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Abstract

This paper describes a joint model of word
segmentation and phonological alternations,
which takes unsegmented utterances as input
and infers word segmentations and underlying
phonological representations. The model is a
Maximum Entropy or log-linear model, which
can express a probabilistic version of Opti-
mality Theory (OT; Prince and Smolensky
(2004)), a standard phonological framework.
The features in our model are inspired by OT’s
Markedness and Faithfulness constraints. Fol-
lowing the OT principle that such features in-
dicate “violations”, we require their weights
to be non-positive. We apply our model to a
modified version of the Buckeye corpus (Pitt
et al., 2007) in which the only phonological
alternations are deletions of word-final /d/ and
/t/ segments. The model sets a new state-of-
the-art for this corpus for word segmentation,
identification of underlying forms, and identi-
fication of /d/ and /t/ deletions. We also show
that the OT-inspired sign constraints on fea-
ture weights are crucial for accurate identifi-
cation of deleted /d/s; without them our model
posits approximately 10 times more deleted
underlying /d/s than appear in the manually
annotated data.

1 Introduction

This paper unifies two different strands of research
on word segmentation and phonological rule induc-
tion. The word segmentation task is the task of
segmenting utterances represented as sequences of

phones into sequences of words. This is an ideal-
isation of the lexicon induction problem, since the
resulting words are phonological forms for lexical
entries.

In its simplest form, the data for a word segmen-
tation task is obtained by looking up the words of
an orthographic transcript (of, say, child-directed
speech) in a pronouncing dictionary and concate-
nating the results. However, this formulation sig-
nificantly oversimplifies the problem because it as-
sumes that each token of a word type is pronounced
identically in the form specified by the pronouncing
dictionary (usually its citation form). In reality there
is usually a significant amount of pronunciation vari-
ation from token to token.

The Buckeye corpus, on which we base our exper-
iments here, contains manually-annotated surface
phonetic representations of each word as well as the
corresponding underlying form (Pitt et al., 2007).
For example, a token of the word “lived” has the
underlying form /l.ih.v.d/ and could have the sur-
face form [l.ah.v] (we follow standard phonological
convention by writing underlying forms with slashes
and surface forms with square brackets, and use the
Buckeye transcription format).

There is a large body of work in the phonolog-
ical literature on inferring phonological rules map-
ping underlying forms to their surface realisations.
While most of this work assumes that the underly-
ing forms are available to the inference procedure,
there is work that induces underlying forms as well
as the phonological processes that map them to sur-
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face forms (Eisenstat, 2009; Pater et al., 2012).
We present a model that takes a corpus of unseg-

mented surface representations of sentences and in-
fers a word segmentation and underlying forms for
each hypothesised word. We test this model on data
derived from the Buckeye corpus where the only
phonological variation consists of word-final /d/ and
/t/ deletions, and show that it outperforms a state-of-
the-art model that only handles word-final /t/ dele-
tions.

Our model is a MaxEnt or log-linear model,
which means that it is formally equivalent to a Har-
monic Grammar, which is a continuous version of
Optimality Theory (OT) (Smolensky and Legen-
dre, 2005). We use features inspired by OT, and
show that sign constraints on feature weights re-
sult in models that recover underlying /d/s signif-
icantly more accurately than models that don’t in-
clude such contraints. We present results suggest-
ing that these constraints simplify the search prob-
lem that the learner faces.

The rest of this paper is structured as follows.
The next section describes related work, including
previous work that this paper builds on. Section 3
describes our model, while section 4 explains how
we prepared the data, presents our experimental re-
sults and investigates the effects of design choices on
model performance. Section 5 concludes the paper
and discusses possible future directions.

