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Abstract

Semantic grammars can be applied both as a
language model for a speech recognizer and
for semantic parsing, e.g. in order to map
the output of a speech recognizer into formal
meaning representations. Semantic speech
recognition grammars are, however, typically
created manually or learned in a supervised
fashion, requiring extensive manual effort in
both cases. Aiming to reduce this effort, in this
paper we investigate the induction of semantic
speech recognition grammars under weak su-
pervision. We present empirical results, indi-
cating that the induced grammars support se-
mantic parsing of speech with a rather low
loss in performance when compared to pars-
ing of input without recognition errors. Fur-
ther, we show improved parsing performance
compared to applying n-gram models as lan-
guage models and demonstrate how our se-
mantic speech recognition grammars can be
enhanced by weights based on occurrence fre-
quencies, yielding an improvement in parsing
performance over applying unweighted gram-
mars.

1 Motivation

Semantic parsers map natural language utterances
(NL) into formal meaning representations (MR), and
are applied for both parsing of textual input and
in Spoken Language Understanding (SLU). In data-
driven SLU research, typically pipeline-based sys-
tems are applied in which first an automatic speech
recognizer (ASR) is applied to transcribe speech in-
put, and subsequently a semantic parser is applied
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to map the transcriptions into some semantic form
(Deoras et al., 2013). Such systems typically use
different models for recognition and understanding.
Since ASR yields recognition errors, parsing per-
formance can degrade rapidly compared to pars-
ing performance on written text. While the per-
formance of ASR and parsing components are of-
ten optimized independently of each other, in par-
ticular in case of the ASR to minimize recognitions
errors, research has shown that ASR transcriptions
with a lower error rate can in fact yield worse un-
derstanding performance (Wang et al., 2003; Bayer
and Riccardi, 2012) and that joint approaches to
recognition and understanding can yield improved
performance (Wang and Acero, 2006b; Deoras et
al., 2013). In particular, Wang and Acero (2006b)
have shown that applying the same grammar for
speech recognition and understanding can yield im-
proved understanding performance compared to ap-
plying a standard n-gram model with the ASR,
since dependencies between acoustics and seman-
tics can be captured. Their grammars are, however,
learned in a supervised setting. In fact, while se-
mantic grammars are often applied for speech recog-
nition and/or understanding, they are often created
manually or — as mentioned previously — learned
from data containing semantic annotations, which
are time-consuming to produce.

In the field of Natural Language Processing (NLP),
the development of semantic parsers has received
considerable attention. While some researchers
have considered fully supervised settings (Wong and
Mooney, 2006; Zettlemoyer and Collins, 2007),
requiring accurate and complete semantic annota-
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tions, others have developed weakly supervised ap-
proaches exploiting ambiguous representations of
the context in which an utterance is produced in-
stead of accurate and complete annotations (Chen
et al., 2010; Borschinger et al., 2011; Chen and
Mooney, 2008). In this line, in this paper we ex-
plore how an approach that induces semantic parsers
in the form of a (semantic) grammar from ambigu-
ous training data can be applied to acquire a lan-
guage model (LM) for speech recognition as well as
a semantic parser for the understanding task at the
same time. Making use of a semantic parser as a
language model for speech recognition also comes
with the advantage that no separate language model
must be trained. In our experiments, we compare
performance of the induced grammars to the per-
formance of different language models, in particu-
lar n-gram models, and we investigate the impact of
enhancing induced semantic grammars with weights
based on the training data. We present empirical re-
sults showing that it is possible to induce semantic
grammars with weak supervision that can be applied
successfully both as an LM for a speech recognizer
and for semantic parsing. We show that with re-
spect to parsing performance, our joint approach in
which the same grammar is used for parsing and as
an LM yields a higher F} (84.46%) compared to an
approach in which a standard n-gram based model
is used as an LM (78.36%). In addition, our results
indicate that enhancing speech recognition grammar
rules with weights based on occurrence frequencies
can yield improved performance over unweighted
grammars (84.46% vs 82.37% for weighted vs un-
weighted grammars, respectively).

