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Abstract

For phylogenetic inference, linguistic typol-
ogy is a promising alternative to lexical evi-
dence because it allows us to compare an ar-
bitrary pair of languages. A challenging prob-
lem with typology-based phylogenetic infer-
ence is that the changes of typological fea-
tures over time are less intuitive than those
of lexical features. In this paper, we work
on reconstructing typologically natural ances-
tors To do this, we leverage dependencies
among typological features. We first repre-
sent each language by continuous latent com-
ponents that capture feature dependencies. We
then combine them with a typology evaluator
that distinguishes typologically natural lan-
guages from other possible combinations of
features. We perform phylogenetic inference
in the continuous space and use the evalua-
tor to ensure the typological naturalness of in-
ferred ancestors. We show that the proposed
method reconstructs known language fami-
lies more accurately than baseline methods.
Lastly, assuming the monogenesis hypothesis,
we attempt to reconstruct a common ancestor
of the world’s languages.

1 Introduction
Linguistic typology is a cross-linguistic study that
classifies the world’s languages according to struc-
tural properties such as complexity of syllable struc-
ture and object-verb ordering. The availability of a
large typology database (Haspelmath et al., 2005)
makes it possible to take computational approaches
to this area of study (Daumé III and Campbell, 2007;
Georgi et al., 2010; Rama and Kolachina, 2012). In

this paper, we consider its application to phyloge-
netic inference. We aim at reconstructing evolution-
ary trees that illustrate how modern languages have
descended from common ancestors.

Typological features have two advantages over
other linguistic traits. First, they allow us to com-
pare an arbitrary pair of languages. By contrast,
historical linguistics has worked on regular sound
changes (see (Bouchard-Côté et al., 2013) for com-
putational models). Glottochronology and computa-
tional phylogenetics make use of the presence and
absence of lexical items (Swadesh, 1952; Gray and
Atkinson, 2003). All these approaches require that
certain sets of cognates, or words with common et-
ymological origins, are shared by the languages in
question. For this reason, it is hardly possible to use
lexical evidence to search for external relations in-
volving language isolates and tiny language families
such as Ainu, Basque, and Japanese. For these lan-
guages, typology can be seen as the last hope.

The second advantage is that typological features
are potentially capable of tracing evolutionary his-
tory on the order of 10,000 years because they
change far more slowly than lexical traits. A glot-
tochronological study indicates that even if Japanese
is genetically related to Korean, they diverged from
a common ancestor no earlier than 6,700 years
ago (Hattori, 1999). Even the basic vocabulary van-
ishes so rapidly that after some 6,000 years, the re-
tention rate becomes comparable to chance similar-
ity. By contrast, the word order of Japanese, for ex-
ample is astonishingly stable. It remains intact from
the earliest attested data. Thus we argue that if we
manage to develop a statistical model of typological
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Munda Mon-Khmer
grammar synthetic analytic
word order head-last, OV, postpositional head-first, VO, prepositional
affixation pre/infixing, suffixing pre/infixing or isolating
fusion agglutinative fusional
consonants stable/assimilative shifting/dissimilative
vowels harmonizing/stable reducing/diphthongizing

Table 1: Typological comparison of the Munda and Mon-Khmer branches of the Austroasiatic languages.
An abridged version of Table 1 of (Donegan and Stampe, 2004).

changes with predictive power, we can understand a
much deeper past.

A challenging problem with typology-based in-
ference is that the changes of typological features
over time are less intuitive than those of lexical fea-
tures. Regular sound changes have been well known
since the time of the Neogrammarians. The bi-
nary representations of lexical items commonly used
in computational phylogenetics correspond to their
their presence and absence. The alternations of each
feature value can be straightforwardly interpreted as
the birth and death (Le Quesne, 1974) of a lexical
item. By contrast, it is difficult to understand how a
language switches from SOV to SVO.

Practically speaking, since each language is rep-
resented by a vector of categorical features, we can
easily perform distance-based hierarchical cluster-
ing. Still, the extent to which the resultant tree
reflects evolutionary history is unclear. Teh et al.
(2008) proposed a generative model for hierarchical
clustering, which straightforwardly explains evolu-
tionary history. However, features used in their ex-
periments were binarized in a one-versus-rest man-
ner (i.e., expanding a feature with K possible val-
ues into K binary features) (Daumé III and Camp-
bell, 2007) although the model itself had an abil-
ity to handle categorical values. With the indepen-
dence assumption of binary features, the model was
likely to reconstruct ancestors with logically impos-
sible states.