2 Background and related work

The word segmentation task is the task of segment-
ing utterances represented as sequences of phones
into sequences of words. Elman (1990) introduced
the word segmentation task as a simplified form of
lexical acquisition, and Brent and Cartwright (1996)
and Brent (1999) introduced the unigram model of
word segmentation, which forms the basis of the
model used here. Goldwater et al. (2009) described
a non-parametric Bayesian model of word segmen-
tation, and highlighted the importance of contex-
tual dependencies. Johnson (2008) and Johnson
and Goldwater (2009) showed that word segmen-
tation accuracy improves when phonotactic con-
straints on word shapes are incorporated into the
model. That model has been extended to also exploit
stress cues (Börschinger and Johnson, 2014), the

“topics” present in the non-linguistic context (John-
son et al., 2010) and the special properties of func-
tion words (Johnson et al., 2014).

Liang and Klein (2009) proposed a simple un-
igram model of word segmentation much like the
original Brent unigram model, and introduced a
“word length penalty” to avoid under-segmentation
that we also use here. (As Liang et al note, without
this the maximum likelihood solution is not to seg-
ment utterances at all, but to analyse each utterance
as a single word). Berg-Kirkpatrick et al. (2010) ex-
tended this model by defining the unigram distribu-
tion with a MaxEnt model. The MaxEnt features
can capture phonotactic generalisations about possi-
ble word shapes, and their model achieves a state-
of-the-art word segmentation f-score.

The phonological learning task is to learn the
phonological mapping from underlying forms to sur-
face forms. Johnson (1984) and Johnson (1992)
describe a search procedure for identifying under-
lying forms and the phonological rules that map
them to surface forms given surface forms organ-
ised into inflectional paradigms. Goldwater and
Johnson (2003) and Goldwater and Johnson (2004)
showed how Harmonic Grammar phonological con-
straint weights (Smolensky and Legendre, 2005) can
be learnt using a Maximum Entropy parameter esti-
mation procedure given data consisting of underly-
ing and surface word form pairs. There is now a
significant body of work using Maximum Entropy
techniques to learn phonological constraint weights
(see esp. Hayes and Wilson (2008), as well as the
review in Coetzee and Pater (2011)).

Recently there has been work attempting to inte-
grate these two approaches. The word segmentation
work generally ignores pronunciation variation by
assuming that the input to the learner consists of se-
quences of citation forms of words, which is highly
unrealistic. The phonology learning work has gen-
erally assumed that the learner has access to the un-
derlying forms of words, which is also unrealistic.

In the word segmentation area, Elsner et al. (2012)
and Elsner et al. (2013) generalise the Goldwater bi-
gram model by assuming that the bigram model gen-
erates underlying forms, which a finite state trans-
ducer maps to surface forms. While this is an ex-
tremely general model, inference in such a model
is very challenging, and they restrict attention to
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transducers where the underlying to surface map-
ping consists of simple substitutions, so their model
cannot handle the deletion phenomena studied here.
Börschinger et al. (2013) also generalise the Gold-
water bigram model by including an underlying-
to-surface mapping, but their mapping only allows
word-final underlying /t/ to be deleted, which en-
ables them to use a straight-forward generalisation
of Goldwater’s Gibbs sampling inference procedure.

In phonology, Eisenstat (2009) and Pater et al.
(2012) showed how to generalise a MaxEnt model
so it also learns underlying forms as well as MaxEnt
phonological constraint weights given surface forms
in paradigm format. The vast sociolinguistic liter-
ature on /t/-/d/-deletion is surveyed in Coetzee and
Pater (2011), together with prior OT and MaxEnt
analyses of the phenomena.

2.1 The Berg-Kirkpatrick et al. model
This section contains a more technical description
of the Berg-Kirkpatrick et al. (2010) MaxEnt uni-
gram model of word segmentation, which our model
directly builds on. Our model integrates the Max-
Ent unigram word segmentation model of Berg-
Kirkpatrick et al. with the MaxEnt phonology mod-
els developed by Goldwater and Johnson (2003)
and Goldwater and Johnson (2004). Because both
kinds of models are MaxEnt models, this integra-
tion is fairly easy, and the inference procedure re-
quires optimisation of a fairly straight-forward ob-
jective function. We use a customised version of
the OWLQN-LBFGS procedure (Andrew and Gao,
2007) that allows us to impose sign constraints on
individual feature weights.