2 Background & related work

In principle, two different types of language mod-
els can be applied with an ASR: stochastic LMs —
typically n-gram models — and speech recognition
grammars. While n-gram models estimate probabil-
ities of word sequences, speech recognition gram-
mars explicitly specify rules defining which words
and patterns a user may utter. Further, seman-
tic information can be directly included within the
rules. Thus, when applied with an ASR, spoken
utterances can be directly transformed into a corre-
sponding semantic representation without producing
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a sequence of words as intermediate step. This ap-
proach is typically taken when building commercial
systems (Wang et al., 2011). Such grammars are,
however, typically created manually, which is time-
consuming and error-prone. Hence, data-driven
approaches to automatic grammar induction have
been explored (Wang and Acero, 2006b; Wang and
Acero, 2005; Wang and Acero, 2003). However,
they often rely on fully supervised settings, requir-
ing training data which is annotated at the utterance-
or word level, which is costly and time-consuming to
produce. In contrast, aiming to reduce the required
manual effort, in this paper we explore the utility of
weak supervision in the form of ambiguous context
information for the induction of grammars applica-
ble for both speech recognition and understanding.
The utility of this kind of weak supervision has been
explored previously in the field of semantic parsing
(Chen et al., 2010; Borschinger et al., 2011; Chen
and Mooney, 2008), and unsupervised approaches to
semantic parsing have been proposed as well (Poon
and Domingos, 2009; Goldwasser et al., 2011).
While such approaches may be applied as parsing
components for SLU systems — notice though that
the SLU task differs from parsing of written text
in that recognition errors and phenomena of spo-
ken language must be handled, and that not all SLU
models can be applied as an LM (Wang et al., 2011)
— we are not aware of work aiming to transform
these parsers into speech recognition grammars or
investigating their performance with respect to dif-
ferent LMs applied with an ASR.

Semantic parsers applied in pipeline-based SLU sys-
tems are in general usually learned in a supervised
fashion. Other than semantic grammar-based ap-
proaches, probabilistic models and machine learn-
ing techniques have been applied in SLU for con-
ceptual tagging due to their robustness to noise,
e.g. Conditional Random Fields (Lafferty et al.,
2001) have been applied (e.g. Wang and Acero
(2006a; Dinarelli et al. (2012)); He and Young
(2005) present an approach based on Hidden Markos
Models. However, evaluations have shown that even
in case of applying machine learning techniques or
probabilistic models, semantic parsing of ASR tran-
scriptions is affected by much more errors com-
pared to parsing of correct transcriptions (De Mori,
2011). In order to reduce annotation costs, work has,



for instance, focused on providing annotation tools
(Wang and Acero, 2006b; Wang and Acero, 2005),
exploring supervised learning in combination with
active learning (Wu et al., 2010) and gaining addi-
tional training data, for instance, from the Web us-
ing queries generated from a (small) existing gram-
mar (Klasinas et al., 2013). These approaches, how-
ever, still assume manual effort and may be some-
what complementary to the one investigated here.
Further, data-driven SLU parsers are often based on
rather local features, e.g. n-grams, while we explore
template-based grammars which can capture long-
distance linguistic dependencies.

Several approaches have addressed unsupervised
(Solan et al., 2005; van Zaanen and Adriaans, 2001)
and semi-supervised (Wong and Meng, 2001; Siu
and Meng, 1999; Meng and Siu, 2002) induction
of grammars, where the latter may comprise man-
ual post-processing of automatically induced rules.
In particular, in order to be applicable as an SLU
model, semantic information must be added manu-
ally, since only syntactic structures can be induced
automatically in this case.

