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Abstract

A large part of human communication in-
volves referring to entities in the world and
often these entities are objects that are visu-
ally present for the interlocutors. A system
that aims to resolve such references needs to
tackle a complex task: objects and their vi-
sual features need to be determined, the re-
ferring expressions must be recognised, and
extra-linguistic information such as eye gaze
or pointing gestures need to be incorporated.
Systems that can make use of such informa-
tion sources exist, but have so far only been
tested under very constrained settings, such as
WOz interactions. In this paper, we apply to
a more complex domain a reference resolution
model that works incrementally (i.e., word by
word), grounds words with visually present
properties of objects (such as shape and size),
and can incorporate extra-linguistic informa-
tion. We find that the model works well com-
pared to previous work on the same data, de-
spite using fewer features. We conclude that
the model shows potential for use in a real-
time interactive dialogue system.

1 Introduction

Referring to entities in the world via definite de-
scriptions makes up a large part of human commu-
nication (Poesio and Vieira, 1997). In task-oriented
situations, these references are often to entities that
are visible in the shared environment. This kind of
reference has attracted attention in recent computa-
tional research, but the kinds of interactions stud-
ied are often fairly restricted in controlled lab situ-
ations (Tanenhaus and Spivey-Knowlton, 1995) or
simulated human/computer interactions, (Schlangen
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et al., 2009; Kousidis et al., 2013; Chai et al., 2014).
In such task-oriented, co-located settings, interlocu-
tors can make use of extra-linguistic cues such as
gaze or pointing gestures. Furthermore, listeners
resolve references as they unfold, often identifying
the referred entity before the end of the reference
(Tanenhaus and Spivey-Knowlton, 1995; Spivey et
al., 2002), however research in reference resolution
has mostly focused on full, completed referring ex-
pressions.

In this paper we make a first move towards ad-
dressing somewhat more complex domains. We ap-
ply a model of reference resolution, which has been
tested in a simpler setup, on more natural data com-
ing from a corpus of human/human interactions. The
model is incremental in that it does not wait un-
til the end of an utterance to process, rather it up-
dates its interpretation at each word increment. The
model can also incorporate other modalities, such
as gaze or pointing cues (deixis) incrementally. We
also model the saliency of the context, and show that
the model can easily take such contextual informa-
tion into account. The model improves over previ-
ous work on reference resolution applied to the same
data (Iida et al., 2010; Iida et al., 2011).

The paper is structured as follows: in the follow-
ing section we discuss related work on incremental
resolution of referring expressions. We explain the
model that we use in Section 3 and the data we apply
it to in Section 4. We then describe the experiments
and the results and provide a discussion.

2 Related Work

Reference resolution (RR), which is the task of re-
solving referring expressions (REs) to what they are
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intended to refer to, has been well-studied in various
fields such as psychology (Isaacs and Clark, 1987;
Tanenhaus and Spivey-Knowlton, 1995), linguistics
(Pineda and Garza, 2000), as well as human/human
(Iida et al., 2010) and human/machine interaction
(Prasov and Chai, 2010; Siebert and Schlangen,
2008; Schlangen et al., 2009). In recent years,
multi-modal corpora have emerged which provide
RR with important contextual information: collect-
ing dialogue between two humans (Tokunaga et al.,
2012; Spanger et al., 2012), between a human and a
(simulated) dialogue system (Kousidis et al., 2013;
Liu et al., 2013), with gaze, information about the
shared environment, and in some cases deixis.

It has been shown that incorporating gaze im-
proves RR in a situated setting because speakers
need to look at and distinguish from distractors the
objects they are describing: this has been shown
in a static scene on a computer screen (Prasov and
Chai, 2008), in human-human interactive puzzle
tasks (Iida et al., 2010; Iida et al., 2011), in web
browsing (Hakkani-tiir et al., 2014), and in a mov-
ing car where speakers look at objects in their vicin-
ity (Misu et al., 2014). Incorporating pointing (deic-
tic) gestures is also potentially useful in situated RR;
as for example Matuszek et al. (2014) have shown
in work on resolving objects processed by computer
vision techniques. Chen and Eugenio (2012) looked
into reference in multi-modal settings, with focus on
co-referential pronouns and pointing gestures. How-
ever, these approaches were applied in settings in
which communication between the two interlocutors
was constrained, or the developed systems did not
process incrementally. Kehler (2000) presented ap-
proach that focused more on interaction in a map
task, though the model was not incremental, nor did
grounding occur between language and world, as we
do here.