Typological studies have shown that dependen-
cies among typological features are not limited to
the categorical constraints. For example, object-
verb ordering is said to imply adjective-noun order-
ing (Greenberg, 1963). A natural question arises as
to what would happen to adjective-noun ordering if
object-verb ordering were altered. While dependen-
cies among feature pairs were discussed in previous

studies (Greenberg, 1978; Dunn et al., 2011), depen-
dencies among more than two features are yet to be
exploited.

To gain a better insight into typological changes,
we take Austroasiatic languages as an example. Ta-
ble 1 compares some typological features of the
Munda and Mon-Khmer branches. Although their
genetic relationship was firmly established, they are
almost opposite in structure. Their common an-
cestor is considered to have been Mon-Khmer-like.
This indicates that the holistic changes have hap-
pened in the Munda branch (Donegan and Stampe,
2004). To generalize from this example, we suggest
the following hypotheses:

1. The holistic polarization can be explained by
latent components that control dependencies
among observable features.

2. Typological changes can occur in a way such
that typologically unnatural intermediate states
are avoided.

To incorporate these hypotheses, we propose con-
tinuous space representations of linguistic typology.
Specifically, we use an autoencoder (see (Bengio,
2009) for a review) to map each language into the
latent space. In analogy with principal component
analysis (PCA), each element of the encoded vec-
tor is referred to as a component. We combine the
autoencoder with a typology evaluator that distin-
guishes typologically natural languages from other
possible combinations of features.

Armed with the typology evaluator, we perform
phylogenetic inference in the continuous space. The
evaluator ensures that inferred ancestors are also
typologically natural. The inference procedure is
guided by known language families so that each
component’s stability with respect to evolutionary
history can be learned. To evaluate the proposed
method, we hide some trees to see how well they
are reconstructed.
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Lastly, we build a binary tree on top of known
language families. This experiment is based on a
controversial assumption that the world’s languages
descend from one common ancestor. Our goal here
is not to address the validity of the monogenesis hy-
pothesis. Rather, we address the questions of how
the common ancestor looked like if it existed and
how modern languages have evolved from it.

2 Related Work
In linguistic typology, much attention has been
given to non-tree-like evolution (Trubetzkoy, 1928).
Daumé III (2009) incorporated linguistic areas into
a phylogenetic model and reported that the extended
model outperformed a simple tree model. This re-
sult motivates us to use known language families for
supervision rather than to perform phylogenetic in-
ference in purely unsupervised settings.

Dunn et al. (2011) applied a state-process model
to reference phylogenetic trees to test if a pair of
features is independent. The model they adopted
can hardly be extended to handle multiple features.
They separately applied the model to each lan-
guage family and claimed that most dependencies
were lineage-specific rather than universal tenden-
cies. However, each known language family is so
shallow in time depth that few feature changes can
be observed in it (Croft et al., 2011). We mitigate
data sparsity by letting our model share parameters
among language families all over the world.

3 Data and Preprocessing
3.1 Typology Database and Phylogenetic Trees
The typology database we used is the World Atlas
of Language Structures (WALS) (Haspelmath et al.,
2005). As of 2014, it contains 2,679 languages and
192 typological features. It covers less than 15% of
the possible language/feature pairs, however.

WALS provides phylogenetic trees but they only
have two layers above individual languages: fam-
ily and genus. Language families include Indo-
European, Austronesian and Niger-Congo, and gen-
era within Indo-European include Germanic, In-
dic and Slavic. For more detailed trees, we
used hierarchical classifications provided by Ethno-
logue (Lewis et al., 2014). The mapping between
WALS and Ethnologue was done using ISO 639-3
language codes. We manually corrected some obso-
lete language codes used by WALS and dropped lan-

guages without language codes. We also excluded
languages labeled by Ethnologue as Deaf sign lan-
guage, Mixed language, Creole or Unclassified. For
both WALS and Ethnologue trees, we removed in-
termediate nodes that had only one child. Language
isolates were treated as family trees of their own.
We obtained 193 family trees for WALS and 189 for
Ethnologue.