While in data-driven SLU research typically
pipeline-based systems are applied, a few joint ap-
proaches have been proposed (Deoras et al., 2013;
Wang and Acero, 2006b; Bayer and Riccardi, 2012).
Specifically, the work presented here is most sim-
ilar to the approach presented by Wang and Acero
(2006b). In particular, we also attempt to learn
grammars applicable for both speech recognition
and understanding. However, Wang and Acero
(2006b) explore a supervised setting based on word-
level annotations for slots and induce rather local
rules, i.e. based on preambles and postambles for
slots, while we explore a template-based approach,
capturing long-distance linguistic dependencies.

3 Methodology

In this paper, we explore the induction of semantic
grammars under weak supervision provided in the
form of ambiguous representations of the semantic
context as explored in the NLP field of Semantic
Parsing (Chen et al., 2010). In particular, the train-
ing data comprises of a set of textual utterances cou-
pled with symbolic context information from which
we induce semantic parsers and derive different LMs
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for application with an ASR. LMs are then applied
to transcribe speech data, and the resulting transcrip-
tions are in turn mapped into meaning representa-
tions by the learned semantic parsers. In the follow-
ing, we will first describe the input data and learning
scenario and subsequently the semantic parsing ap-
proach as well as the creation of language models.

3.1 Learning scenario and input data

Our experiments were performed on the RoboCup
soccer corpus (Chen and Mooney, 2008), which is a
standard dataset used for the evaluation of seman-
tic parsing algorithms taking written natural lan-
guage utterances as input. The corpus comprises
four RoboCup games. Game events are repre-
sented by predicate logic formulas, which repre-
sent the ambiguous contextual representations from
which semantic parsers are trained in a weakly su-
pervised fashion. The games were commented by
humans, yielding examples for written natural lan-
guage utterances (VL). In the corpus, each NL is
paired with a set of possible meaning representa-
tions mr; € MR, each expressing a game action, and
NL corresponds to at most one them. For example,
pass(purplel0,purple7) represents an mr for a pass-
ing event which might be commented as “purple10
kicks to purple7”’. However, there is no direct corre-
spondence between the NL comments and their cor-
responding mrs; thus, these correspondences have to
be learned.

The corpus also contains a gold standard compris-
ing NLs annotated with their correct mrs. Sev-
eral semantic parsers have been evaluated using this
dataset by applying the evaluation schema intro-
duced by Chen et al. (2010). The authors performed
4-fold cross-validation on the four games. Training
was done on the ambiguous training data, while the
gold standard for a fourth game was used for testing.
Results were presented by means of the Fj score.
Precision and recall were computed as the percent-
age of mrs produced by the system that were correct
and the percentage of mrs that the system produced
correctly, respectively. A parse was considered as
correct if it matched the gold standard exactly (Chen
etal., 2010). Recently, this task has been extended to
consider speech data, both in learning and applying
a parser. In particular, the approach of Gaspers and
Cimiano (2014) relied on transcriptions made by a



task-independent phoneme recognizer as input. For
this purpose, NL comments contained in the dataset
were read by a speaker. By contrast, in this paper
we explore how grammars for speech recognition
and understanding can be built from textual input
in a weakly supervised setting, and subsequently be
applied for recognition and parsing of speech input.
Hence, we explore a 4-fold cross-validation scenario
in which for each fold learning is performed using
the written ambiguous training data for three games,
while the spoken gold standard of the forth game
is used for testing, i.e. for performing both speech
recognition and subsequent parsing of the resulting
ASR transcriptions; spoken data are the same as in
Gaspers and Cimiano (2014). For application with
the ASR we normalized training data which mainly
comprised lowercasing and replacement of numbers
in player names, e.g. “pink4” — “pink four”. Some
statistics for the normalized dataset are presented in
Table 1.!

Table 1: Dataset statistics.

