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Abstract

We present Model Invertibility Regularization
(MIR), a method that jointly trains two direc-
tional sequence alignment models, one in each
direction, and takes into account the invertibil-
ity of the alignment task. By coupling the two
models through their parameters (as opposed
to through their inferences, as in Liang et al.’s
Alignment by Agreement (ABA), and Ganchev
et al.’s Posterior Regularization (PostCAT)),
our method seamlessly extends to all IBM-
style word alignment models as well as to
alignment without parallel data. Our proposed
algorithm is mathematically sound and inher-
its convergence guarantees from EM. We eval-
uate MIR on two tasks: (1) On word align-
ment, applying MIR on fertility based mod-
els we attain higher F-scores than ABA and
PostCAT. (2) On Japanese-to-English back-
transliteration without parallel data, applied to
the decipherment model of Ravi and Knight,
MIR learns sparser models that close the gap
in whole-name error rate by 33% relative to
a model trained on parallel data, and further,
beats a previous approach by Mylonakis et al.

1 Introduction

The transfer of information between languages is a
common natural language phenomenon that is in-
tuitively invertible. For example, in transliteration,
a source-language word is mapped to a target lan-
guage’s writing system under a sound preserving
mapping (for example, “computer” to Japanese Ro-
maji, “konpyutaa”). The original word should then
be recoverable from its transliterated version. Simi-
larly, in translation, the back-translation of the trans-
lation of a word is likely to be that same word itself.

In NLP, however, commonly-used generative
models describing such phenomena are directional,
only concerned with the transfer of source-language
symbols to target-language symbols or vice versa,
but not both directions. Left unchecked, indepen-
dently training two such directional models (source-
to-target and target-to-source) often yields two mod-
els that diverge from this invertibility intuition.

In word alignment, this can lead to disagreements
between alignments inferred by a model trained in
one direction and those inferred by a model trained
in the reverse direction. To remedy this disparity
(and other shortcomings), it is common to turn to
alignment symmetrization techniques such as grow-
diag-final-and (Koehn et al., 2003) which heuristi-
cally combines alignments from both directions.

Liang et al. (2006) suggest a more fundamental
approach they call Alignment by Agreement (ABA),
which jointly trains two word alignment models by
maximizing their data-likelihoods along with a reg-
ularizer that rewards agreement between their align-
ment posteriors (computed over each parallel sen-
tence pair). Although their EM-like optimization
procedure is heuristic, it proves effective at jointly
training bidirectional models. Ganchev et al. (2008)
propose another approach for agreement between
the directed models by adding constraints on the
alignment posteriors. Unlike ABA, their optimization
is exact, but it can be computationally expensive,
requiring multiple forward-backward inferences in
each E-step.

In this paper we develop a different approach for
jointly training general bidirectional sequence align-
ment models called Model Invertibility Regulariza-
tion, or MIR (Section 3). Our approach has two
key benefits over ABA and PostCAT: First, MIR can
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be applied to sequence alignment without parallel
data. Second, a single implementation seamlessly
extends to all IBM models, including the fertility
based models. Furthermore, since MIR follows the
MAP-EM framework, it inherits its desirable con-
vergence guarantees.

The key idea facilitating the easy extension to
complex models and to non-parallel data settings is
in our regularizer, which operates on the model pa-
rameters as opposed to their inferences. Specifically,
MIR was designed to reward model pairs whose
translation tables respect the invertibility intuition.

We tested MIR against competitive baselines on
two sequence alignment tasks: word alignment
(with parallel data) and back-transliteration deci-
pherment (without parallel data).

On Czech-English and Chinese-English word
alignment (Section 5), restricted to the HMM model,
MIR attains F- and Bleu score improvements that are
comparable to those of ABA and PostCAT. We fur-
ther apply MIR beyond HMM, on the fertility-based
IBM Models, showing further gains in F-score com-
pared to the baseline, ABAandPostCAT. Interest-
ingly, the HMM alignments obtained by ABA and
MIR are qualitatively different, so that combining the
two yields additive gains over each method by itself.