As is standard in the word-segmentation liter-
ature, the model’s input is a sequence of utter-
ances D = (w1, . . . , wn), where each utterance
wi = (wi,1, . . . , wi,mi) is a sequence of (surface)
phones. The Berg-Kirkpatrick et al model is a uni-
gram model, so it defines a probability distribution
over possible words s, where s is also a sequence of
phones. The probability of an utterance w is the sum
of the probability of all word sequences that gener-
ate it:

P(w | θ) =
∑

s1...s`
s.t.s1...s`=w

∏̀
j=1

P(sj | θ)

Berg-Kirkpatrick et al’s model of word probabili-
ties P(s | θ) is a MaxEnt model with parameters θ,
where the features f(s) of surface form s are chosen
to encourage the model to generalise appropriately
over word shapes. While they don’t describe their
features in complete detail, they include features for
each word s, features for the prefix and suffix of s
and features for the CV skeleton of the prefix and
suffix of s.

In more detail, P(s | θ) is a MaxEnt model as
follows:

P(s | θ) =
1
Z

exp(θ · f(s)), where:

Z =
∑
s′∈S

exp(θ · f(s′))

The set of possible surface word forms S is the
set of substrings (i.e., sequences of phones) occuring
in the training data D that are shorter than a user-
specified length bound. We follow Berg-Kirkpatrick
in imposing a length bound on possible words; for
the Brent corpus the maximum word length is 10
phones, while for the Buckeye corpus the maximum
word length is 15 phones (reflecting the fact that
words are longer in this adult-directed corpus).

While restricting the set of possible word forms
S to the substrings appearing in D is reasonable
for a simple multinomial model like the one in
Liang and Klein (2009), it’s interesting that this pro-
duces good results with a MaxEnt model like Berg-
Kirkpatrick et al’s, since one might expect such a
model would have to learn generalisations about im-
possible word shapes in order to perform well. Be-
cause S only contains a small fraction of the possi-
ble phone strings, one might worry that the model
would not see enough “impossible words” to learn
to distinguish possible words from impossible ones,
but the model’s good performance suggests this is
not the case.1

1The non-parametric Bayesian approach of Goldwater et al.
(2009) and Johnson (2008) can be viewed as setting S to the set
of all possible phone strings (i.e., a possible word can be any
string of phones, whether or not it appears in D). The success
of Berg-Kirkpatrick et al’s approach suggests that these non-
parametric methods might not be necessary here, i.e., the set of
substrings actually occuring in D is “large enough” to enable
the model to learn “implicit negative evidence” generalisations
about impossible word shapes.
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Berg-Kirkpatrick et al follow Liang et al in us-
ing maximum likelihood estimation to estimate their
model’s parameters (Berg-Kirkpatrick et al actually
use L2-regularised maximum likelihood estimates).
As Liang et al note, it’s easy to show that the maxi-
mum likelihood segmentation leaves each utterance
unsegmented, i.e., each utterance is analysed as a
single word. To avoid this, Berg-Kirkpatrick et al
follow Liang et al by multiplying the word probabil-
ities by a word length penalty term. Thus the likeli-
hood LD they actually maximise is as shown below:

LD(θ) =
n∏

i=1

P(wi | θ)

P(w | θ) =
∑

s1...s`
s.t.s1...s`=w

∏̀
j=1

P(sj | θ) exp(−|si|d)

where d is a constant chosen to optimise segmenta-
tion performance. This means that the model is defi-
cient, i.e.,

∑
s∈S P(s | θ) < 1. (Because our model

uses a word length penalty in the same way, it too is
deficient).

As Figure 1 shows, performance is very sensitive
to the word length penalty parameter d: the best
word segmentation on the Brent corpus is obtained
when d ≈ 1.6, while the best segmentation on the
Buckeye corpus is obtained when d ≈ 1.5. As far as
we know there is no principled way to set d in an un-
supervised fashion, so this sensitivity to d is perhaps
the greatest weakness of this kind of model.