Incremental RR has also been studied in a num-
ber of papers, including a framework for fast in-
cremental interpretation (Schuler et al., 2009), a
Bayesian filtering model approach that was sensi-
tive to disfluencies (Schlangen et al., 2009), a model
that used Markov Logic Networks to resolve objects
on a screen (Kennington and Schlangen, 2013), a
model of RR and incremental feedback (Traum et al.,
2012), and an approach that used a semantic repre-
sentation to refer to objects (Peldszus et al., 2012;
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Kennington et al., 2014). However, the approaches
reported there did not incorporate multi-modal in-
formation, were too slow to work in real-time, were
evaluated on constrained data, or only focused on a
specific type of RR, ignoring pronouns or deixis.

In this paper, we opted to use the model presented
in Kennington et al. (2013), the simple incremental
update model (STUM). It has been tested extensively
against data from a puzzle-playing human/computer
interaction domain (the PENTO data, (Kousidis et
al., 2013)); it can incorporate multi-modal informa-
tion, works in real-time, and can resolve definite,
exophoric, and deictic references in a single frame-
work, all of which makes it a potential candidate for
working in an interactive, multi-modal dialogue sys-
tem. The model is similar to the one proposed in Fu-
nakoshi et al. (2012), which could resolve descrip-
tions, anaphora, and deixis in a unified manner, but
that model does not work incrementally.!

The main contributions of this paper are the more
thorough exposition of the model (in Section 3) and
its application and evaluation on much less con-
strained, more interactive (and hence realistic) data
than what it has previously been tested on (Section
4). Moreover, the data set used here is also from a ty-
pologically very different language (Japanese) than
what the model has been previously tested on (Ger-
man), and so the robustness of the model against
these differences is also investigated.

We will now describe the model, and that will be
followed by a description of the corpus we used.

3 The Simple Incremental Update Model

Following Kennington et al. (2013) and Kennington
et al. (2014), we model the task at hand as one of
recovering [, the intention of the speaker making
the RE, where I ranges over the possible alternatives
(the objects in the domain). This recovery proceeds
incrementally (word by word), for RE of arbitrary
length. That s, if U denotes the current word, we are
interested in P(I|U), the current hypothesis about

Tt can be argued that any non-incremental model could be
made into an incremental one by applying that model at each
word (Khouzaimi et al., 2014), but we would argue that more
modeling effort is required in order for the model to work in an
interactive dialogue system, see (Schlangen and Skantze, 2009;
Aist et al., 2007; Skantze and Schlangen, 2009; Skantze and
Hjalmarsson, 1991).



the intended referent, given the observed word. We
assume the presence of an unobserved, latent vari-
able R, which models properties of the candidate
objects such as colour or shape; explained further
below), and so the computation formally is:

P(I,U,R)

P{0) )]

P(IlU) =

reR

Which, after making some independence assump-
tions, can be factored into:

P(II) = P(lU)Pm S"PUIRP(RID ()
reR

This is an update model in the usual sense that the
posterior P(I|U) at one step becomes the prior P(I)
at the next. P(R|I) provides the link between the
intentions (that is, objects) and the properties (e.g.,
the colour and shape of each object), and P(U|R)
the link between properties and (observed) words.
Being incremental, this model is computed at each
word. As properties play an important role in this
model, they will now be explained.

Properties The variable R models visual or ab-
stract properties of entities (such as real-world ob-
jects or linguistic entities) and their selection for
verbalisation in the referring expression. The sim-
ple assumption made by the model is that only such
properties can be selected for verbalisation which
the candidate object actually has. Hence, the start-
ing point for the model is a representation of the
world and the current dialogue context in terms of
the properties of the objects. For this paper, this
means properties belonging to objects in the shared
work space.