On English-Japanese back-transliteration deci-
pherment (Section 6), we apply MIR to the cascade
of wFSTs approach proposed by Ravi and Knight
(2009). Using MIR, we are able to reduce the whole-
name error-rate relative to a model trained on paral-
lel data by 33%, as well as significantly outperform
the joint model proposed by Mylonakis et al. (2007).

2 Background

We are concerned with learning generative models
that describe transformations of a source-language
sequence e = (e1, . . . , eI) to a target-language se-
quence f = ( f1, . . . , fJ). We consider two different
data scenarios.

In the parallel data setting, each sample in the ob-
served data consists of a pair (e, f). The generative
story assigns the following probability to the event
that f arises from e:

p(f | e; Θ) =
∑

a
p(a, f | e; Θ) (1)

where Θ denotes the model parameters and a de-
notes a hidden variable that corresponds to unknown
choices taken in the generative process.

In the non-parallel data setting, only the target se-
quence f is observed and the source sequence e is
hidden. The model assigns the following probabil-
ity to the observed data:

p(f; Θ) =
∑

e
p(e)
∑

a
p(a, f | e). (2)

That is, the sequence f can arise from any sequence
e by first selecting e ∼ p(e) and then proceeding ac-
cording to the parallel-data generative story (Eq. 1).

Unsupervised training of such models entails
maximizing the data log-likelihood L(Θ):

arg max
Θ

L(Θ) = arg max
Θ

∑
x∈X

log p(x; Θ)

where X = {(en, fn)}n in the parallel data setting and
X = {(fn)}n in the non-parallel data setting.

Although the structure of Θ is unspecified, in
practice, most models that follow these generative
stories contain a word translation table (t-table) de-
noted t, with each parameter t( f | e) representing the
conditional probability of mapping a given source
symbol e to a target symbol f .

3 Model Invertibility Regularization

In this section we propose a method for jointly train-
ing two word alignment models, a source-to-target
model Θ1 and a target-to-source model Θ2, by reg-
ularizing their parameters to respect the invertibil-
ity of the alignment task. We therefore name our
method Model Invertibility Regularization (MIR).

3.1 Regularizer

Our regularizer operates on the t-table parameters
t1, t2 of the two models, as follows: Let matrices
T1,T2 denote the t-tables t1, t2 in matrix form and
consider their multiplication T = T1T2. The re-
sulting matrix T is a stochastic square matrix of
dimension |V1| × |V1| where |V1| denotes the size
of the source-language vocabulary. Each entry Ti j

represents the total probability mass mapped from
source word ei to source word e j by first applying
the source-to-target mapping T1 and then the target-
to-source mapping T2.
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In particular, each diagonal entry Tii holds the
probability of mapping a source symbol back onto
itself, a quantity we intuitively believe should be
high. We therefore (initially) consider maximizing
the trace of T :

Tr[T ] =
∑

i

Tii =
∑

e

∑
f

t1( f | e) t2(e | f ).

We further note that Tr[T ] = Tr[T1T2] = Tr[T2T1],
so that the trace captures equally well how much the
target symbols map onto themselves.

Since T is stochastic, setting it to the identity ma-
trix I maximizes its trace. In other words, the more
T1 and T2 behave as (pseudo-)inverses of each other,
the higher the trace is. This exactly fits with our in-
tuition regarding invertibility.

Unfortunately, the trace is not concave in both T1
and T2, a property which will become desirable in
optimization. We therefore modify the trace regular-
izer by applying the entrywise square root operator
on T1, T2 and denote the new term R:

R(t1, t2) = Tr
[ √

T1
√

T2
]

=
∑

e

∑
f

√
t1( f | e) t2(e | f ). (3)

Note that R is maximized when
√

T1
√

T2 = I.
Concavity of R in both t1, t2 (or equivalently

T1,T2) follows by observing that it is a sum of con-
cave functions – each term in the summation is a
geometric mean, which is concave in its parameters.

3.2 Joint Objective Function
We apply MIR in two data scenarios: In the parallel
data setting, we observe N sequence pairs {xn

1}n =

{(en, fn)}n or, equivalently, {xn
2}n = {(fn, en)}n.

In the non-parallel setting, two monolingual
datasets are observed: N1 source sequences {xn

1}n =

{en}n and N2 target sequences {xn
2}n = {fn}n.