Even so, it’s interesting that a unigram model
without the kind of inter-word dependencies that
Goldwater et al. (2009) argues for can do so well.
It’s possible that the improvement that Goldwater
et al found with the bigram model is because mod-
elling individual bigram dependencies splits the data
in a way that reduces overlearning (Börschinger et
al., 2012).

3 A MaxEnt unigram model of word
segmentation and word-final /d/ and /t/
deletion

This section explains how we extend the Berg-
Kirkpatrick et al. (2010) model to handle a set P of
phonological processes, where a phonological pro-
cess p ∈ P is a partial, non-deterministic function
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Figure 1: Sensitivity of surface token f-score to word
length penalty factor d for the Brent and Buckeye cor-
pora on data with no /d/ or /t/ deletions. Performance is
sensitive to the value of the word length penalty d, and
the optimal value of d depends on the corpus.

mapping underlying forms to surface forms. For ex-
ample, word-final /t/ deletion is the function map-
ping underlying underlying forms ending in /t/ to
surface forms lacking that final segment.

Our model is also a unigram model, but it defines
a distribution over pairs (s, u) of surface/underlying
form pairs, where s is a surface form and u is an un-
derlying form. Below we allow this distribution to
condition on phonological properties of the neigh-
bouring surface forms.

The set X of possible (s, u) surface/underlying
form pairs is defined as follows. For each surface
form s ∈ S (the set of length-bounded phone sub-
strings of the data D), (s, s) ∈ X . In addition, if
u ∈ S and some phonological alternation p ∈ P
maps u to a surface form s ∈ p(u) ∈ S , then
(s, u) ∈ X . That is, we require that potential under-
lying forms appear as surface substrings somewhere
in the data D (which means this model cannot han-
dle e.g., absolute neutralisation).

In the experiments below, we let P be phono-
logical processes that delete word-final /d/ and
/t/ phonemes. Given the Buckeye data, ([l.ih.v],
/l.ih.v/), ([l.ih.v], /l.ih.v.d/) and ([l.ih.v], /l.ih.v.t/) are
all members ofX (i.e., candidate (s, u) pairs), corre-
sponding to “live”, “lived” and the non-word “livet”
respectively, where the latter two surface forms are
generated by final /d/ and /t/ deletion respectively.

Word-final /d/ and /t/ deletion depends on var-
ious aspects of the phonological context, such as
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whether the following word begins with a conso-
nant or a vowel. Our model handles this depen-
dency by learning a conditional model over sur-
face/underlying form pairs (s, u) ∈ X that depends
on the phonological context c:

P(s, u | c, θ) =
1
Zc

exp(θ · f(s, u, c)), where:

Zc =
∑

(s,u)∈X
exp(θ · f(s, u, c))

In our experiments below, the set of possible con-
texts is C = {C,V,#}, encoding whether the fol-
lowing word begins with a consonant, a vowel or
is the end of the utterance respectively. We leave
for future research the exploration of other sorts of
contextual conditioning. Note that the set X is the
same for all contexts c; we show below that restrict-
ing attention to just those surface/underlying pairs
appearing in the context c degrades the model’s per-
formance. In other words, the model benefits from
the implicit negative evidence provided by underly-
ing/surface pairs that do not occur in a given context.

We define the probability of a surface form s ∈ S
in a context c ∈ C by marginalising out the underly-
ing form:

P(s | c, θ) =
∑

u:(s,u)∈X
P(s, u | c, θ)

We optimise a penalised log likelihood QD(θ),
with the word length penalty term d applied to the
underlying form u.

Q(s | c, θ) =
∑

u:(s,u)∈X
P(s, u | c, θ) exp(−|u|d)

Q(w | θ) =
∑

s1...s`
s.t.s1...s`=w

∏̀
j=1

Q(sj | c, θ)

QD(θ) =
n∑

i=1

logQ(wi | θ)− λ ||θ||1

We are somewhat cavalier about the conditional
contexts c here: in our model below the context c
for a word is determined by the following word, so
one can view our model as a generative model that
generates the words in an utterance from right to left.