We will explain the properties we used in our im-
plementation of this model (henceforth STUM, i.e.,
simple incremental update model), the motivation
for using them, and give an example of applying the
model in Section 5.

4 The REX Data

The corpora presented in lida et al. (2011) and
Spanger et al. (2012) are a collection of hu-
man/human interaction data where the participants
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collaboratively solved Tangram puzzles. In this set-
ting, anaphoric references (i.e., pronoun references
to entities in an earlier utterance, e.g., “move it to
the left”) and exophoric references via definite de-
scriptions (i.e., references to real-world objects, e.g.,
“that one” or “the big triangle”) are common (note
that both refer in different ways to objects that are
physically present). The corpus also records an
added modality: the gaze of the puzzle solver (SV)
who gives the instructions and that of the operator
(opr), who moves the tangram pieces. The mouse
pointer controlled by the OP could also be consid-
ered a modality, used as a kind of pointing gesture
that both participants can observe. The goal of the
task was to arrange puzzle pieces on a board into
a specified shape (example in Figure 1), which was
only known to SV and hidden from OP. The lan-
guage of the dialogues was Japanese.

o .

vy,

A

Figure 1: Example Tangram Board; the goal shape is the
swan in the top left, the shared work area is the large
board on the right, the mouse cursor and OP gaze (blue
dot) are on object 5, the SV gaze is the red dot (gaze points
were not seen by the participants).

This environment provided frequent use of REs
that aimed to distinguish puzzle pieces (and piece
groups) from each other. The following are some
example REs from the REX corpus:

(D) a. chicchai sankakkei
b.  small triangle

2) a.  sono ichiban migi ni shippo ni natte iru
sankakkei
b.  that most right tail becoming triangle

“that right-most triangle that is the tail’

Example (1) is a typical example of an RE as found
in the corpus. Note that this at the same time consti-
tutes the whole utterance, which hence can be classi-



fied as a non-sentential utterance (Schlangen, 2004).
Its transliteration consists of 8 Japanese characters,
which could be tokenized into two words. The
more difficult RE shown in Example (2) requires the
model to learn how spatial placements map to cer-
tain descriptions. Moreover, Japanese is a head-final
language where comparative landmark pieces are ut-
tered before the referent. Also, because this was a
highly interactive setting, many exophoric pronouns
were used, e.g., sore and sono, both meaning that.?
Pronoun references like this made up around 32% of
the utterances.

Corpus annotations included (for both partici-
pants) transcriptions of utterances, the object being
looked at any given time, the object being pointed
at or manipulated by the mouse, segmentation of the
REs and the corresponding referred object or objects.
The spatial layout of the board was recorded each
time an object was manipulated. Further details of
the corpus can be found in (lida et al., 2011). In
order to directly compare our work with previous
work, in our evaluations below we consider the same
annotated REs. Iida et al. (2011) applied a support
vector machine-based ranking algorithm (Joachims,
2002) to the task of resolving REs in this corpus.
They used a total of 36 binary features in the SVM
classifier, which predicted the referred object. They
further used a separate model for pronoun utterances
and non-pronoun utterances, allowing the classifier
to learn patterns without confusing utterance types.
More details on the results of these models are given
below.

The S1U-model has previously been applied to two
datasets from the Pentomino domain (Kennington et
al., 2013), where the speaker’s goal was to identify
one out of a set of tetris-like (but consisting of five
instead of four blocks) puzzle pieces. However, in
these datasets, the references were “one-shot” and
not embedded in longer dialogues, as is the case in
the REX corpus. A summary of differences between
the two tasks is summarised in Table 1. Applying
SIUM to data like that found in the REX corpus is a
natural next step to test the abilities of the model as
a RR component in a dialogue system.

2To be precise, sono is a demonstrative adjective.
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PENTO REX
language German Japanese
language type SVO SOV
phrase type head-initial head-final
avg utt length 7-8 4-5
number of objects 15 7
interactivity human-wizard | human-human
recorded gaze SV (speaker) SV, OP
% of pronoun utts 0% 32%

Table 1: Summary of differences between PENTO and
REX tasks.