The probability of the nth sample under the kth
model Θk (for k ∈ {1, 2}) is denoted pk(xn

k ; Θk).
Specifically, in the parallel data setting, the proba-
bility of xn

k under its model is:1

p1(xn
1; Θ1) = p(fn | en; Θ1)

p2(xn
2; Θ2) = p(en | fn; Θ2)

1This slight notational abuse helps represent both data sce-
narios succinctly.

whereas in the non-parallel data setting, the proba-
bility is defined as:

p1(xn
1; Θ1) = p(fn; Θ1)

p2(xn
2; Θ2) = p(en; Θ2).

Using the above definitions and the MIR regular-
izer R (Eq. 3), we formulate an optimization pro-
gram for maximizing the regularized log-likelihoods
of the observed data:

max
Θ1,Θ2

λR(t1, t2) +
∑

k∈{1,2}

Nk∑
n=1

log pk(xn
k ; Θk) (4)

where λ ≥ 0 is a tunable hyperparameter (note that,
in the parallel case, N = N1 = N2).

We defer discussion on the relationship and mer-
its of our approach with respect to ABA (Liang et al.,
2006) and PostCAT (Ganchev et al., 2008) to Sec-
tion 4.

3.3 Optimization Procedure

Using our concave regularizer, MIR optimization
(Eq. 4) neatly falls under the MAP-EM framework
(Dempster et al., 1977) and inherits the convergence
properties of the underlying algorithms. MAP-
EM follows the same structure as standard EM:
The E-step remains identical to the standard E-step,
while the M-step maximizes the complete-data log-
likelihood plus the regularization term. In the case
of MIR, the E-step can be carried out independently
for each model. The only extra work is in the M-
step, which optimizes a single (concave) objective
function.

Specifically, let zn denote the missing data, where,
in the parallel data setting, only the alignment is
missing (zn

k = an
k) and in the non-parallel data set-

ting, both alignment and source symbol are missing
(zn

1 = (an
1, e

n), zn
2 = (an

2, f
n)).

In the E-step, each model Θk (for k ∈ {1, 2})
is held fixed and its posterior distribution over the
missing data zn

k is computed per each observa-
tion, xn

k :

qk(zn
k , x

n
k) := pk(zn

k | xn
k ; Θk).

In the M-step, the computed posteriors are used
to define a convex optimization program that max-
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imizes the regularized sum of expected complete-
data log-likelihoods:

max
Θ1,Θ2

λR(t1, t2) +
∑

k∈{1,2}

Nk∑
n=1

qk(zn
k , x

n
k) log pk(xn

k , z
n
k)

where n ranges over the appropriate sample set.
Operationally, for models Θk that can be encoded

as wFSTs (such as the IBM1, IBM2 and HMM
word alignment models), the E-step can be carried
out efficiently and exactly using dynamic program-
ming (Eisner, 2002). Other models resort to ap-
proximation techniques – for example, the fertility-
based word alignment models apply hill-climbing
and sampling heuristics in order to efficiently esti-
mate the posteriors (Brown et al., 1993)

From the computed posteriors qk we collect ex-
pected counts for each event, used to construct the
M-step optimization objective. Since the MIR regu-
larizer couples only the t-table parameters, the up-
date rule for any remaining parameter is left un-
changed (that is, one can use the usual closed-form
count-and-divide solution).

Now, let Ce, f
1 and Ce, f

2 denote the expected counts
for the t-table parameters. That is, Ce, f

k denotes the
expected number of times a source-symbol type e is
seen aligned to a target-symbol type f according to
the posterior qk. In the M-step, we maximize the
following objective with respect to t1 and t2:

arg max
t1,t2

∑
e, f

Ce, f
1 log t1( f | e) +∑

e, f

Ce, f
2 log t2(e | f ) + λR(t1, t2) (5)

which can be efficiently solved using convex pro-
gramming techniques due to the concavity of R and
the complete-data log-likelihoods in both t1 and t2.

