
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 206–210,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

How to Make a Frenemy:
Multitape FSTs for Portmanteau Generation

Aliya Deri and Kevin Knight
Information Sciences Institute

Department of Computer Science
University of Southern California
{aderi, knight}@isi.edu

Abstract

A portmanteau is a type of compound word
that fuses the sounds and meanings of two
component words; for example, “frenemy”
(friend + enemy) or “smog” (smoke + fog).
We develop a system, including a novel mul-
titape FST, that takes an input of two words
and outputs possible portmanteaux. Our sys-
tem is trained on a list of known portmanteaux
and their component words, and achieves 45%
exact matches in cross-validated experiments.

1 Introduction

Portmanteaux are new words that fuse both the
sounds and meanings of their component words. In-
novative and entertaining, they are ubiquitous in ad-
vertising, social media, and newspapers (Figure 1).
Some, like “frenemy” (friend + enemy), “brunch”
(breakfast + lunch), and “smog” (smoke + fog), ex-
press such unique concepts that they permanently
enter the English lexicon.

Portmanteau generation, while seemingly trivial
for humans, is actually a combination of two com-
plex natural language processing tasks: (1) choos-
ing component words that are both semantically
and phonetically compatible, and (2) blending those
words into the final portmanteau. An end-to-end
system that is able to generate novel portmanteaux

Figure 1: A New Yorker headline portmanteau.

W1 W2 PM
affluence influenza affluenza
anecdote data anecdata

chill relax chillax
flavor favorite flavorite
guess estimate guesstimate

jogging juggling joggling
sheep people sheeple

spanish english spanglish
zeitgeist ghost zeitghost

Table 1: Valid component words and portmanteaux.

with minimal human intervention would be not only
a useful tool in areas like advertising and journalism,
but also a notable achievement in creative NLP.

Due to the complexity of both component word
selection and blending, previous portmanteau gen-
eration systems have several limitations. The Neho-
vah system (Smith et al., 2014) combines words only
at exact grapheme matches, making the generation
of more complex phonetic blends like “frenemy” or
“brunch” impossible. Özbal and Strappavara (2012)
blend words phonetically and allow inexact matches
but rely on encoded human knowledge, such as sets
of similar phonemes and semantically related words.
Both systems are rule-based, rather than data-driven,
and do not train or test their systems with real-world
portmanteaux.

In contrast to these approaches, this paper
presents a data-driven model that accomplishes (2)
by blending two given words into a portmanteau.
That is, with an input of “friend” and “enemy,” we
want to generate “frenemy.”

206

F1 R1 EH3 N3 D4

EH3 N3 AH5 M5 IY5

T1 OW1 F1 UW3

T2 ER3 K5 IY5

Figure 2: Derivations for friend + enemy → “frenemy”
and tofu + turkey → “tofurkey.” Subscripts indicate the
step applied to each phoneme.

We take a statistical modeling approach to port-
manteau generation, using training examples (Table
1) to learn weights for a cascade of finite state ma-
chines. To handle the 2-input, 1-output problem in-
herent in the task, we implement a multitape FST.

This work’s contributions can be summarized as:
• a portmanteau generation model, trained in an

unsupervised manner on unaligned portman-
teaux and component words,
• the novel use of a multitape FST for a 2-input,

1-output problem, and
• the release of our training data.1

2 Definition of a portmanteau

In this work, a portmanteau PM and its pronuncia-
tion PMpron have the following constraints:

• PM has exactly 2 component words W1 and
W2, with pronunciations W1

pron and W2
pron.

• All of PM’s letters are in W1 and W2, and all
phonemes in PMpron are in W1

pron and W2
pron.

• All pronunciations use the Arpabet symbol set.
• Portmanteau building occurs at the phoneme

level. PMpron is built through the following
steps (further illustrated in Figure 2):

1. 0+ phonemes from W1
pron are output.

2. 0+ phonemes from W2
pron are deleted.

1Available at both authors’ websites.

3. 1+ phonemes from W1
pron are aligned with an

equal number of phonemes from W2
pron.