Total number of comments 1,872
Comments having correct mr 1,539
Average number of events per comment 2.5

Maximum number of events per comment | 12

SD in number of events per comment 1.8
Mean utterance length 7.39

# Types 355

# Tokens 13,838

3.2 The applied semantic parsing algorithm

For semantic parser induction we applied the al-
gorithm presented in Gaspers and Cimiano (2014),
which is mainly designed to work with the output
of a phoneme recognizer. The algorithm is also
applicable to textual input and has been shown to
achieve state-of-the-art performance on written in-
put (cf. Gaspers and Cimiano (2014)). The in-
duced parser is represented in the form of a lexicon
and an inventory containing syntactic constructions
and thus well-suited to be transformed into a rule-
based speech recognition grammar. The learned lex-

"Numbers for mean utterance length and number of tokens
and types are computed only for comments included in the
training dataset. Regarding the total number of comments we
use one more per game than Chen et al. (2010) in line with
Borschinger et al. (2011).
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icon comprises lexical units, i.e. words or short se-
quences of words, along with their mapping to se-
mantic referents, e.g. “pink goalie” — pinkl. Each
syntactic construction consists of a syntactic pat-
tern, e.g. “X; kicks to X5”, along with an asso-
ciated semantic frame, e.g. pass(ARG1, ARG3),
and a mapping which maps slots in the syntactic pat-
tern to argument slots in the semantic frame, e.g.
Xy, — ARG1,Xs — ARG,. Slots in syntactic
patterns represent positions in which a lexical unit
from the parser’s lexicon can be inserted. For in-
stance, in the previous pattern “pink goalie” can be
inserted at position X; or Xo. When applied to writ-
ten text, parser induction is performed by applying
the following learning steps:

1. acquisition of an initial lexicon

2. computation of alignments between NLs and
ambiguous context representations, and

3. estimation of co-occurrence frequencies at dif-
ferent levels.

This work flow is illustrated in Fig 1.

Computation of
{ Inpl"It Examples ‘ co-occurrence statistics

- Initial
\ Alignments @ Lexicon

Computation of

@ cofoccurrzince statistics

Syntactic T
constructions

Parser

Figure 1: The algorithm’s work flow.

In step 1, initial lexical knowledge is learned by
computing co-occurrence frequencies between all
bi- and unigrams appearing in the NL data and all
semantic referents appearing in the MR data. In step
2, this knowledge is used to compute alignments for
each example between its NL and all mr; € M R ob-
served with it, i.e. lexical knowledge is used to seg-
ment NL such that all semantic referents observed
in an mr are expressed by individual sequences, and
hypotheses concerning a mapping between NL and



semantics are created. For instance, given an input
example

NL: purple eight kicks to purple seven
) mri: | playmode(play-on)

mra: | pass(purple8, purpleT)

mrs: | pass(purple2, purpleb)

the following alignment might be created:

NL X kicks to Xo
o pass(ARG:, ARG>)
2) Mapping: X1 — ARG1, X2 — ARG>
nl — ref purple eight — purple8
purple seven — purple7

That is, assuming that the algorithm has learned

in step 1 that “purple eight” and “purple seven” re-
fer to purpl8 and purple?, respectively, it may use
this knowledge to hypothesize that NL is an instan-
tiation of a pattern “X; kicks to X5, which in turn
refers to the predicate pass(ARG1, ARG2) with a
mapping X; — ARG, X5 — ARGs.
Alignments are rated, and for each example only
those having maximal scores are used for parser in-
duction. By this, lexical knowledge is used to pre-
disambiguate the training data. Given the align-
ments induced in step 3, a parser is estimated by
computing co-occurrence frequencies at different
levels. In particular, association scores are computed
at three different levels, i.e.

1. nl — ref: between all lexical units, e.g. “pur-
ple eight”, and semantic referents, e.g. purpleS8,
appearing in alignments,

2. NL — mr: between all syntactic patterns,
e.g. “X; kicks to X5”, and semantic frames,
e.g. pass(ARG1, ARG>), appearing in align-
ments, and

3. mapping: between all slots in a syntactic pat-
tern, e.g. X1, and argument slots, e.g. ARG1,
specific for each pattern and semantic frame.

Then, the parser’s lexicon consists of rules of the
form nl — ref, while the syntactic constructions
have the form NL — mr, each coupled with its indi-
vidual mapping.