We made no further modifications to the trees al-
though we were aware that some language families
and their subgroups were highly controversial. In
the future work, the Altaic language family, for ex-
ample, should be disassembled into Turkic, Mon-
golic and Tungusic to test if the Altaic hypothesis
is valid (Vovin, 2005).

Next, we removed features with low coverage.
Some features such as “Inclusive/Exclusive Forms
in Pama-Nyungan” (39B) and “Irregular Negatives
in Sign Languages” (139A) were not supposed to
cover the world. We selected 98 features that cov-
ered at least 10% of languages.1

We used the original, categorical feature values.
The mergers of some fine-grained feature values
seem desirable (Daumé III and Campbell, 2007;
Greenhill et al., 2010; Dunn et al., 2011). Some fea-
tures like “Consonant Inventories” might be better
represented as real-valued features. We leave them
for future work.

In the end, we created two sets of data. The first
set PARTIAL was used to train the typology evalua-
tor. We selected 887 languages that covered at least
30% of features. The second set FULL was for phy-
logenetic inference. We chose language families in
each of which at least 30% of features were covered
by one or more languages in the family. The num-
bers of language families (including language iso-
lates) were reduced to 103 for WALS and 110 for
Ethnologue.

3.2 Missing Data Imputation
We imputed missing data using the R package miss-
MDA (Josse et al., 2012). It handled missing val-
ues using multiple correspondence analysis (MCA).
Specifically, we used the imputeMCA function to

1Additional cleanup is needed. For example, the high-
coverage feature “The Position of Negative Morphemes in SOV
Languages” (144L) is not defined for non-SOV languages. A
natural solution is to add another feature value (Undefined).
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Figure 1: Representations of a language.

predict missing feature values. The substituted data
are used (1) to train the typology evaluator and (2)
to initialize phylogenetic inference.

To evaluate the performance of missing data im-
putation, we hid some known features to see how
well they were predicted. A 10-fold cross-validation
test using the PARTIAL dataset showed that 64.6% of
feature values were predicted correctly. It consider-
ably outperformed (1) the random baseline of 22.4%
and (2) the most-frequent-value baseline of 28.1%.
Thus our assumption of dependencies among fea-
tures was confirmed.

4 Typology Evaluator
We use a combination of an autoencoder to trans-
form typological features into continuous latent
components, and an energy-based model to evaluate
how a given feature vector is typologically natural.

We begin with the autoencoder. Figure 1 shows
various representations of a language. The origi-
nal feature representation v is a vector of categorical
features. v is binarized into x ∈ {0, 1}d0 in a one-
versus-rest manner. x is mapped by an encoder to a
latent representation h ∈ [0, 1]d1 , in which d1 is the
dimension of the latent space:

h = s(Wex + be),

where s is the sigmoid function, and matrix We and
vector be are weight parameters to be estimated. A
decoder then maps h back to x′ through a similar
transformation:

x′ = s(Wdh + bd).

We use tied weights: Wd = WT
e . Note that x′ is

a real vector. To recover a categorical vector, we
need to first binarize x′ according to categorical con-
straints and then to debinarize the resultant vector.

The training objective of the autoencoder alone is
to minimize cross-entropy of reconstruction:

LAE(x, x′) = −
d∑

k=1

xk log x′
k+(1−xk) log(1−x′

k),

where xk is the k-th element of x.
Next, we plug an energy-based model into the au-

toencoder. It gives a probability to x.

p(x) =
exp(WT

s g)∑
x′ exp(WT

s g′)
,

g = s(Wlh + bl),

where vector Ws, matrix Wl and bias term bl are
the weights to be estimated. h is mapped to g ∈
[0, 1]d2 before evaluation. This transformation is
motivated by our speculation that typologically nat-
ural languages may not be linearly separable from
unnatural ones in the latent space since biplots of
principal components of PCA often show sinusoidal
waves (Novembre and Stephens, 2008). The denom-
inator sums over all possible states of x′, including
those which violate categorical constraints. By max-
imizing the average log probability of training data,
we can distinguish typologically natural languages
from other possible combinations of features.