S Experiment

Procedure The procedure for this experiment is as
follows. In order to compare our results directly
with those of Iida et al. (2011), we provide our
model with the same training and evaluation data, in
a 10-fold cross-validation of the 1192 REs from 27
dialogues (the T2009-11 corpus in Tokunaga et al.
(2012)). For development, we used a separate part
of the REX corpus (N2009-11) that was structured
similarly to the one used in our evaluation.

Task The task is RR. At each increment, SIUM re-
turns a distribution over all objects; the probability
for each object represents the strength of the belief
that it is the referred one. The argmax of the distri-
bution is chosen as the hypothesised referred object.

P(R|I) P(R|I) models the likelihood of selecting
a property of a candidate object for verbalisation;
this likelihood is assumed to be uniform for all the
properties that the candidate object has.> We derive
these properties from a representation of the scene;
similar to how Iida et al. (2011) computed features
to present to their classifier: namely Ling (linguistic
features), TaskSp (task specific features), and Gaze
(from SV only). Some features were binary, others
such as shape and size had more values. Table 2
shows all the properties that were used here. Each
will now be explained.

Ling Each object had a shape, size, and relative
position to the other pieces. We determined by hand

3Uniformity in the likelihood of the properties isn’t an ideal
approach as certain properties could be more likely to be se-
lected than others; we leave a more principled approach to us-
ing saliency to help determine the likelihood of the properties
to future work.



Ling TaskSp

tri/squ/pgram most_recent_move
small/med/big mouse_pointed
left/mid/right

prev_referred Gaze
top/cen/bottom most_gazed._at

referred.b
referred_.10
referred_20

gazed_at_in_utt
longest_gazed._at
recent_fixation

Table 2: List of properties used for each source of infor-
mation.

the shape and size properties which remained static
through each dialogue. The position properties were
derived from the corpus logs. For each object, the
centroid of each object was computed. Then, the
vertical and horizontal range for all of the objects
was calculated and then split into three even sec-
tions in each dimension (see Figure 2). An object
with a centroid in the left-most section of the hor-
izontal range received a left property, similarly
middle and right properties were calculated for
corresponding objects. For vertical placement, t op,
center and bottom properties were given to ob-
jects in the respective vertical segments. Figure 2
shows an example segmentation. Each object had a
vertical and a horizontal property at all times, how-
ever, moving an object could result in a change of
one of these spatial properties as the dialogue pro-
gressed. As an example, compare Figure 1, which
is a snapshot of the interaction towards the begin-
ning, and Figure 2, which shows a later stage of the
game board; spatial layout changes throughout the

dlaf?l%lslg'properties differ somewhat from the fea-
tures for the Ling model presented in lida et al.
(2011). Three features that we did use as properties
had to do with reference recency: the most recently
referred object received the referred_X proper-
ties, if an object was referred to in the past 5, 10, or
20 seconds.

TaskSp lidaetal. (2011) used 14 task-specific fea-
tures, three of which they found to be the most in-
formative in their model. Here, we will only use
the two most informative features as properties (the
third one, whether or not an object was being manip-
ulated at the beginning of the RE, did not improve
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center

bottom

i
left middle

right

Figure 2: Tangram later in the dialogue; the notion of
right-ness and other spatial concepts changes throughout
the dialogue (compare to Figure 1), the grids are added to
show which objects receive which horizontal and which
vertical properties.

results in a held-out test): the object that was most
recently moved received the most_recent _move
property and objects that have the mouse cursor over
them received the mouse_pointed property (see
Figure 2; object 4 would receive both of these prop-
erties, but only for the duration that the mouse was
actually over it). Each of these properties can be ex-
tracted directly from the corpus annotations.

Gaze Similar to lida et al. (2011), we consider
gaze during a window of 1500ms before the onset
of the RE. The object that was gazed at the longest
during that time received a longest._gazed.at
property, the object which was fixated upon most
recently during that interval before the RE onset
received a recent_fixation property, and the
object which had the most fixations received the
most_gazed_at property. During a RE, an ob-
ject received the gazed_at_in_utt property if it
is gazed at during the RE up until that point. These
properties can be extracted directly from the corpus
annotations. Other gaze features are not really ac-
cessible to an incremental model such as this, as
gaze features extracted from gaze activity over the
RE can only be computed when it is complete. Our
Gaze properties are made up of these 4 properties,
as opposed to the 14 features in lida et al. (2011).