In our implementation, we applied Projected
Gradient Descent (Bertsekas, 1999; Schoenemann,
2011), where at each step, the parameters are up-
dated in the direction of the M-step objective gradi-
ent at (t1, t2) and then projected back onto the prob-
ability simplex. We used simple stopping conditions
based on objective function value convergence and a
bounded number of iterations.

4 Baselines

4.1 Parallel Data Baseline: ABA and PostCAT
Our approach is most similar to Alignment by
Agreement (Liang et al., 2006) which uses a single
joint objective for two word alignment models. The
difference between our objective (Eq. 4) and theirs
lies in their proposed regularizer, which rewards the
per-sample agreement of the two models’ alignment
posteriors:∑

n

log
∑

z
p1(z | xn) · p2(z | xn)

where xn = (en, fn) and where z ranges over the pos-
sible alignments between en and fn (practically, only
over 1-to-1 alignments, since each model is only ca-
pable of producing one-to-many alignments).

Liang et al. (2006) note that proper EM opti-
mization of their regularized joint objective leads to
an intractable E-step. Unable to exactly and effi-
ciently compute alignment posteriors, they resort to
a product-of-marginals heuristic which breaks EM’s
convergence guarantees, but has a closed-form solu-
tion and works well in practice.
MIR regularization has both theoretical and prac-

tical advantages compared to ABA, which make our
method more convenient and broadly applicable:

1. By regularizing for posterior agreement, ABA is
restricted to a parallel data setting, whereas MIR
can be applied even without parallel data.

2. The posteriors of more advanced word align-
ment models (such as fertility-based models) do
not correspond to alignments, and furthermore,
are already estimated with approximation tech-
niques. Thus, even if we somehow adapt ABA’s
product-of-marginals heuristic to such models,
we run the risk of estimating highly inaccurate
posteriors (specifically, zero-valued posteriors).
In contrast, MIR extends to all IBM-style word
alignment models and does not add heuristics.
The M-step computation can be done exactly and
efficiently with convex optimization.

3. MIR provides the same theoretical convergence
guarantees as the underlying algorithms.

Ganchev et al. (2008) propose PostCAT which
uses Posterior Regularization (Ganchev et al., 2010)
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to enforce posterior agreement between the two
models. Specifically, they add a KL-projection step
after the E-step of the EM algorithm which returns
the posterior q(z | x) closest in KL-Divergence to
an E-step posterior, but which also upholds certain
constraints. The particular constraints they suggest
encode alignment agreement in expectation between
the two models’ posteriors. For details, the reader
can refer to (Ganchev et al., 2008).

Similarly to ABA, with their suggested alignment
agreement constraints PostCAT cannot be applied
without parallel data and it is unclear how to extend
it to fertility based models (however, it does seems
possible to apply other constraints using the general
posterior regularization framework).

We compare MIR against ABA and PostCAT in
Section 5.

4.2 Non-Parallel Data Baseline: bi-EM
Mylonakis et al. (2007) cast the two directional
models as a single joint model by reparameterization
and normalization. That is, both directional models,
consisting of a t-table only, are reparameterized as:

t1( f | e) =
βe, f∑
f βe, f

t2(e | f ) =
βe, f∑
e βe, f

(6)

They then maximize the likelihood of observed
monolingual sequences from both languages:

max
β

L1({fn}; β) + L2({en}; β) (7)

where, for example:

L1({fn}; β) = log
∏

n

p(fn)

= log
∏

n

∑
e

p(fn | e)p(e)

= log
∏

n

∑
e

p(e)
∏

m

t1( f n
m | e)

Here, p(e) denotes the probability of e according to
a fixed source language model.

Once training of β is complete, we can decode
an observed target sequence f, by casting β back in
terms of t1 and apply the Viterbi decoding algorithm.

To solve for β in Eq. 7, Mylonakis et al. (2007)
propose bi-EM, an iterative EM-style algorithm. The
objective function in their M-step is not concave,

hinting that a closed-form solution for the maxi-
mizer is unlikely. The probability estimate that they
use in the M-step appears to maximize an approx-
imation of their M-step objective which omits the
normalization factors in Eq. 7.

Nevertheless, bi-EM attains improved results
compared to standard EM on both POS-tagging and
monotone noun sequence translation without paral-
lel data. We compare MIR against bi-EM in Sec. 6.