Given a set of N languages with missing data im-
puted,2 our training objective is to maximize the fol-
lowing:

N∑
i=1

(−LAE(xi, x′i) + C log p(xi))),

where C is some constant. Weights are optimized
by the gradient-based AdaGrad algorithm (Duchi et
al., 2011) with a mini-batch. A problem with this
optimization is that the derivative of the second term
contains an expectation that involves a summation
over all possible states of x′, which is computa-
tionally intractable. Inspired by contrastive diver-
gence (Hinton, 2002), we do not compute the ex-
pectation exactly but approximate it by few negative
samples collected from Gibbs samplers.

4.1 Mixing Languages: An Experiment
To analyze the continuous space representations, we
generated mixtures of two languages, which were

2We tried a joint inference of weight optimization and miss-
ing data imputation but dropped it for its instability. A cross-
validation test revealed that the joint inference caused a big ac-
curacy drop in missing data imputation.
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Figure 2: Mixtures of Mundari (a Munda language)
and Khmer (a Mon-Khmer language). The transitions
from Mundari (leftmost) to Khmer (rightmost). The ver-
tical axis denotes typological naturalness log p(x) + C.

potential candidates for their common ancestor. The
pair of languages A and B was mixed in two ways.
First, we replaced elements of A’s categorical vector
vA with vB , with the specified probability. We re-
peated this procedure 1,000 times to obtain a mean
and a standard deviation. Second, we applied lin-
ear interpolation of two vectors hA and hB and
mapped the resultant vector to v′. In this experi-
ment, d0 = 539 and we set d1 = 100 and d2 = 10.

Figure 2 shows the case of the Austroasiatic lan-
guages. In the original, categorical representations,
the mixtures of two languages form a deep valley
(i.e., typologically unnatural intermediate states).
By contrast, the continuous space representations al-
low a language to change into another without harm-
ing typological naturalness. This indicates that in
the continuous space, we can easily reconstruct ty-
pologically natural ancestors. The major feature
changes include “postpositional” to “prepositional”
(0.46–0.47), “strongly suffixing” to “little affixa-
tion” (0.53–0.54) and “SOV” to “SVO” (0.60–0.61).

5 Phylogenetic Inference
5.1 Tree Model
We use continuous space representations and the ty-
pology evaluator for phylogenetic inference. Our
strategy is to find a tree in which (1) nodes are ty-
pologically natural and (2) edges are shorter by the
principle of Occam’s razor. The first point is realized
by applying the typology evaluator. To implement
the second point, we define a probability distribu-
tion over a parent-to-child move in the continuous

space.
We assume that latent components are indepen-

dent. For the k-th component, the node’s value hk is
drawn from a Normal distribution with mean hP

k (its
parent’s value) and precision λk (inverse variance).
The further the node moves, the smaller probabil-
ity it receives. Precision controls each component’s
stability with respect to evolutionary history.

We set a gamma prior over λk, with hyperparam-
eters α and β.3 Taking advantage of the conjugacy
property, we marginalize out λk. Suppose that we
have drawn n samples and let mi be the difference
between the i-th node and its parent, hk − hP

k . Then
the posterior hyperparameters are αn = α+n/2 and
βn = β + 1

2

∑n
i=1 m2

i . The posterior predictive dis-
tribution is Student’s t-distribution (Murphy, 2007):

pk(hk|hP
k ,Mhist, α, β)= t2αn(hk|hP

k , σ2=βn/αn),
where Mhist is a collection of α, β and a history of
previously observed differences. The probability of
a parent-to-child move is a product of the probabili-
ties of its component moves:

pMOVE(h|hP,Mhist) =
d∏

k=1

pk(hk|hP
k , Mhist).

The root node is drawn from a uniform distribution.
To sum up, the probability of a phylogenetic tree

τ is given by pEVAL(tree)× pCONT(tree), where

pEVAL(tree) = Uniform(tree)
∏

x∈nodes(τ )

p(x),

pCONT(tree) = Uniform(root)

×
∏

(h,hP)∈edges(τ )

pMOVE(h|hP,Mhist).

nodes(τ ) is the set of nodes in τ , and edges(τ ) is
the set of edges in τ , We abuse notation as Mhist is
updated each time a node is observed.