For each aligned pair of phonemes (x, y), either
x or y is output.

4. 0+ phonemes from W1
pron are deleted, until the

end of W1
pron.

5. 0+ phonemes from W2
pron are output, until the

end of W2
pron.

3 Multitape FST model

Finite state machines (FSMs) are powerful tools
in NLP and are frequently used in tasks like ma-
chine transliteration and pronunciation. Toolkits like
Carmel and OpenFST allow rapid implementations
of complex FSM cascades, machine learning algo-
rithms, and n-best lists.

Both toolkits implement two types of FSMs: fi-
nite state acceptors (FSAs) and finite state transduc-
ers (FSTs), and their weighted counterparts (wFSAs
and wFSTs). An FSA has one input tape; an FST
has one input and one output tape.

What if we want a one input and two output tapes
for an FST? Three input tapes for an FSA? Although
infrequently explored in NLP research, these “mul-
titape” machines are valid FSMs.

In the case of converting {W1
pron, W2

pron} to
PMpron, an interleaved reading of two tapes would be
impossible with a traditional FST. Instead, we model
the problem with a 2-input, 1-output FST (Figure
3). Edges are labeled x : y : z to indicate input
tapes W1

pron and W2
pron and output tape PMpron, re-

spectively.

4 FSM Cascade

We include the multitape model as part of an FSM
cascade that converts W1 and W2 to PM (Figure 4).

q1 q2 q3 q4 q5

q1a q2a q3a q4a q5a

ε : ε : ε ε : ε : ε ε : ε : ε ε : ε : ε

ε :
ε :
ε

ε :
ε :
ε

ε :
ε :
ε

ε :
ε :
ε

ε :
ε :
ε

x :
ε :
x

ε :
y :
ε

x :
y :
x/y

x :
ε :
ε

ε :
y :
y

Figure 3: A 2- input, 1-output wFST for portmanteau pronunciation generation.

207

wFST B

W2
pron

W1
pron

FST A

FST A

W2

W1

PMpron wFST C PM′ wFSA D PM′′ FSA E1,2 PM′′′

jogging
juggling

JH AH G IH NG

JH AA G AH L IH NG
JH AH G AH L IH NG joggaling juggling joggling

Figure 4: The FSM cascade for converting W1 and W2 into a PM, and an illustrative example.

phonemes P (x, y → z)
x y z cond. joint mixed

AA AA AA 1.000 0.017 1.000
AH ER AH 0.424 0.007 0.445
AH ER ER 0.576 0.009 0.555
P B P 0.972 0.002 1.000
P B B 0.028 N/A N/A
Z SH SH 1.000 N/A N/A

JH AO JH 1.000 N/A N/A

Table 2: Sample learned phoneme alignment probabili-
ties for each method.

We first generate the pronunciations of W1 and
W2 with FST A, which functions as a simple look-
up from the CMU Pronouncing Dictionary (Weide,
1998).

Next, wFST B, the multitape wFST from Figure
3, translates W1

pron and W2
pron into PMpron. wFST C,

built from aligned graphemes and phonemes from
the CMU Pronunciation Dictionary (Galescu and
Allen, 2001), spells PMpron as PM′.

To improve PM′, we now use three FSAs built
from W1 and W2. The first, wFSA D, is a smoothed
“mini language model” which strongly prefers letter
trigrams from W1 and W2. The second and third,
FSA E1 and FSA E2, accept all inputs except W1

and W2.

5 Data

We obtained examples of portmanteaux and com-
ponent words from Wikipedia and Wiktionary lists
(Wikipedia, 2013; Wiktionary, 2013). We reject any
that do not satisfy our constraints–for example, port-

step k description P (k)
1 W1

pron keep 0.68
2 W2

pron delete 0.55
3 align 0.74
4 W1

pron delete 0.64
5 W2

pron keep 0.76

Table 3: Learned step probabilities. The probabilities of
keeping and aligning are higher than those of deleting,
showing a tendency to preserve the component words.

manteaux with three component words (“turkey” +
“duck” + “chicken”→ “turducken”) or without any
overlap (“arpa” + “net”→ “arpanet”). From 571 ex-
amples, this yields 401 {W1, W2, PM} triples.