Because our model is a MaxEnt model, we have
considerable freedom in the choice of features, and
as Berg-Kirkpatrick et al. (2010) emphasise, the
choice of features directly determines the kinds of
generalisations the model can learn. The features
f(s, u, c) of a surface form s, underlying form u
and context c we use here are inspired by OT. We
describe our features using an example where s =
[l.ih.v], u = /l.ih.v.t/ and c = C (i.e., the word is
followed by a consonant).

Underlying form lexical features: A feature for
each underlying form u. In our example, the
feature is <U l ih v t>. These features en-
able the model to learn language-specific lex-
ical entries. There are 4,803,734 underlying
form lexical features (one for each possible
substring in the training data).

Surface markedness features: The length of
the surface string (<#L 3>), the number of
vowels (<#V 1>) (this is a rough indication
of the number of syllables), the surface suf-
fix (<Suffix v>), the surface prefix and
suffix CV shape (<CVPrefix CV> and
<CVSuffix VC>), and suffix+context
CV shape (<CVContext _C> and
<CVContext C _C>). There are 108
surface markedness features.

Faithfulness features: A feature for each diver-
gence between underlying and surface forms
(in this case, <*F t>). There are two faith-
fulness features.

We used L1 regularisation here, rather than the
L2 regularisation used by Berg-Kirkpatrick et al.
(2010), in the hope that its sparsity-inducing “fea-
ture selection” capabilities would enable it to “learn”
lexical entries for the language, as well as precisely
which markedness features are required to account
for the data. However, we found that the choice
of L1 versus L2 regression makes little difference,
and the model is insensitive to the value of the reg-
ulariser constant λ (we set to λ = 1 in the experi-
ments below).

We developed a specially modified version of the
LBFGS-OWLQN optimisation procedure for opti-
mising L1-regularised loss functions (Andrew and
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Gao, 2007) that allows us to constrain certain feature
weights θk to have a particular sign. This is a natural
extension of the LBFGS-OWLQN procedure since
it performs orthant-constrained line searches in any
case. We describe experiments below where we re-
quire the feature weights for the markedness and
faithfulness features to be non-positive, and where
the underlying lexical form features are required to
be non-negative. The requirement that the lexical
form features are positive, combined with the spar-
sity induced by the L1 regulariser, was intended
to force the model to learn an explicit lexicon en-
coded by the underlying form features with positive
weights (although our results below suggest that it
did not in fact do this).

The inspiration for the requirement that marked-
ness and faithfulness features are non-positive
comes from OT, which claims that the presence
of such features can only reduce the “harmony”,
i.e., the well-formedness, of an (s, u) pair. Ver-
sions of Harmonic Grammar that aim to produce OT-
like behavior with weighted constraints often bound
weights at zero (see e.g. Pater (2009)). The results
below are the first to show that these constraints mat-
ter for word segmentation.

4 Experimental results

This section describes the experiments we per-
formed to evaluate the model just described. We
first describe how we prepared the data on which the
model is trained and evaluated, and then we describe
the performance of that model. Finally we perform
an analysis of how the model’s performance varies
as parameters of the model are changed.

We ran this model on data extracted from the
Buckeye corpus of conversational speech (Pitt et al.,
2007) which was modified so the only alternations it
contained are final /d/ and /t/ deletions. The Buck-
eye corpus gives a surface realisation and an un-
derlying form for each word token, and following
Börschinger et al. (2013), we prepared the data as
follows. We used the Buckeye underlying forms as
our underlying forms. Our surface forms were also
identical to the Buckeye underlying forms, except
when the underlying form ends in either a /d/ or a
/t/. In this case, if the Buckeye surface form does not
end in an allophonic variant of that segment, then

our surface form consists of the Buckeye underly-
ing form with that final segment deleted. Thus the
only phonological variation in our data are deletions
of word-final /d/ and /t/ appearing in the Buckeye
corpus, otherwise our surface forms are identical to
Buckeye underlying forms.