5.2 Inference
Given observed data, we aim at reconstructing the
best phylogenetic tree. The data observed are (1)
leaves (with some missing feature values) and (2)
some tree topologies. We need to infer (1) the miss-
ing feature values of leaves, (2) the latent compo-
nents of internal nodes including the root and (3) the
remaining portion of tree topologies. Since leaves

3In the experiments, we set α = β = 0.1.
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Figure 3: SWAP operator. The gray circle is the target node. Its parent P, sibling S and two children C1 and
C2 are shown. (a) The current state. (b–e) The proposed states. (b–c) The topology remains the same but
the target is moved toward C1 and C2, respectively. (d) C1 is swapped for S. (e) C2 is swapped for S.

are tied to observed categorical vectors, our infer-
ence procedures also work on them. We map cate-
gorical vectors into the latent space every time we
attempt to change a feature value. By contrast, we
adopt latent vectors as the primary representations
of internal nodes.

Take the Indo-European language family for ex-
ample. Its tree topology is given but the states of
its internal nodes such as Indo-European, Germanic
and Indic need to be inferred. Dutch has some miss-
ing feature values. Although they have been imputed
with multiple correspondence analysis, its close rel-
atives such as Danish and German might be helpful
for better estimation.

We need to infer portions of tree topologies even
though a set of trees (language families) is given. To
evaluate the performance of phylogenetic inference,
we hide some trees to see how well they are recon-
structed. To reconstruct a common ancestor of the
world’s languages, we build a binary tree on top of
the set of trees. Note that while we only infer binary
trees, a node may have more than two children in the
fixed portions of tree topologies.

We use Gibbs sampling for inference. We define
four operators, CAT, COMP, SWAP and MOVE. The
first tree operators correspond to missing feature val-
ues, latent components and tree topologies, respec-
tively.

CAT – For the target categorical feature of a leaf
node, we sample from K possible values. Let x′ be a
binary feature representation with the target feature
value altered, let hP be the state of the node’s parent,
and let h′ = s(Wex′+be). The probability of choos-
ing x′ is proportional to p(x′) pMOVE(h′|hP,Mhist),
where h is removed from the history. The second

term is omitted if the target node has no parent.4

COMP – For the target k-th component of an
internal node, we choose its new value using the
Metropolis algorithm. It stochastically proposes
a new state and accepts it with some probabil-
ity. If the proposal is rejected, the current state
is reused as the next state. The proposal distribu-
tion Q(h′

k|hk) is a Gaussian distribution centered
at hk. The acceptance probability is a(hk, h

′
k) =

min(1, P (h′
k)/P (hk)), where P (h′

k) is defined as

P (h′
k) = p(x′) pMOVE(h′|hP,Mhist)∏

hC∈children(h′)

pMOVE(hC|h′, Mhist)

where children(h′) is the set of the target node’s
children.

SWAP – For the target internal node (which cannot
be the root), we use the Metropolis-Hastings algo-
rithm to locally rearrange its neighborhood in a way
similar to Li et al. (2000). We first propose a new
state as illustrated in Figure 3. The target node has
a parent P, a sibling S and two children C1 and C2.
From among S, C1 and C2, we choose two nodes.
If C1 and C2 are chosen, the topology remains the
same; otherwise S is swapped for one of the node’s
children. It is shown that one topology can be trans-
formed into any other topology in a finite number of
steps (Li et al., 2000).

To improve mobility, we also move the target
node toward C1, C2 or S, depending on the pro-
posed topology. Here the selected node is denoted
by ∗. We first draw r′ from a log-normal distri-
bution whose underlying Gaussian distribution has

4It is easy to extend the operator to handle internal nodes
supplied with some categorical features.
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mean −1 and variance 1. The target’s proposed state
is h′ = (1 − r′)h + r′h∗. r′ can be greater than 1,
and in that case, the proposed state h′ is more distant
from h∗ than the current state h. This ensures that
the transition is reversible because r = 1/r′. The
acceptance probability can be calculated in a similar
manner to that described for COMP.

MOVE – Propose to move the target internal node,
without swapping its neighbors.

For initialization, missing feature values are im-
puted by missMDA. The initial tree is constructed by
distance-based agglomerative clustering. The state
of an internal node is set to the average of those of
its children.