Parsing is performed by searching for an appropri-
ate syntactic construction given an input NL, and
the arguments matching the elements at the slots in
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the syntactic pattern are inserted into the appropri-
ate argument slots in the associated semantic frame.
Approximate matching can be applied during pars-
ing of NLs for which no pattern can be found other-
wise. In this paper, we always perform approximate
matching by searching for a matching syntactic pat-
tern with a Levenshtein distance of 1 if no match-
ing pattern can be found directly, which allows us
to parse utterances containing a recognition error.
Even though — of course — more than one recognition
error might be contained in a given utterance, we do
not use greater distance values because this would
likely yield parsing errors, as utterances are rather
short and most of the words are important for detect-
ing the meaning; leaving out too many words will in
general increase the likelihood of matching wrong
patterns, thus yielding spurious interpretations. Us-
ing the algorithm, for each fold of the RoboCup data
set we created a semantic parser using the written
training data of three games.

3.3 Creation of language models

Based on the written training data we created dif-
ferent LMs. In particular, we created rule-based
recognition grammars using the algorithm and fur-
ther LMs, such as trigram models, for comparison.

3.3.1 Recognition grammars

We built semantic speech recognition grammars
given a semantic parser by transforming all rules
with an occurrence greater than one into JSpeech
Grammar Format (JSGF)2. The resulting grammars
consisted of rules representing the parser’s inven-
tory of syntactic constructions as well as its lexicon.
In case of the inventory of syntactic constructions,
alternative expansions of learned syntactic patterns
were defined, and in case of the lexicon, alterna-
tive expansions of learned lexical units were defined.
In particular, with respect to the lexicon we defined
a rule <ref> which comprises the learned lexical
units. With respect to syntactic constructions we de-
fined a rule <utterance> which comprises the pat-
terns. Further, syntactic slots in patterns were re-
placed by <ref>, allowing lexical units to appear
at those positions. In grammar creation, we also in-
vestigated the influence of occurrence frequencies of

Zhttp://www.w3.org/TR/jsgf/



syntactic patterns and lexical units to enhance gram-
matical rules with weights. In particular, we created
both weighted and unweighted grammars. When us-
ing weights, rules were weighted by using occur-
rence frequencies, i.e. the frequency which was ob-
served for pattern or lexical unit as aligned by the
algorithm during training. Hence, weights for pat-
terns and lexical units aligned less frequently in the
training data were smaller, indicating that they were
less likely to be spoken. An example illustrating a
subset of two (weighted) rules is illustrated in Fig.
2.

Notice that resulting JSGF grammars do not ex-
plicitly contain semantic information, but their in-
duction was driven by semantic information. This
is the case because a mapping to semantics was not
needed during recognition as we explore a two-stage
approach where parsing is performed after recog-
nition, allowing the inclusion of further LMs dur-
ing recognition. However, because both parsing and
understanding are performed using the same gram-
mar — where semantic information is ignored by the
LM - it would also be possible to induce a semantic
grammar that directly maps ASR output into seman-
tic representations.

3.3.2 Baseline language models

We computed different language models for com-
parison; these were mainly stochastic LMs. In par-
ticular, we created standard trigram language mod-
els from the written training data without making
use of concurrent perceptual context information us-
ing SRILM (Stolcke, 2002). Since the RoboCup
corpus is rather small and n-gram models are typi-
cally learned from large amounts of data, in addition
we interpolated the trigram models trained solely on
the in-domain RoboCup corpus each with a large
background language model trained on a broadcast
news corpus, i.e. the HUB4 dataset (Fiscus et al.,
1998). We also experimented with class-based mod-
els, but automatic induction of classes in an unsu-
pervised fashion did not appear promising and we
refrained from manually creating classes since the
focus of this paper is on the automatic creation of
ASR resources without requiring extensive manual
effort. However, an interesting experiment would be
to utilize the semantic classes induced by our algo-
rithm in order to create class-based language mod-
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els.

