh units had an input
close to 1, in the nondynamic range of the function
(since the input is the addition of several values).
This makes learning difficult. We therefore changed
the sequence to convolution, averaging, tanh, k-max
pooling. This makes it less likely that tanh units will
be saturated.

We have described convolution, averaging and k-
max pooling. We can stack several blocks of these
three layers to form deep architectures, as the two
blocks (marked “first block” and “top block”) in Fig-
ure 1.

4 Convolution interaction model CNN-IM

After the introduction in the previous section of the
CNN-SM part of our architecture for processing an
individual sentence, we now turn to the CNN-IM in-
teraction model that computes the four feature ma-
trices in Figure 1 to assess the interactions between
the two sentences.

4.1 Feature matrices
One key innovation of our approach is multigranu-
larity: we compute similarity between the two para-
phrase candidates on multiple levels. Specifically,
we compute similarity at four levels in this paper:
unigram, short ngram, long ngram and sentence. We
use notation l ∈ {u, sn, ln, s} to refer to the four lev-
els, and use Si,l to denote the matrix representing
sentence Si at level l. For level l, we compute fea-
ture matrices F̂l as follows:

F̂ij
l = exp(

−||S1,l
:,i − S2,l

:,j ||2
2β

) (4)

where ||S1,l
:,i − S2,l

:,j ||2 is the Euclidean distance be-
tween the representations of the ith item of S1 and
the jth item of S2 on level l. We set β = 2 (cf. Wu
et al. (2013)).

We do not use cosine because the magnitude of
the activations of hidden units is important, not just
the overall direction; e.g., if S1,l

:,i and S2,l
:,j point in

the same direction, but activations are much larger
in S2,l

:,j , then the two vectors are very dissimilar.
The lowest level feature matrix (l = u) is the un-

igram similarity matrix F̂u. It has size |S1| × |S2|.
The feature entry F̂u

ij is the similarity between the
ith word of S1 and the jth word of S2 where each
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word is represented by a d-dimensional word em-
bedding (d = 100 in our experiments).

The next level feature matrix is the short ngram
similarity matrix F̂sn. It has size (|S1|+msn− 1)×
(|S2|+msn−1) wheremsn = 3 is the filter width in
this convolution layer and |Si|+msn−1 is the num-
ber of short ngrams in Si. The feature entry F̂sn

ij is
the similarity between two d/2-dimensional vectors
representing two short ngrams from S1 and S2.

We use multiple feature maps to improve the sys-
tem performance. Different feature maps are ex-
pected to extract different kinds of sentence features,
and can be implemented in the same convolution
layer in parallel. Specifically, we use f sn = 6 fea-
ture maps on this level following Kalchbrenner et al.
(2014). Thus, we actually compute six feature ma-
trices F̂sn,i (i = 1, · · · , f sn), one for each pair of
feature maps that share convolution weights while
derived from S1 and S2 respectively. (Figure 1 only
shows one of those six matrices.)

The next level feature matrix is the long ngram
similarity matrix F̂ln. It has size (kdy,1 +mln− 1)×
(kdy,2 + mln − 1) where kdy,i (Equation 3) is the
k value in dynamic k-max pooling for sentence i,
kdy,i + mln − 1 is the number of long ngrams in
Si and mln = 5 is the filter width in this convolu-
tion layer. The feature entry F̂ln

ij is the similarity
between two d/4-dimensional vectors representing
two long ngrams from S1 and S2.

We use f ln = 14 feature maps on this level fol-
lowing Kalchbrenner et al. (2014). Thus, we com-
pute 14 feature matrices F̂ln,i (i = 1, · · · , f ln), in a
way analogous to the f sn = 6 feature maps F̂sn,i.

The last feature matrix is the sentence similarity
matrix F̂s. It has size ktop × ktop where ktop = 4
is the parameter in k-max pooling at the last max
pooling layer. The feature entry F̂s

ij is the similarity
between two d/4-dimensional vectors computed by
max pooling from S1 and S2.

For l = s, there are also f ln = 14 feature matrices
F̂s,i (i = 1, · · · , f ln), analogous to the f ln = 14
feature matrices F̂ln,i.

A general design principle of the architecture is
that we compute each interaction feature matrix be-
tween two feature maps that share the same convo-
lution weights. Two feature maps learned with the
same filter will contain the same kinds of features
derived from the input.