5 Experiments with Parallel Data

In this section, we compare MIR against stan-
dard EM training and ABA on Czech-English and
Chinese-English word alignment and translation.

5.1 Implementation and Code

For ABA2 and PostCAT3 training we used the au-
thors’ implementation, which supports the HMM
model. Vanilla EM training was done using
GIZA++,4 which supports all IBM models as well
as HMM. Our method MIR was implemented on top
of GIZA++.5

5.2 Data

We used the following parallel data to train the word
alignment models:

Chinese-English: 287K sentence pairs from the
NIST 2009 Open MT Evaluation constrained task
consisting of 5.3M and 6.6M tokens, respectively.

Czech-English: 85K sentence pairs from the News
Commentary corpus, consisting of 1.6M and 1.8M
tokens, respectively.

Sentence length was restricted to at most 40 tokens.

5.3 Word Alignment Experiments

We obtained HMM alignments by running either 5
or 10 iterations (optimized on a held-out validation
set) of both IBM Model 1 and HMM. We obtained
IBM Model 4 alignments by continuing with 5 it-
erations of IBM Model 3 and 10 iterations of IBM

2http://cs.stanford.edu/˜pliang/software/

cross-em-aligner-1.3.zip
3http://www.seas.upenn.edu/˜strctlrn/CAT/CAT.

html
4http://code.google.com/p/giza-pp/
5https://github.com/vaswani/MIR_ALIGNMENT
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Chi-Eng Cze-Eng
Method Align F1 Align F1

EM-HMM 64.6 65.0
PostCAT-HMM 69.8 69.6

ABA-HMM 70.8 70.4
MIR-HMM 70.9 69.6
EM-IBM4 68.4 67.3
MIR-IBM4 72.9 70.7

Table 1: Word alignment F1 scores.

Model 4. We then extracted symmetrized align-
ments in the following manner: For all HMM mod-
els, we used the posterior decoding technique de-
scribed in Liang et al. (2006) as implemented by
each package. For IBM Model 4, we used the
standard grow-diag-final-and (gdfa) symmetrization
heuristic (Koehn et al., 2003).

We tuned MIR’s λ parameter to maximize align-
ment F-score on a validation set of 460 hand-aligned
Czech-English and 1102 Chinese-English sentences.

Alignment F-scores are reported in Table 1. In
particular, the best results were obtained by MIR,
when applied to the fertility based IBM4 model -
we obtained gains of +2.1% (Chinese-English) and
+0.3% (Czech-English) compared to the best com-
petitor.

5.4 MT Experiments

We ran MT experiments using the Moses (Koehn
et al., 2007) phrase-based translation system.6 The
feature weights were trained discriminatively using
MIRA (Chiang et al., 2008), and we used a 5-gram
language model trained on the Xinhua portion of En-
glish Gigaword (LDC2007T07). All other parame-
ters remained with their default settings. The devel-
opment data used for discriminative training were:
for Chinese-English, data from the NIST 2004 and
NIST 2006 test sets; for Czech-English, 2051 sen-
tences from the WMT 2010 shared task. We used
case-insensitive IBM Bleu (closest reference length)
as our metric.

On both language pairs, ABA, PostCAT and MIR
outperform their respective EM baseline with com-
parable gains overall. However, we noticed that
ABA and MIR are not producing the same alignments.

6http://www.statmt.org/moses/

Chi-Eng Cze-Eng
Method NIST08 WMT09 WMT10

EM-HMM 23.6 16.7 17.1
PostCAT-HMM 24.6 16.9 17.4

MIR-HMM 24.0 17.1 17.6
ABA-HMM 24.4 17.1 17.7
EM-IBM4 24.2 16.8 17.2
MIR-IBM4 24.6 17.2 17.5

ABA + MIR-HMM 25.1 17.4 17.9

Table 2: Bleu scores. Combining ABA and MIR HMM
alignments improves Bleu score significantly over all
other methods.

For example, by combining their HMM alignments
(simply concatenating aligned bitexts) the total im-
provement reaches +1.5 Bleu on the Chinese-to-
English task, a statistically significant improvement
(p < 0.05) according to a bootstrap resampling sig-
nificance test (Koehn, 2004)). Table 5.4 summarizes
our MT results.