Moreover, in order to evaluate the utility of ambigu-
ous perceptual context for speech recognition gram-
mar induction, as a fully unsupervised grammar-
based baseline, we induced syntactic grammars re-
lying on the ADIOS algorithm (Solan et al., 2005).
Notice, however, that it is not common to apply
grammars learned in an unsupervised fashion di-
rectly for SLU. In particular, with respect to seman-
tic parsing, automatically induced grammars are typ-
ically post-processed manually, which we refrained
from doing, since the focus of this paper is on the
automatic creation of speech recognition and under-
standing components.

4 Experiments & Results

We evaluated the word error rate (WER) as well as
parsing accuracy for different language models and
combinations thereof. In particular, in case of apply-
ing recognition grammars we applied these also in
combination with an n-gram back off LM. In partic-
ular, the n-gram model was applied in case of utter-
ances which were rejected by the recognizer as out
of grammar (OOG), as these might still be parsed
subsequently by applying approximate matching.
Notice, however, that for our experiments we did
not apply both LMs at a time but combined the out-
put of two recognizers for further processing. No-
tice further that most speech recognizers can only
be applied using either a recognition grammar or an
n-gram model at a time, but one can assume that
two recognizers might be configured to run in paral-
lel. As mentioned previously, we performed 4-fold
cross-validation on the four RoboCup games. For
each fold, learning semantic parsers and creation of
language models was performed using the ambigu-
ous written training data for three games and the
spoken gold standard for the forth game for testing.
In the following, we will discuss results for applying
our induced grammars as an LM compared to using
standard trigrams models (solely trained on the in-
domain data) as a baseline, since these yielded the
best results. In particular, we do not discuss the re-
sults achieved by the grammars induced in a purely
syntactic manner as they performed worse than se-
mantic grammars in all experiments, and we do not
discuss the experiments for the interpolated/adapted



Figure 2: A subset of weighted speech recognition grammar rules

public <utterance> =

<ref> = /15/ pink goalie | /132/ pink nine |

trigram models as they performed worse than the
in-domain trigram models with the exception of a
very slight improvement when applied as a back off
model for SLU.?

4.1 Speech recognition

Speech recognition was performed using different
(combinations of) LMs individually; lexicon and
acoustic models were the same in all cases.* Speech
recognition results with respect to the word error rate
averaged over all folds are presented in Table 2.

Table 2: speech recognition results

Applied language model(s) WER (%)
Semantic grammar w/o weights | 15.55
Semantic grammar w/o weights
. 12.63
+ trigram back off
Semantic grammar inc. weights | 17.15
Semantic grammar inc. weights
. 10.88
+ trigram back off
l Trigram (baseline) [ 7.1 ‘

As can be seen, with a rather low error rate of
7.1%, applying trigram language models yields the
best results. While in case of applying semanti-
cally motivated recognition grammars the WER in-
creases, it must be noted that in cases in which
no back off models were applied this is to some
extent due to OOG utterances (as these yield sev-
eral deletions compared to the reference data). Yet,
the OOG-rate is rather low, i.e. averaged over all
folds 8.6% and 4.1% when using grammars with
and without weights, respectively. However, even in

3The results were: interpolated/adapted LM: WER: 13.43%,
Fi: 71.22%, semantic grammar + interpolated/adapted LM
backoff: WER: 13.85, Fi: 84.6%, syntactic recognition gram-
mar: WER: 18.98%, F1: 70.86%, syntactic recognition gram-
mar + trigram back off: WER: 13.98%, F1: 71.27%.

“We applied Sphinx4 (Walker et al., 2004) using lexicon
and acoustic models trained on the HUB4 dataset (Fiscus et
al., 1998), which contains broadcast news speech matching our
RoboCup data with respect to acoustics in that in both cases
read speech is addressed; these resources are available online.
We added phonetic transcriptions for out of vocabulary (OOV)
to the vocabulary; only two were OOV along with some typos.
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/6/ <ref> again passes to <ref> |
/10/ pink one |

/199/ <ref> kicks to <ref> |

cases where OOG utterances are recognized by ap-
plying trigram language models, the WER is higher
compared to applying trigram language models only.
Notably, these results were not consistent across
folds. For two folds, the WER actually decreased
when combining a semantically motivated grammar
including weights with a trigram language model
compared to applying the trigram language model
only, thus indicating that combining semantically
motivated grammars learned with weak supervision
with trigram models can also yield improved recog-
nition performance over applying trigram models
only in some cases.