P(UR) P(U|R) is the model that connects the
property selected for verbalisation with a way of ver-
balising it (a value for U). Instead of directly learn-
ing this model from data, which would suffer from
data sparseness, we trained a naive Bayes model



for P(R|U) (as, according to Bayes’ rule, P(U|R)
is equal to P(R|U)P(U)%, which, plugged in
into formula (2), cancels out %; further assum-
ing the P(R) is uniform, we can directly replace
P(U|R) with P(R|U) here). On the language side
(the variable U in the model), we used n-grams over
Japanese characters (we attempted tokenisation of
the REs into words, but found that using characters
worked just as well in the held-out set).

P() The prior P([) is the posterior of the previ-
ously computed increment. In the first increment,
it can simply be set to a uniform distribution. Here,
we apply a more informative prior based on saliency.
We learn a context model which is queried when
the first word begins, taking information about the
context immediately before the beginning of the RE
into account, producing a distribution over objects,
which becomes P(I) of the first increment in the
RE. The context model itself is a simple application
of the STUM, where instead of being a word, U is
a token that represents saliency. The context model
thus learns what properties are important to the pre-
RE context and provides an up-to-date distribution
over the objects as a RE begins.

5.1 Example

v

Figure 3: Example scene with two triangles and one
square, 1 is being looked at by the SV, 3 was recently
moved and the mouse pointer is still over it.

We will now give a simple example of how the
model is applied to the REX data using a subset of the
above properties for the RE small triangle. Table 3
shows a simple normalised co-occurrence count of
how many times properties were observed as be-
longing to a referred object (the basis for P(U|R)).
Figure 3 shows the current toy scene, and Table 4
shows the properties that each object in the scene
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has during the utterance. Table 5 shows the full ap-
plication of the model by summing over the proper-
ties for the product P(U|R)P(R|I) and multiplying
by the prior P([I), the posterior of the previous step.
Included in this example is how the initial prior is
computed from the context model.

property | small | triangle | square | {(context)
small .87 .02 4 .04
big .01 .08 .02 .05
triangle .04 .88 .01 .09
square .04 .01 9 .09
left .06 .07 .06 .09
center .04 .03 .04 .07
right .04 .06 .05 .03
most_gazed .07 .09 .07 .6
recent_move .03 1 .04 .56
mouse_pointed .08 .05 .06 71

Table 3: Applications of P(U|R), for some values of U
and R; we assume that this model is learned from data
(rows are excerpted from a larger distribution over all the
words in the vocabulary)

property 1 2 3
small | 0.25 | 0.33 0
big 0 0 0.2
triangle | 0.25 0 0.2
square 0 0.33 0
left | 0.25 0 0
center 0 0 0.2
right 0 033 | 0
most_gazed | 0.25 0 0
recent_move 0 0 0.2
mouse_pointed 0 0 0.2

Table 4: P(R|I), for our example domain. The probabil-
ity mass is distributed over the number of properties that
a candidate object actually has.

Before the RE even begins, the prior saliency
yields that 3 is the most likely object to be referred;
it was the most salient in that it was the most re-
cently moved object and the mouse pointer was still
over it. However, initial prior information alone is
not enough to resolve the intended object; for that
the RE is needed. After the word small is uttered,
1 is the most likely referred object. After triangle,
1 remains the highest in the distribution. With the
RE alone, in this case there would have been enough
information to infer that 1 was the referred object,
but adding the prior information provided additional
evidence.