6 Experiments
6.1 Reconstruction of Known Family Trees
6.1.1 Data and Method

We first conducted a quantitative evaluation of
phylogenetic inference, using known family trees.
We ran 5-fold cross-validations. For each of WALS
and Ethnologue, we subdivided a set of language
families into 5 subsets with roughly the same num-
ber of leaves. Because of some huge language fami-
lies, the number of language families per subset was
uneven. We disassembled family trees in the target
subset and to let the model reconstruct a binary tree
for each language family. Unlike ordinary held-out
evaluation, this experiment used all data for infer-
ence at once.

6.1.2 Model Settings
We used the parameter settings described in Sec-

tion 4.1. For phylogenetic inference, we ran 9,000
burn-in iterations after which we collected 100 sam-
ples at an interval of 10 iterations.

For comparison, we performed average-link ag-
glomerative clustering (ALC). It has two variants,
ALC-CAT and ALC-CONT. ALC-CAT worked on
categorical features and used the ratio of disagree-
ment as a distance metric. ALC-CONT performed
clustering in the continuous space, using cosine dis-
tance. In other words, we can examine the effects
of the typology evaluator and precision parameters.
For these models, missing feature values are im-
puted by missMDA.

6.1.3 Evaluation Measures
We present purity (Heller and Ghahramani, 2005),

subtree (Teh et al., 2008) and outlier fraction

(a)

(b)

(c)

Figure 4: Maximum clade credibility tree of the
world. (a) The whole tree. Three-letter labels are ISO
639-3 codes. Nodes below language families are omit-
ted. (b–c) Portions of the tree are enlarged.

scores (Krishnamurthy et al., 2012). All scores are
between 0 and 1 and higher scores are better. We
calculated these scores for each language family and
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WALS Ethnologue
purity subtree outlier outlier

ALC-CAT .500 .557 .608 .626 .343 .330 .358 .398
ALC-CONT .503 .557 .630 .630 .343 .330 .353 .395
Proposed .522 .572 .603 .651 .351 .346 .356 .394

Table 2: Results of the reconstruction of known family trees. Macro-averages are followed by micro-
averages.

report macro- and micro-averages. Only non-trivial
family trees (trees with more than two children)
were considered.

Purity and subtree scores compare inferred trees
with gold-standard class labels. In WALS, genera
were treated as class labels because they were the
only intermediate layer between families and leaves.
By contrast, Ethnologue provided more complex
trees and we were unable to assign one class label
to each language. For this reason, only outlier frac-
tion scores are reported for Ethnologue.

6.1.4 Results
Table 2 shows the scores for reconstructed fam-

ily trees. The proposed method outperformed the
baselines in 5 out of 8 metrics. Three methods per-
formed almost equally for Ethnologue. We suspect
that typological features reflect long term trends in
comparison to Ethnologue’s fine-grained classifica-
tion. For WALS, the proposed method was beaten
by average-link agglomerative clustering only in
the macro-average of subtree scores. One pos-
sible explanation is randomness of the proposed
method. Apparently, random sampling distributed
errors more evenly than deterministic clustering. It
was penalized more often by subtree scores because
they required that all leaves of an internal node be-
longed to the same class.

6.2 Reconstruction of a Common Ancestor of
the World’s Languages

We reconstructed a single tree that covers the world.
To do this, we build a binary tree on top of known
language families, a product of historical linguistics.
It is generally said that historical linguistics cannot
go far beyond 6,000–7,000 years (Nichols, 2011).
Here we attempt to break the brick wall.

It is no surprise that this experiment is full of
problems and difficulties. No quantitative evalua-
tion is possible. Underlying assumptions are ques-
tionable. No one knows for sure if there was such
a thing as one common ancestor of all modern lan-
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Figure 6: Scatter plot of languages using the
components with the two smallest variances.

guages. Moreover, language capacity of humans, in
addition to languages themselves, is likely to have
evolved over time (Nichols, 2011). This casts doubt
on the applicability of the typology evaluator, which
is trained on modern languages, to languages of far
distant past. Nevertheless, it is fascinating to make
inference on the world’s ancestral languages.

We used Ethnologue as the known tree topologies.
For Gibbs sampling, we ran 3,000 burn-in iterations
after which we collected 100 samples at an interval
of 10 iterations.