4.2 Semantic parsing

For each fold, ASR transcriptions were parsed using
the semantic parser learned on the training data for
that fold. For comparison, as an upper baseline we
computed parsing performance on normalized gold
standard data, since typically performance degrades
— and often to a large extent — when a semantic
parser is applied to ASR transcriptions of speech;
recall that the applied algorithm achieves state-of-
the-art performance on the dataset.’ Results are pre-
sented in Table 3.

Table 3: Semantic parsing results on written text and on
speech transcribed using different language models

Written text (reference)

F, Prec. | Recall
Normalized text 87.26 | 94.28 | 81.42
Speech
Applied language model(s) Fy Prec. | Recall
Semantic grammar inc. weights | 84.18 | 88.7 80.18
Serr}anﬂc grammar inc. weights 84.46 | 8753 | 81.64
+ trigram back off
Semantic grammar w/o weights | 82.24 | 84.83 | 79.84
Serr.lantlc grammar w/o weights 2237 | 8467 | 8021
+ trigram back off

Trigram (baseline) | 7836 [ 90.34 | 69.4

SWhile comparison with a manually created gold standard
grammar would be interesting as well, a manually created gram-
mar for the utilized dataset is unfortunately not available.



The results reveal that in case of applying trigram
LMs F} degrades about 9% absolute compared to
parsing written text (reference), yielding 78.36% in
Fy, even though the WER is rather low with a value
of 7.1%. Thus, the trigram seems to “destroy” se-
mantically meaningful sequences while restoring se-
quences that contain no meaning. By contrast, in
case of applying a semantically motivated recogni-
tion grammar including weights, performance im-
proves by 6% absolute over the trigram model, even
though the WER is higher in this case. More-
over, including weights in the recognition grammars
yields improved performance compared to using un-
weighted grammars.

Notably, the decrease in performance in case of ap-
plying a weighted semantically motivated recogni-
tion grammar (+ trigram back off) compared to per-
formance on the reference data is mainly due to a
decrease in precision. Here it must be noted that
the high values in F} are achieved without perform-
ing any optimization of (recognition) parameters. In
the performed experiments, the probability for OOG
utterances was rather low, and thus utterances were
matched incorrectly by the ASR which were actually
not covered by the grammar, yielding both recogni-
tion and subsequent parsing errors. However, these
parameters can be tuned, likely increasing precision
and I even further (and probably also the WER).
Applying a back off trigram model yields only little
improvement in parsing performance, although this
may to some extent be due to not tuning recognition
parameters. That is, if the ASR would be tuned to re-
ject more OOG utterances correctly, these utterances
might instead be recognized by a trigram model and
probably parsed correctly by applying approximate
matching.

5 Discussion

When applying trigram models, even with a rather
low error rate of 7.1%, semantic parsing perfor-
mance degraded about 9% absolute in F}. Here it
must be noted that due to the evaluation schema a
single recognition error can yield a completely in-
correct parse. Recall that evaluation is performed
on the basis of fully correct mrs, i.e. all referents
and the predicate must be determined correctly in
order to yield a correct parse. For instance, if any
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of the words “purple”, “pink”, “two” or “five” is
deleted or substituted in an utterance “purple two
passes to pink five”, one of the referents may not
be identified (correctly). Similarly, deleting or sub-
stituting “passes” may yield an incorrect predicate
or no parse at all. Hence, parsing performance can
degrade rapidly even on ASR transcriptions contain-
ing only few recognition errors.