4.2 Dynamic pooling of feature matrices

As sentence lengths vary, feature matrices F̂l have
different sizes, which makes it impossible to use
them directly as input of the last layer.

That means we need to map F̂l ∈ Rr×c into a
matrix Fl of fixed size r′ × c′ (l ∈ {u, sn, ln, s};
r′, c′ are parameters and are the same for all sen-
tence pairs while r, c depend on |S1| and |S2|). Dy-
namic pooling divides F̂l into r′×c′ nonoverlapping
(dynamic) pools and copies the maximum value in
each dynamic pool to Fl. Our method is similar to
(Socher et al., 2011), but preserves locality better.

F̂l can be split into equal regions only if r (resp.
c) is divisible by r′ (resp. c′). Otherwise, for r > r′

and if r mod r′ = b, the dynamic pools in the first
r′−b splits each have

⌊
r
r′

⌋
rows while the remaining

b splits each have
⌊

r
r′

⌋
+ 1 rows. In Figure 2, a r ×

c = 4 × 5 matrix (left) is split into r′ × c′ = 3 × 3
dynamic pools (middle): each row is split into [1, 1,
2] and each column is split into [1, 2, 2].

If r < r′, we first repeat all rows until no fewer
than r′ rows remain. Then first r′ rows are kept
and split into r′ dynamic pools. The same princi-
ple applies to the partitioning of columns. In Fig-
ure 2 (right), the areas with dashed lines and dotted
lines are repeated parts for rows and columns, re-
spectively; each cell is its own dynamic pool.

5 Training

5.1 Supervised training

Dynamic pooling gives us fixed size interaction fea-
ture matrices for sentence, ngram and unigram lev-
els. As shown in Figure 1, the concatenation of these
features (Fs, Fln, Fsn and Fu) is the input to a logis-
tic regression layer for paraphrase classification. We
have now described all three parts of Bi-CNN-MI:
CNN-SM, CNN-IM and logistic regression.

Bi-CNN-MI with all its parameters – includ-
ing word embeddings and convolution weights – is
trained on MSRP. We initialize embeddings with
those provided by Turian et al. (2010)1 (based on
Collobert and Weston (2008)). For layer sn, we have
f sn = 6 feature maps and set filter width msn = 3.
For layer ln, we have f ln = 14 feature maps and set
filter width mln = 5 and ktop = 4. Dynamic pooling

1metaoptimize.com/projects/wordreprs/
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Figure 2: Partition methods in dynamic pooling. Original matrix with size 4× 5 is mapped into matrix with size 3× 3
and matrix with size 6× 7, respectively. Each dynamic pool is distinguished by a border of empty white space around
it.

Figure 3: Unsupervised architecture: CNN-LM

sizes are 10× 10, 10× 10, 6× 6, 2× 2 for unigram,
short ngram, long ngram and sentence, respectively.
For training, we employ mini-batch of size 70, L2

regularization with weight 5 × 10−4 and Adagrad
(Duchi et al., 2011).

5.2 Unsupervised pretraining

One of the key contributions of this paper is the ar-
chitecture CNN-LM shown in Figure 3. CNN-LM
is used to pretrain the convolutional filters on unla-
beled data. This addresses sparseness and limited
training data for paraphrase identification.

The convolution sentence model CNN-SM (Sec-
tion 3) is part of CNN-LM (“CNN-SM” in Figure 3).
The input to CNN-SM is the entire sentence (“the
cat sat on the mat”); its output (“sentence represen-
tation” in the leftmost rectangle in Figure 3 and the

two grids labeled “sentence representation” in the
top layer of the top block in Figure 1) is concate-
nated with a history consisting of the embeddings
of the h = 3 preceding words (“the”, “cat”, “sat”) as
the input of a fully connected layer to generate a pre-
dicted representation for the next word (“on”). We
employ noise-contrastive estimation (NCE) (Mnih
and Teh, 2012; Mnih and Kavukcuoglu, 2013) to
compute the cost: the model learns to discriminate
between true next words and noise words. NCE al-
lows us to fit unnormalized models making the train-
ing time effectively independent of the vocabulary
size.