We also use manual annotations of PMpron for
learning the multitape wFST B weights and for mid-
cascade evaluation.

We randomly split the data for 10-fold cross-
validation. For each iteration, 8 folds are used for
training data, 1 for dev, and 1 for test. Training data
is used to learn wFST B weights (Section 6) and dev
data is used to learn reranking weights (Section 7).

6 Training

FST A is unweighted and wFST C is pretrained.
wFSA D and FSA E1,2 are built at runtime.

We only need to learn wFST B weights, which
we can reduce to weights on transitions qk → qka
and q3a → q3 from Figure 3. The weights qk →
qka represent the probability of each step, or P (k).
The weights q3a → q3 represent the probability of
generating phoneme z from input phonemes x and
y, or P (x, y → z).

208

model % exact avg. dist. % 1k-best
dev test dev test dev test

cond 28.9 29.9 1.6 1.6 92.0 91.2
joint 44.6 44.6 1.5 1.5 91.0 89.7

mixed 31.9 33.4 1.6 1.5 92.8 91.0
rerank 51.4 50.6 1.2 1.3 93.1 91.5

Table 4: PMpron results pre- and post-reranking.

PM % exact avg. dist. % 1k-best
PM′ 12.03 5.31 42.35
PM′′ 42.14 1.80 58.10
PM′′′ 45.39 1.59 61.35

Table 5: PM results on cross-validated test data.

We use expectation maximization (EM) to learn
these weights from our unaligned input and output,
{W1

pron, W2
pron} and PMpron. We use three differ-

ent methods of normalizing fractional counts. The
learned phoneme alignment probabilities P (x, y →
z) (Table 2) vary across these methods, but the
learned step probabilities P (k) (Table 3) do not.

6.1 Conditional Alignment

Our first learning method models phoneme align-
ment P (x, y → z) conditionally, as P (z|x, y).
Since P (z|x, y) tends to be larger than step prob-
abilities P (k), the model prefers to align phonemes
when possible, rather than keep or delete them sep-
arately. This creates longer alignment regions.

Additionally, during training a potential align-
ment P (x|x, y) can compete only with its pair
P (y|x, y), making it more difficult to zero out an
alignment’s probability. The conditional method
therefore also learns more potential alignments be-
tween phonemes.

6.2 Joint Alignment

Our second learning method models P (x, y → z)
jointly, as P (z, x, y). Since P (z, x, y) is relatively
low compared to the step probabilities, this method
prefers very short alignments–the reverse of the ef-
fect seen in the conditional method.

However, the model can also zero out the prob-
abilities of unlikely aligments, so overall it learns
fewer possible alignments between phonemes.

W1 W2 gold PM hyp. PM
affluence influenza affluenza affluenza

architecture ecology arcology architecology
chill relax chillax chilax

friend enemy frenemy frienemy
japan english japlish japanglish
jeans shorts jorts js

jogging juggling joggling joggling
man purse murse mman
tofu turkey tofurkey tofurkey

zeitgeist ghost zeitghost zeitghost

Table 6: Component words and gold and hypothesis PMs.

6.3 Mixed Alignment
Our third learning method initializes alignment
probabilities with the joint method, then normalizes
them so that P (x|x, y) and P (y|x, y) sum to 1. This
“mixed” method, like the joint method, is more con-
servative in learning phoneme alignments. However,
like the conditional method, it has high alignment
probabilities and prefers longer alignments.

7 Model Combination and Reranking

Using the methods from sections 6.1, 6.2, and 6.3,
we train three models and produce three different
1000-best lists of PMpron candidates for dev data.
We combine these three lists into a single one, and
compute the following features for each candidate:
model scores, PMpron length, percentage of W1

pron
or W2

pron in PMpron, and percentage of PMpron in
W1

pron or W2
pron. We also include a binary feature

for whether PMpron matches W1
pron or W2

pron.
We then compute feature weights using the aver-

aged perceptron algorithm (Zhou et al., 2006), and
use them to rerank the candidate list, for both dev
and test data. We combine the reranked PMpron lists
to generate wFST C’s input.