For example, consider a token whose Buckeye
underlying form is /l.ih.v.d/ “lived”. If the Buck-
eye surface form is [l.ah.v] then our surface form
would be [l.ih.v], while if the Buckeye surface form
is [l.ah.v.d] then our surface form would be [l.ih.v.d].

We now present some descriptive statistics on
our data. The data contains 48,796 sentences and
890,597 segments. The longest sentence has 187
segments. The “gold” data has the following prop-
erties. There are 236,996 word boundaries, 285,792
word tokens, and 9,353 underlying word types. The
longest word has 17 segments. Of the 41,186 /d/s
and 73,392 /t/s in the underlying forms, 24,524 /d/s
and 40,720 /t/s are word final, and of these 13,457
/d/s and 11,727 /t/s are deleted (i.e., do not appear
on the surface).

Our model considers all possible substrings of
length 15 or less as a possible surface form of a
word, yielding 4,803,734 possible word types and
5,292,040 possible surface/underlying word type
pairs. Taking the 3 contexts derived from the
following word into account, there are 4,969,718
possible word+context types. When all possible
surface/underlying pairs are considered in all pos-
sible contexts there are 15,876,120 possible sur-
face/underlying/context triples.

Table 1 summarises the major experimental re-
sults for this model, and compares them to the re-
sults of Börschinger et al. (2013). Note that their
model only recovers word-final /t/ deletions and was
run on data without word-final /d/ deletions, so it is
solving a simpler problem than the one studied here.
Even so, our model achieves higher overall accura-
cies.

We also conducted experiments on several of the
design choices in our model. Figure 2 shows the
effect of the sign constraints on feature weights dis-
cussed above. This plot shows that the contraints on
the weights of markedness and faithfulness features
seems essential for good word segmentation perfor-
mance. Interestingly, we found that the weight con-
straints make very little difference if the data does
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Börschinger et al. 2013 Our model

Surface token f-score 0.72 0.76 (0.01)
Underlying type f-score — 0.37 (0.02)
Deleted /t/ f-score 0.56 0.58 (0.03)
Deleted /d/ f-score — 0.62 (0.19)

Table 1: Results summary for our model compared to that
of the Börschinger et al. (2013) model. Surface token f-
score is the standard token f-score, while underlying type
or “lexicon” f-score measures the accuracy with which
the underlying word types are recovered. Deleted /t/ and
/d/ f-scores measure the accuracy with which the model
recovers segments that don’t appear in the surface. These
results are averaged over 40 runs (standard deviations in
parentheses) with the word length penalty d = 1.525 ap-
plied to underlying forms; standard deviations are given
in parentheses.
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not any /t/ or /d/ deletions (i.e., the case that Berg-
Kirkpatrick et al. (2010) studied).

Investigating this further, we found that the
weight constraints on the markedness and faithful-
ness features has a dramatic effect on the recov-
ery of underlying segments, particularly underlying
/d/s. Figure 3 shows that with these constraints the
model recovers approximately the correct number
of deleted underlying segments, while without this
constraint the model posits far too many underlying
/d/s. Figure 4 shows that these constraints help the
model find higher regularised likelihood sets of fea-
ture weights with fewer non-zero feature weights.

We examined how the number of non-zero fea-
ture weights (most of which are for underlying type

features) relate to the number of underlying types
posited by the model. Figure 5 shows that the
weight constraints on markedness and faithfulness
constraints have great impact on the number of non-
zero feature weights and on the number of underly-
ing forms the model posits. In all cases, the model
recovers far more underlying forms than it finds non-
zero weights.