6 Experiments without Parallel Data

Ravi and Knight (2009) consider the challeng-
ing task of learning a Japanese-English back-
transliteration model without parallel data. The goal
is to correctly decode a list of 100 US senator names
written in katakana script, without having access to
parallel data. In this section, we reproduce their de-
cipherment experiment and show that applying MIR
to their baseline model significantly outperforms
both the baseline and the bi-EM method.

6.1 Phonetic-Based Japanese Decipherment

Ravi and Knight (2009) construct a English-to-
Japanese transliteration model as a cascade of wF-
STs (depicted in Figure 1, top). According to
their generative story, any word in katakana is gen-
erated by re-writing an English word in its En-
glish phonetic representation, which is then trans-
formed to a Japanese phonetic representation and
finally re-written in katakana script. For example,
the word “computer” is mapped to a sequence of
8 English phonemes (k, ah,m, p, y, uw, t, er), which
is mapped to a sequence of 9 Japanese phonemes
(K,O,N,P,Y,U,T,A,A) and finally to Katakana.

They apply their trained transliteration model to
decode a list of 100 US senator names and report a
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whole-name error-rate (WNER)7 of 40% with paral-
lel data (trained over 3.3k word pairs), compared to
73% WNER without parallel data (trained over 9.5k
Japanese words only), demonstrating the weakness
of methods that do not use parallel data.

6.2 Forward Pipeline

We reproduced the English-to-Japanese translitera-
tion pipeline of Ravi and Knight (2009) by con-
structing each of the cascade wFSTs as follows:

1. A unigram language model (LM) of English
terms, estimated over the top 40K most frequent
capitalized words found in the Gigaword corpus
(without smoothing).

2. An English pronunciation wFST from the CMU
pronunciation dictionary.8

3. An English-to-Japanese phoneme mapping
wFST that encodes a phoneme t-table t1 which
was designed according to the best setting re-
ported by Ravi and Knight (2009). Specifically,
t1 is restricted to either 1-to-1 or 1-to-2 phoneme
mappings and maintains consonant parity. See
further details in their paper.

4. A hand-built Japanese pronunciation to
Katakana wFST (Ravi and Knight, 2009).

6.3 Backward Pipeline

MIR requires a pipeline in the reverse direction,
transliteration of Japanese to English. We con-
structed a unigram LM of Katakana terms over the
top 25K most frequent Katakana words found in
the Japanese 2005-2008-news dictionary from the
Leipzig corpora.9

The remaining required wFSTs were obtained by
inverting the forward model wFSTs (that is, wFSTs
2,3,4 above), and the cascade was composed in the
reverse direction. In particular, by inverting t1, we
obtained the Japanese-to-English t-table t2 that al-
lows only 2-to-1 or 1-to-1 phoneme mappings.

7The percentage of names where any error occurs anywhere
in either the first or last name.

8http://www.speech.cs.cmu.edu/cgi-bin/cmudict
9http://corpora.uni-leipzig.de/

6.4 Training Data
For training data, we used the top 50% most frequent
terms from the monolingual data over which we con-
structed the LM wFSTs. This resulted in a set of
20K English terms (denoted ENG) and a set of 13K
Japanese terms in Katakana (denoted KTKN).

Taking the entire set of monolingual terms led to
poor baseline results, probably since uncommon En-
glish terms are not transliterated, and uncommon
Katakana terms may be borrowed from languages
other than English.

In any case, it is important to note that ENG and
KTKN are unrelated, since both were collected over
non-parallel corpora.

6.5 Training and Tuning
We train and tune 4 models:

baseline: the model proposed by Ravi and Knight
(2009), which maximizes the likelihood (Eq. 2) of
the observed Japanese terms KTKN.

MIR: Our bidirectional, regularized model, which
maximizes the regularized likelihoods (Eq. 4) of
both monolingual corpora ENG, KTKN.

bi-EM: The joint model proposed by Mylonakis et
al. (2007), which maximizes the likelihoods (Eq. 7)
of both monolingual corpora ENG, KTKN.