Figure 4 shows a reconstructed tree. To summa-
rize multiple sample trees, we constructed a max-
imum clade credibility tree. For each clade (a set
of all leaves that share a common ancestor), we cal-
culated the fraction of times it appears in the col-
lected samples, which we call a support in this pa-
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Features Frequencies/Values

Consonant Inventories
95 Average
5 Moderately small

Vowel Quality Inventories
85 Average (5-6)
15 Small (2-4)

Syllable Structure
100 Moderately complex

0 Complex

Coding of Nominal Plurality

97 Plural suffix
2 Plural word
1 No plural
0 Plural clitic

Order of Numeral and Noun
61 Noun-Numeral
39 Numeral-Noun

Position of Case Affixes
61 No case affixes or adp. clitics
39 Case suffixes

Ord. of SOV
61 SOV
38 SVO
1 No dominant order

Ord. of Adposition and NP
91 Postpositions
9 Prepositions

Ord. of Adjective and Noun
87 Noun-Adjective
13 Adjective-Noun

Table 3: Some features of the world’s ancestor with
sample frequencies.

per. A tree was scored by the product of supports of
all clades within it, and we created a tree that maxi-
mized the score. Each edge label shows the support
of the corresponding clade. As indicated by gen-
erally low supports, the sample trees were very un-
stable. Some geographically distant groups of lan-
guages were clustered near the bottom. We partially
attribute this to the underspecificity of linguistic ty-
pology: even if a pair of languages shares the same
feature vector, they are not necessarily the same lan-
guage. This problem might be eased by incorporat-
ing geospatial information into phylogenetic infer-
ence (Bouckaert et al., 2012).

Table 3 shows some features of the root. The re-
constructed ancestor is moderate in phonological ty-
pology, uses suffixing in morphology and prefers the
SOV word order. The inferred word order agrees
with speculations given by previous studies (Mau-
rits and Griffiths, 2014).

Figure 5 shows the histogram of variance parame-
ters. Some latent components had smaller variances
and thus were more stable with respect to evolution-
ary history. Figure 6 displays languages using the
components with the two smallest variances. Unlike
PCA plots, data concentrated at the edges.

We used a geometric mean of pMOVE of multi-
ple samples to calculate how a modern language is

Rank Language Classificatoin Logprob.
1(Japanese)Japonic 76.8
2Shuri Japonic -37.7
3Khalkha Altaic>Mongolic -200.0
4Lepcha Sino-Tibetan>Tibeto-Burman -201.9
5Chuvash Altaic>Turkic -205.5
6Deuri Sino-Tibetan>Tibeto-Burman -218.3
7Urum Altaic>Turkic -218.6
8Ordos Altaic>Mongolic -219.0
9Uzbek Altaic>Turkic -219.6

10Archi N. Caucasian>E. Caucasian -221.5
131Korean (isolate) -265.7
493Ainu (isolate) -409.9

Table 4: Modern languages ranked by the similarity
to Japanese.

similar to another. The case of Japanese is shown
in Table 4. This ranked list is considerably dif-
ferent from that of disagreement rates of categor-
ical vectors (Spearman’s ρ = 0.76). When fea-
tures’ stability with respect to evolutionary history
is considered, Japanese is less closer to Korean and
Ainu than to some Tibeto-Burman languages south
of the Himalayas. As the importance of these mi-
nor languages of Northeast India is recognized, the
Sino-Tibetan tree might be drastically revised in the
future (Blench and Post, 2013). The least similar
languages include the Malayo-Polynesian and Nilo-
Saharan languages.

7 Conclusion
In this paper, we proposed continuous space repre-
sentations of linguistic typology and used them for
phylogenetic inference. Feature dependencies are
a major focus of linguistic typology, and typology
data have occasionally been used for computational
phylogenetics. To our knowledge, however, we are
the first to integrate the two lines of research. In
addition, the continuous space representations un-
derlying interdependent discrete features are appli-
cable to other data including phonological invento-
ries (Moran et al., 2014).

We believe that typology provides important clues
for long-term language change. The currently avail-
able database only contains modern languages, but
we expect that data of some ancestral languages
could greatly facilitate computational approaches to
diachronic linguistics.
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