The lexicon weight constraints have much less
impact than the OT weight constraints. As Figure 3
shows, without the OT weight constraints the mod-
els posit too many deleted /d/ and essentially no
deleted /t/. Figure 4 shows that OT weight con-
straints enable the model to find higher likelihood
solutions, i.e., the OT weight constraints help search.
Inspired by a reviewer’s comments, we studied type-
token ratios and the number of boundaries our mod-
els posit. We found that the models without OT
weight constraints posit far too few word boundaries
compared to the gold data, so the number of surface
tokens is too low, so the words are too long, and the
number of underlying types is too high. This is con-
sistent with Figures 4–5.

We also examined whether it is necessary to con-
sider all surface/underlying pairs X in each context
C, or whether it is possible to restrict attention to
the much smaller sets Xc that occur in each c ∈ C
(this dramatically reduces the amount of memory re-
quired and speeds the computation). Figure 6 shows
that working with the smaller, context-specific sets
dramatically decreases the model’s ability to recover
deleted segments.

5 Conclusions and future work

The MaxEnt unigram model of word segmentation
developed by Berg-Kirkpatrick et al. (2010) inte-
grates straight-forwardly with the MaxEnt phonol-
ogy models of Goldwater and Johnson (2003) to pro-
duce a MaxEnt model that jointly models word seg-
mentation and the mapping from underlying to sur-
face forms.

We tested our model on data derived from the
manually-annotated Buckeye corpus of conversa-
tional speech (Pitt et al., 2007) in which the only
phonological alternations are deletions of word-final
/d/ and /t/ segments. We demonstrated that our
model improves on the state-of-the-art for word seg-
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mentation, recovery of underlying forms and recov-
ery of deleted segments for this corpus.

Our model is a MaxEnt or log-linear un-
igram model over the set of possible sur-
face/underlying form pairs. Inspired by the work
of Berg-Kirkpatrick et al. (2010), the set of sur-
face/underlying form pairs our model calculates the
partition function over is restricted to those actually
appearing in the training data, and doesn’t include
all logically possible pairs. We found that even with
this restriction, the model produces good results.

Because our model is a Maximum Entropy or log-
linear model, it is formally an instance of a Har-
monic Grammar (Smolensky and Legendre, 2005),
so we investigated features inspired by OT, which
is a discretised version of Harmonic Grammar that
has been extensively developed in the linguistics lit-
erature. The features our model uses consist of un-
derlying form features (one for each possible under-
lying form), together with markedness and faithful-
ness phonological features inspired by OT phono-
logical analyses. According to OT, these marked-
ness and faithfulness features should always have
negative weights (i.e., when such a feature “fires”, it
should always make the analysis less probable). We
found that constraining feature weights in this way
dramatically improves the model’s accuracy, appar-
ently helping to find higher likelihood solutions.

Looking forwards, a major drawback of the Max-
Ent approaches to word segmentation are their
sensitivity to the word length penalty parameter,
which this model shares with the models of Berg-
Kirkpatrick et al. (2010) and (Liang and Klein,
2009) on which it is based. It would be very de-
sirable to have a principled way to set this parameter
in an unsupervised manner.

Because our goal was to explore the MaxEnt ap-
proach to joint segmenation and alternation, we de-
liberately used a minimal feature set here. As the
reviewers pointed out, we did not include any mor-
phological features, which could have a major im-
pact on the model. Investigating the impact of richer
feature sets, including a combination of phonotactic
and morphological features, would be an excellent
topic for future work.

It would be interesting to extend this approach
to a wider range of phonological processes in ad-
dition to the word-final /t/ and /d/ deletion studied

here. Because this model enumerates the possible
surface/underlying/context triples before beginning
to search for potential surface and underlying words,
its memory requirements would grow dramatically
if the set of possible surface/underlying alternations
were increased. (The fact that we only considered
word final /d/ and /t/ deletions means that there are
only three possible underlying word forms for each
surface word forms). Perhaps there is a way of iden-
tifying potential underlying forms that avoids enu-
merating them. For example, it might be possible
to sample possible underlying word forms during
the learning process rather than enumerating them
ahead of time, perhaps by adapting non-parametric
Bayesian approaches (Goldwater et al., 2009; John-
son and Goldwater, 2009; Börschinger et al., 2013).
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