The results show that, in line with previous research
(Wang et al., 2003; Bayer and Riccardi, 2012), a
lower WER may not yield better understanding re-
sults, i.e. in our case parsing performance is not di-
rectly dependent on the WER but rather on the type
of errors made. In particular, with respect to seman-
tic parsing it is important that words carrying im-
portant meaning are recognized correctly. For in-
stance, a spoken utterance “pink nine passes the ball
to pink seven” in which “seven” is incorrectly recog-
nized as “eleven” likely yields a parsing error while
a recognition error which substitutes “backward” by
“forward” may not prevent correct parsing. This is
the case because “forward” and “backward” do not
carry any semantics in the data set at hand, while
correct identification of numbers is in most cases es-
sential for detecting the correct semantic referents.
Applying the semantically motivated grammars may
have been beneficial in recognizing the semantic ref-
erents correctly because the system can explicitly
learn them and their appearances in certain patterns
in contrast to the trigram model. In particular, if an
utterance “pink nine passes the ball to pink seven”
appears during recognition and “pink seven” has not
been observed in the context of the preceding words
during training, then the n-gram model would assign
a low probability, likely leading to a recognition er-
ror such as “pink eleven”. By contrast, in case of
semantic grammars the system can learn that the ut-
terance is an instantiation of a pattern “player passes
the ball to player” and that all players can appear at
the contained slots, thus making the appearance of
the example utterance more likely. Notably, seman-
tic classes such as player can in principle also be
modeled in stochastic language models, in particu-
lar by applying class-based models, or in syntacti-
cally motivated grammars. Recall that we also ex-
perimented with syntactically motivated grammars
and with class-based models and that neither classes
which were auto-induced on the raw text data nor



syntactically motivated grammars yielded promising
results. Thus, using weak supervision in the form
of perceptual context information appears to be ben-
eficial for detecting semantic classes compared to
working with raw text. An interesting point for fu-
ture work might be to explore whether using seman-
tic groupings induced by our algorithm in a class-
based model yields reasonable results, in particular
when applied as a back-off model in combination
with a semantically motivated recognition grammar.
Further, we have also investigated weighting rules
for semantically meaningful lexical units, i.e. in
this example the probability for the occurrence of
players like “pink nine” and “pink seven” can be in-
creased according to their occurrence frequencies,
thus making recognizing them more likely. Our re-
sults indicate that by weighting semantically mean-
ingful sequences, performance is improved, possi-
bly because more words carrying semantics are rec-
ognized correctly, even though words carrying no
semantics like “forward” or “backward” might be
confused, which, however, may not prevent correct
parsing. In general, while in SLU research mainly
cascading systems are explored, in line with previ-
ous work (Wang et al., 2003; Bayer and Riccardi,
2012), our results indicate that joint models yield
improved parsing performance, even though word
recognition performance may decrease. Yet, our re-
sults indicate that a combination of a semantic gram-
mar with a standard trigram model during speech
recognition can also reduce the word error rate in
some cases compared to applying the trigram model
only. Furthermore, the results emphasize that cap-
turing semantic information in a language model ap-
plied during ASR is beneficial for subsequent se-
mantic parsing, since the ASR can be tuned to-
wards recognizing words carrying semantics more
precisely, which is important with respect to parsing
performance.

6 Conclusion

This work investigated the induction of semantic
grammars applicable for both speech recognition
and understanding in a weakly supervised setting,
i.e. using ambiguous context information. In doing
so, we compared parsing the output of speech recog-
nizers applied with different language models. Our
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results indicate that by applying the same semanti-
cally motivated grammar learned with weak super-
vision for both recognition and parsing, speech can
be parsed into formal meaning representations with
a rather low loss in performance compared to pars-
ing of data without recognition errors, that is, tex-
tual data or manual transcriptions of speech. An
improvement in parsing performance was obtained
over a cascading approach in which a standard n-
gram model is used, and we have shown how learn-
ing weights for grammatical rules applied in speech
recognition can yield improved subsequent parsing
results compared to applying unweighted grammars.
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