In experiments, CNN-LM is trained on unlabeled
MSRP data and an additional 100,000 sentences
from English Gigaword (Graff et al., 2003). In prin-
ciple, sentences from any source, not just English
Gigaword, can be used to train this model. In NCE,
20 noise words are sampled for each true example.

So training has two parts: unsupervised, CNN-
LM (Figure 3) and supervised, Bi-CNN-MI (Fig-
ure 1). In the first phase, the unsupervised training
phase, we adopt a language modeling approach be-
cause it does not require human labels and can use
large corpora to pretrain word embeddings and con-
volution weights. The goal is to learn sentence fea-
tures that are unbiased and reflect useful attributes of
the input sentence. More importantly, pretraining is
useful to relieve overfitting, which is a severe prob-
lem when building deep NNs on small corpora like
MSRP (cf. Hu et al. (2014)).

In the second phase, the supervised training
phase, pretrained word embeddings and convolution
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weights are tuned for optimal performance on PI.
In CNN-LM, we have combined several architec-

tural elements to pretrain a high-quality sentence
analysis NN despite the lack of training data. (i)
Similar to PV-DM (Le and Mikolov, 2014), we in-
tegrate global context (CNN-SM) and local context
(the history of size h) into one model – although
our global context consists only of a sentence, not
of a paragraph or document. (ii) Similar to work
on autoencoding (Vincent et al., 2010), the output
that is to be predicted is part of the input. Au-
toencoding is a successful approach to learning rep-
resentations and we adapt it here to pretrain good
sentence representations. (iii) A second successful
approach to learning embeddings is neural network
language modeling (Bengio et al., 2003; Mikolov,
2012). Again, we adopt this by including in CNN-
LM an ngram language modeling part to predict the
next word. The great advantage of this type of em-
bedding learning is that no labels are needed. (iv)
CNN-LM only adds one hidden layer over CNN-
SM. It keeps simple architecture like PV-DM (Le
and Mikolov, 2014), CBOW (Mikolov et al., 2013)
and LBL (Mnih and Teh, 2012), enabling the CNN-
SM as main training target.

In summary, the key contribution of CNN-LM is
that we pretrain convolutional filters. Architectural
elements from the literature are combined to support
effective pretraining of convolutional filters.

6 Experiments

6.1 Data set and evaluation metrics

We use the Microsoft Research Paraphrase Corpus
(MSRP) (Dolan et al., 2004; Das and Smith, 2009).
The training set contains 2753 true and 1323 false
paraphrase pairs; the test set contains 1147 and 578
pairs, respectively. For each triple (label, S1, S2) in
the training set we also add (label, S2, S1) to make
best use of the training data; these additions are
nonredundant because the interaction feature matri-
ces (Section 4.1) are asymmetric. Systems are eval-
uated by accuracy and F1.

6.2 Paraphrase detection systems

Since we want to show that Bi-CNN-MI performs
better than previous NN work, we compare with
three NN approaches: NLM, ARC and RAE (Ta-

ble 1).2 We also include the majority baseline
(“baseline”) and MT (Madnani et al., 2012). RAE
(Socher et al., 2011) and MT were discussed in Sec-
tions 1 and 2. We now briefly describe the other
prior work.

Blacoe and Lapata (2012) compute the vector
representation of a sentence from the neural lan-
guage model (NLM) embeddings (computed based
on (Collobert and Weston, 2008)) of the words of
the sentence as the sum of the word embeddings
(NLM+), as the element-wise multiplication of the
word embeddings (NLM�), or by means of the
recursive autoencoder (NLM RAE, Socher et al.
(2011)). The representations of the two paraphrase
candidates are then concatenated as input to an SVM
classifier. See Blacoe and Lapata (2012) for details.

The ARC model (Hu et al., 2014) is a convolu-
tional architecture similar to (Collobert and Weston,
2008). ARC-I is a Siamese architecture in which
two shared-weight convolutional sentence models
are trained on the binary paraphrase detection task.
Hu et al. (2014) find that ARC-I is suboptimal in
that it defers the interaction between S1 and S2 to
the very end of processing: only after the vectors
representing S1 and S2 have been computed does an
interaction occur. To remedy this problem, they pro-
pose ARC-II in which the Siamese architecture is
replaced by a multilayer NN that processes a single
representation produced by interleaving S1 and S2.