[I] U | SPUIR*PRI) [ PUI)]
1 | (context) .25(.04 4 .09 + .09 + .6) .37
2 .33(.04 + .09 + .03) .095
3 .2(.05 4 .09 + .07 + .56 + .71) 535
1 small .25(.87 + .04 + .06 + .07) .65
2 .33(.87 + .04 + .04) 2
3 .2(.01 + .04 + .04 + .03 4 .08) .15
1 triangle .25(.02 + .88 + .07 + .09) .81
2 .33(.02 + .01 + .06) .028
3 .2(.08 + .88 + .03 + .1 + .05) .162

Table 5: Application of RE small triangle, where 1 is the
referred object

Evaluation Metrics We report results of our eval-
uation in referential accuracy on utterances that were
annotated as referring to a single object (references
to group objects is left for future work). Going be-
yond lida et al. (2011), our model computes a resolu-
tion hypothesis incrementally; for the performance
of this aspect of the system we followed previously
used metrics for evaluation (Schlangen et al., 2009;
Kennington et al., 2013):

first correct: how deep into the RE does the model
predict the referent for the first time?

first final: how deep into the RE does the model pre-
dict the correct referent and keep that decision until
the end?

edit overhead: how often did the model unneces-
sarily change its prediction (the only necessary pre-
diction happens when it first makes a correct predic-
tion)?

We compare non-incremental results to three eval-
uations performed in lida et al. (2011), namely when
Ling is used alone, Ling+TaskSP used together, and
Ling+TaskSp+Gaze. Furthermore, they show results
of models where a separate part handled REs that
used pronouns, as well as a part that handled the
non-pronoun REs, and a combined model that han-
dled both types of expressions.

6 Results

6.1 Reference Resolution

Results of our evaluation are shown in Figure 4.
The STUM model performs better than the combined
approach of lida et al. (2011), and performs bet-
ter than their separated model—when not including
gaze (there is a significant difference between STUM
and the separated models for Ling+TaskSp, though
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M lida2011-combined lida2011-separated M SIUM

80 %

Ling

Ling+TaskSp Ling+TaskSp+Gaze

Figure 4: Comparison of model accuracies; our SIUM
approach generally performs better over the combined
model presented in lida et al., (2011)

SIUM only got one more correct than the separated
model). This is a welcome result, as it shows that
our very simple incremental model that uses a ba-
sic classifier is comparable to a non-incremental ap-
proach that uses a more complicated classifier. It
further shows that the STUM model is robust to using
TaskSp and Gaze features as properties, as long as
those features are available immediately before the
RE begins, or during the RE.

The best-performing approach is the lida2011-
separated model with gaze. This is the case for
several reasons: first, their models use features that
are not available to our incremental model (e.g.,
their model uses 14 gaze features, some of which
were based on the entire RE, ours only uses 4 prop-
erties). Second, and more importantly, separated
models means less feature confusion: in lida et al.
(2011) (Section 5.2), the authors give a compari-
son of the most informative features for each model;
task and gaze features were prominent for the pro-
noun model, whereas gaze and language features
were prominent for the non-pronoun model. We
also tested STUM under separated conditions to bet-
ter compare with the approaches presented here. The
separated models, however, did not improve. This,
we assume, is because the model grounds language
with properties (see Discussion below). An interac-
tive dialogue system might not have the luxury of
choosing between two models at runtime. We as-
sume that a model that can sufficiently handle both



1-5 6-8 9-14
first correct (% into RE) 3547 | 2234 | 14.8
first final (% into RE) 69.0 49.85 | 48.0
edit overhead (all lengths) | 0.88%
never correct (all lengths) | 5.5%

Table 6: Incremental results for SIUM, numbers represent
% into RE.

types of utterances is to be preferred to one that
doesn’t.

6.2 Incremental Behaviour

Table 6 shows how our model fares using the incre-
mental metrics described earlier. (As this has not
been done in lida et al. (2011), direct comparison
is not possible.) For the evaluation, REs are binned
into short, normal, and long (1-5, 6-8, 9-14 charac-
ters, respectively, based on what the average num-
bers of words in REs in this corpus is), to make rela-
tive statements (“‘% into the utterance’’) comparable.

Ideally, a system would make the first correct de-
cision as early as possible without changing that de-
cision. The results in the table show a respectable
incremental model; on average it picks the right ob-
ject early, with some edit overhead (making unnec-
essary changes in its prediction), finally fixing on a
final decision before the end of the RE with low edit
overhead, meaning it rarely changes its mind once
it has made a decision. In some cases, STUM never
guessed the correct object, labeled never correct in
the table. These incremental results are consistent
with previous work for the STUM; overall, the model
is stable across the RE.