8 Evaluation

We evaluate our model’s generation of PMpron pre-
and post-reranking against our manually annotated
PMpron. We also compare PM′, PM′′, and PM′′′. For
both PMpron and PM, we use three metrics:
• percent of 1-best results that are exact matches,
• average Levenshtein edit distance of 1-bests,

and
• percent of 1000-best lists with an exact match.

209

9 Results and Discussion

We first evaluate the model at PMpron. Table 4
shows that, despite less than 50% exact matches,
over 90% of the 1000-best lists contain the correct
pronunciation. This motivates our model combina-
tion and reranking, which increase exact matches to
over 50%.

Next, we evaluate PM (Table 5). A component
word mini-LM dramatically improves PM′′ com-
pared to PM′. Filtering out component words pro-
vides additional gain, to 45% exact matches.

In comparison, a baseline that merges W1
pron and

W2
pron at the first shared phoneme achieves 33% ex-

act matches for PMpron and 25% for PM.
Table 6 provides examples of system output. Per-

fect outputs include “affluenza,” “joggling,” “to-
furkey,” and “zeitghost.” For others, like “chilax”
and “frienemy,” the discrepancy is negligible and the
hypothesis PM could be considered a correct alter-
nate output. Some hypotheses, like “architecology”
and “japanglish,” might even be considered superior
to their gold counterparts. However, some errors,
like “js” and “mman,” are clearly unacceptable sys-
tem outputs.

10 Conclusion

We implement a data-driven system that generates
portmanteaux from component words. To accom-
plish this, we use an FSM cascade, including a novel
2-input, 1-output multitape FST, and train it on exist-
ing portmanteaux. In cross-validated experiments,
we achieve 45% exact matches and an average Lev-
enshtein edit distance of 1.59.

In addition to improving this model, we are inter-
ested in developing systems that can select compo-
nent words for portmanteaux and reconstruct com-
ponent words from portmanteaux. We also plan
to research other applications for multi-input/output
models.

11 Acknowledgements

We would like to thank the anonymous reviewers for
their helpful comments, as well as our colleagues
Qing Dou, Tomer Levinboim, Jonathan May, and
Ashish Vaswani for their advice. This work was
supported in part by DARPA contract FA-8750-13-
2-0045.

References
Lucian Galescu and James F Allen. 2001. Bi-directional

conversion between graphemes and phonemes using
a joint n-gram model. In 4th ISCA Tutorial and Re-
search Workshop (ITRW) on Speech Synthesis.

Gözde Özbal and Carlo Strapparava. 2012. A computa-
tional approach to the automation of creative naming.
In Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics: Long Papers
- Volume 1, ACL ’12, pages 703–711. Association for
Computational Linguistics.

Michael R Smith, Ryan S Hintze, and Dan Ventura.
2014. Nehovah: A neologism creator nomen ipsum.
In Proceedings of the International Conference on
Computational Creativity, pages 173–181. ICCC.

Robert Weide. 1998. The CMU pronunciation dictio-
nary, release 0.6.

Wikipedia. 2013. List of portmanteaus.
http://en.wikipedia.org/w/index.php?title=

List_of_portmanteaus&oldid=578952494.
[Online; accessed 01-November-2013].

Wiktionary. 2013. Appendix:list of portmanteaux.
http://en.wiktionary.org/w/index.php?title=

Appendix:List_of_portmanteaux&oldid=23685729.
[Online; accessed 02-November-2013].

Zhengyu Zhou, Jianfeng Gao, Frank K. Soong, and Helen
Meng. 2006. A comparative study of discriminative
methods for reranking LVCSR n-best hypotheses in
domain adaptation and generalization. In 2006 IEEE
International Conference on Acoustics Speech and
Signal Processing, ICASSP 2006, Toulouse, France,
pages 141–144.

210