We also evaluate Bi-CNN-MI–, an NN identical
to Bi-CNN-MI, except that it is not pretrained in un-
supervised training.

6.3 Results

Table 1 shows that Bi-CNN-MI outperforms all
other systems. The comparison with Bi-CNN-MI–
indicates that this is partly due to one major in-
novation we introduced: unsupervised pretraining.
Bi-CNN-MI–, the model without unsupervised pre-
training, performs badly. Thus, unsupervised train-
ing is helpful to pretrain parameters in paraphrase

2A reviewer suggests an additional experiment to directly
evaluate the importance of multigranularity: a “system that puts
all unigrams, short ngrams, long ngrams, and sentence repre-
sentations into one interaction matrix.” This would indeed be
an interesting baseline, but there is no obvious way to conduct
this experiment since vectors from different levels are not com-
parable; e.g., they have different dimensionality.
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method acc F1

baseline 66.5 79.9
NLM+ 69.0 80.1
NLM� 67.8 79.3
NLM RAE 70.3 81.3
ARC-I 69.6 80.3
ARC-II 69.9 80.9
RAE 76.7 83.6
MT 77.4 84.1
Bi-CNN-MI– 72.5 81.4
Bi-CNN-MI 78.1 84.4

Table 1: Performance of different systems on MSRP

features used acc F1

1 no features 66.5 79.9
2 + u: unigram 68.4 79.7
3 + sn: short ngram 75.3 82.8
4 + ln: long ngram 76.2 83.1
5 + s: sentence 73.4 82.3
6 – u: unigram 77.8 84.3
7 – sn: short ngram 76.3 83.5
8 – ln: long ngram 75.6 83.2
9 – s: sentence 77.6 84.2

10 all features 78.1 84.4

Table 2: Analysis of impact of the four feature classes.
Line 1: majority baseline. Line 10: Bi-CNN-MI result
from Table 1. Lines 2–5: Bi-CNN-MI when only one
feature class is used. Line 6–9: ablation experiment: on
each line one feature class is removed.

detection, especially when the training set is small.
RAE also uses pretraining, but not as effectively as
Bi-CNN-MI as Table 1 indicates. Hu et al. (2014)
also suggest that training complex NNs only with
supervised training runs the risk of overfitting on the
small MSRP corpus.

Table 2 looks at the relative importance of the four
feature matrices shown in Figure 1. (The unsuper-
vised part of the training regime is not changed for
this experiment.) The results indicate that levels sn
and ln are most informative: F1 scores are highest
if only these two levels are used (lines 3&4: 82.8,
83.1) and performance drops most when they are re-
moved (lines 7&8: 83.5, 83.2).

Unigrams contribute little to overall performance
(lines 2&6), probably because the paraphrases in the

corpus typically do not involve individual words (re-
placing one word by its synonym); rather, the para-
phrase relationship involves larger context, which
can only be judged by the higher-level features.

Just using the sentence matrix by itself performs
well (line 5), but less well than using only levels sn
or ln (lines 3&4). Most prior NN work on PI has
taken the sentence-level approach. Our results indi-
cate that combining this with the more fine-grained
comparison on the ngram-level is superior.

Removing the sentence matrix results in a small
drop in performance (line 9). The reason is that sen-
tence representations are computed by k-max pool-
ing from level ln. Thus, we can roughly view the
sentence-level feature matrix Fs as a subset of Fln.

Adding (Madnani et al., 2012)’s MT metrics as
input to the Bi-CNN-MI logistic regression further
improves performance: accuracy of 78.4 and F1 of
84.6.

7 Conclusion and future work

We presented the deep learning architecture Bi-
CNN-MI for paraphrase identification (PI). Based
on the insight that PI requires comparing two sen-
tences on multiple levels of granularity, we learn
multigranular sentence representations using convo-
lution and compute interaction feature matrices at
each level. These matrices are then the input to a
logistic classifier for PI. All parameters of the model
(for embeddings, convolution and classification) are
directly optimized for PI. To address the lack of
training data, we pretrain the network in a novel way
for a language modeling task. Results on MSRP are
state of the art.

In the future, we plan to apply Bi-CNN-MI to sen-
tence matching, question answering and other tasks.
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