6.3 Discussion

Despite being very simple, there is an important dif-
ference that allows SITUM to improve over previous
work. It learns to connect object properties selected
for verbalisation to ways of verbalising them, and
forms a stochastic expectation about which prop-
erties might be selected for verbalisation (namely,
those that are present). This represents a type of
grounding (Harnad, 1990; Roy, 2005).4 In terms
of the STUM formalism, the link between object and
words is mediated by the properties the object has

*Not to be confused with building common ground (Clark,
1996) which is also referred to as grounding.
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small —— small
the
triangle — triangle
square —— square

Figure 5: Words that describe objects are linked via
a hand-coded compatibility function; links from
words to multiple properties can exist, provided it is
coded.

and by a stochastic process of associating words
with properties. Figure 6 visualises this: each word
has a stochastic connection between each property
and objects have a set of properties. The property
names are arbitrary as long as they are consistent. In
contrast, previous work in RR (lida et al., 2011; Chai
et al., 2014) used a hand-coded concept-labeled se-
mantic representation and checked if aspects of the
RE match that of a particular object. If so, a bi-
nary compatibility feature was set. Figure 5 shows
this; words can only link to objects via hand-crafted
rules (e.g., the word or FOL predicate and property
string must match). By the way SIUM uses proper-
ties, it can also perform (exophoric) pronoun resolu-
tion, deixis (the mouse pointer) and definite descrip-
tions, in a single framework. This is a nice feature
of the model: adding additional modalities does not
require model reformulation.

U R |
small prop-1
the €W} prop-2
triangle NJ\/ prop-3
square prop-n

Figure 6: Words that describe objects are linked via prop-
erties stochastically: thicker lines between U and R rep-
resent higher probabilities. The lines between R and [
denote a property belonging to an object. The cardinality
of U does not equal R.



Incorporating saliency information via a context
model is also a nice feature of the model. In
this paper, we computed the initial P(/) using
a context model instantiated by SIUM. By con-
sidering only this saliency information, the con-
text model can predict the referred object in 41%
of the cases. It also learned which properties
were important for saliency (that is, these are
the properties that the model would most likely
select): recently_fixated, most_gaze_at,
longest_gazed_at, prev_ref, as might be ex-
pected. In less than 2% of the cases, the con-
text model referred to the correct object, but was
wrongly “overruled” when processing the corre-
sponding RE.

There were shortcomings, however. In previ-
ous work, it was shown that STUM performed well
when REs contained pronouns (see Kennington et al.
(2013), experiment 2). However, in the current work
we observed that REs with pronouns were more dif-
ficult for the model to resolve than the model pre-
sented in lida et al. (2011). We surmise that STUM
had a difficult time grounding certain properties, as
the Japanese pronoun sore can be used anaphorically
or demonstratively in this kind of context (i.e., some-
times sore refers to previously-manipulated objects,
or objects that are newly identified with a mouse
pointer over them); the model presented in lida et
al. (2011) made more use of contextual information
when pronouns were used, particularly in the com-
bined model which incorporated gaze information,
as shown above.

7 Conclusion

The STUM is a model of RR that grounds language
with the world, works incrementally, can incorpo-
rate modalities such as gaze and deixis, and can re-
solve multiple kinds of RRs in a single framework.
This paper represents the natural next step in evalu-
ating SIUM in a setting that was less constrained and
more interactive, with added knowledge that it can
work in more than one language.

There is more to be tested for STUM. A common
form of RR happens collaboratively over multiple ut-
terances (Clark and Wilkes-Gibbs, 1986; Heeman
and Hirst, 1995), STUM has only been tested on iso-
lated REs. Though SIUM required fewer features (re-
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alised as properties) than previous work, those prop-
erties still need to be computed. We leave for fu-
ture work investigation of a version of the model that
can ground language with raw(er) information from
the world (e.g., vision information), eliminating the
need to determine properties.
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