Oracle: As an upper bound, we train the model of
Ravi and Knight (2009) as if it was given the correct
English origin for each Japanese term. (over 4.2K
parallel English-Japanese phoneme sequences).

We train each method for 15 EM iterations, while
keeping the LM and pronunciation wFSTs fixed.

Training was done using the Carmel finite-state
toolkit.10 Specifically, baseline and oracle rely
on Carmel exclusively, while for MIR and bi-EM, we
manipulated Carmel to output the E-step posteriors,
which we then used to construct and solve the M-
step objective using our own implementation.

The different models were tuned over a develop-
ment set consisting of 50 frequent Japanese terms
and their English origin. For each method, we chose
the so-called stretch-factor α ∈ {1, 2, 3} used to ex-
ponentiate the model parameters before decoding

10http://www.isi.edu/licensed-sw/carmel/
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Figure 1: The transliteration generative story as a cascade of wFSTs. Each box represents a transducer. Top: transliter-
ation of the word “computer” to Japanese Katakana. Bottom: the reverse process. MIR jointly trains the two cascades
by maximizing the regularized data log-likelihood with respect to the two (shaded) phoneme mapping models t1, t2.
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Figure 2: The 1-to-1 mapping submatrix of the t1 transliteration table for independent training (left) and MIR (right).
MIR learns sparser, peaked models compared to those learned by independent training.

(see Ravi and Knight (2009)), our model’s hyper-
parameter λ ∈ {1, 2, 3, 4}, and the number of itera-
tions (up to 15) to minimize WNER on the develop-
ment set.

We decoded Japanese terms using the Viterbi al-
gorithm, applied on the selected t1 model (using
Eq. 6 to convert the bi-EM model β back to to t1).
Finally, note that ABA training and symmetrization
decoding heuristics are inapplicable, since they rely
on parallel data.

6.6 Senator Name Decoding Results

We compiled our own test set, consisting of 100 US
senator names (first and last), and compared the per-
formance of the four algorithms. Table 3 reports
WNER, average normalized edit distance (NED)
and the number of model parameters (t1) with value
greater than 0.01 as an indication of sparsity. Figure
2 further compares the 1-to-1 portions of the best
model learned by the baseline method with the

best model learned by MIR, showing the difference
in parameter sparsity.

WNER NED t1 > 0.01
baseline 67% 23.2 649
bi-EM 66% 21.8 600
MIR 59% 17.3 421
Oracle 43% 10.8 152

Table 3: MIR reduces error rates (WNER, NED) and
learns sparser models (number of t1 parameters greater
than 0.01) compared to the other models.

Using MIR, we obtained significant reduction in
error rates, closing the gap between the baseline
method and Oracle, which was trained on parallel
data, by 33% in WNER and nearly 50% in NED.
This error reduction clearly demonstrates the effi-
cacy of MIR in the non-parallel data setting.
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7 Conclusion

We presented Model Invertibility Regularization
(MIR), an unsupervised method for jointly train-
ing bidirectional sequence alignment models with
or without parallel data. Our formulation is based
on the simple observation that the alignment tasks
at hand are inherently invertible and encourages
the translation tables in both models to behave like
pseudo-inverses of each other.

We derived an efficient MAP-EM algorithm and
demonstrated our method’s effectiveness on two dif-
ferent alignment tasks. On word alignment, apply-
ing MIR on the IBM4 model yielded the highest F
scores and the resulting Bleu scores were compara-
ble to that of Alignment by Agreement (Liang et al.,
2006) and PostCAT (Ganchev et al., 2008). Our best
MT results (up to +1.5 Bleu improvement) were
obtained by combining alignments from both MIR
and ABA, indicating that the two methods learn com-
plementary alignments. On Japanese-English back-
transliteration with no parallel data, we obtained a
significant error reduction over two baseline meth-
ods (Ravi and Knight, 2009; Mylonakis et al., 2007).

As future work, we plan to apply MIR on large-
scale MT decipherment (Ravi and Knight, 2011;
Dou and Knight, 2013), where, so far, only a single
directional model has been used. Another promis-
ing direction is to encourage invertibility not only
between words, but between their senses and syn-
onyms.
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