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Abstract

We present a novel method for aligning a se-
quence of instructions to a video of some-
one carrying out a task. In particular, we fo-
cus on the cooking domain, where the instruc-
tions correspond to the recipe. Our technique
relies on an HMM to align the recipe steps
to the (automatically generated) speech tran-
script. We then refine this alignment using
a state-of-the-art visual food detector, based
on a deep convolutional neural network. We
show that our technique outperforms simpler
techniques based on keyword spotting. It also
enables interesting applications, such as auto-
matically illustrating recipes with keyframes,
and searching within a video for events of in-
terest.

1 Introduction

In recent years, there have been many successful
attempts to build large “knowledge bases” (KBs),
such as NELL (Carlson et al., 2010), KnowItAll (Et-
zioni et al., 2011), YAGO (Suchanek et al., 2007),
and Google’s Knowledge Graph/ Vault (Dong et al.,
2014). These KBs mostly focus on declarative facts,
such as “Barack Obama was born in Hawaii”. But
human knowledge also encompasses procedural in-
formation not yet within the scope of such declara-
tive KBs – instructions and demonstrations of how to
dance the tango, for example, or how to change a tire
on your car. A KB for organizing and retrieving such
procedural knowledge could be a valuable resource
for helping people (and potentially even robots –
e.g., (Saxena et al., 2014; Yang et al., 2015)) learn
to perform various tasks.

In contrast to declarative information, procedural
knowledge tends to be inherently multimodal. In
particular, both language and perceptual information
are typically used to parsimoniously describe proce-
dures, as evidenced by the large number of “how-
to” videos and illustrated guides on the open web.
To automatically construct a multimodal database
of procedural knowledge, we thus need tools for
extracting information from both textual and vi-
sual sources. Crucially, we also need to figure out
how these various kinds of information, which often
complement and overlap each other, fit together to a
form a structured knowledge base of procedures.

As a small step toward the broader goal of align-
ing language and perception, we focus in this pa-
per on the problem of aligning video depictions of
procedures to steps in an accompanying text that
corresponds to the procedure. We focus on the
cooking domain due to the prevalence of cooking
videos on the web and the relative ease of inter-
preting their recipes as linear sequences of canon-
ical actions. In this domain, the textual source is
a user-uploaded recipe attached to the video show-
ing the recipe’s execution. The individual steps of
procedures are cooking actions like “peel an onion”,
“slice an onion”, etc. However, our techniques can
be applied to any domain that has textual instruc-
tions and corresponding videos, including videos
at sites such as youtube.com, howcast.com,
howdini.com or videojug.com.

The approach we take in this paper leverages the
fact that the speech signal in instructional videos is
often closely related to the actions that the person
is performing (which is not true in more general
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videos). Thus we first align the instructional steps
to the speech signal using an HMM, and then refine
this alignment by using a state of the art computer
vision system.

In summary, our contributions are as follows.
First, we propose a novel system that combines text,
speech and vision to perform an alignment between
textual instructions and instructional videos. Sec-
ond, we use our system to create a large corpus of
180k aligned recipe-video pairs, and an even larger
corpus of 1.4M short video clips, each labeled with
a cooking action and a noun phrase. We evaluate
the quality of our corpus using human raters. Third,
we show how we can use our methods to support
applications such as within-video search and recipe
auto-illustration.

2 Data and pre-processing

We first describe how we collected our corpus of
recipes and videos, and the pre-processing steps that
we run before applying our alignment model. The
corpus of recipes, as well as the results of the align-
ment model, will be made available for download at
github.com/malmaud/whats_cookin.

2.1 Collecting a large corpus of cooking videos
with recipes

We first searched Youtube for videos which
have been automatically tagged with the Freebase
mids /m/01mtb (Cooking) and /m/0p57p (recipe),
and which have (automatically produced) English-
language speech transcripts, which yielded a collec-
tion of 7.4M videos. Of these videos, we kept the
videos that also had accompanying descriptive text,
leaving 6.2M videos.

Sometimes the recipe for a video is included in
this text description, but sometimes it is stored on
an external site. For example, a video’s text de-
scription might say “Click here for the recipe”. To
find the recipe in such cases, we look for sentences
in the video description with any of the following
keywords: “recipe”, “steps”, “cook”, “procedure”,
“preparation”, “method”. If we find any such to-
kens, we find any URLs that are mentioned in the
same sentence, and extract the corresponding docu-
ment, giving us an additional 206k documents. We
then combine the original descriptive text with any

Class Precision Recall F1
Background 0.97 0.95 0.96
Ingredient 0.93 0.95 0.94
Recipe step 0.94 0.95 0.94

Table 1: Test set performance of text-based recipe classifier.

additional text that we retrieve in this way.
Finally, in order to extract the recipe from the text

description of a video, we trained a classifier that
classifies each sentence into 1 of 3 classes: recipe
step, recipe ingredient, or background. We keep
only the videos which have at least one ingredient
sentence and at least one recipe sentence. This last
step leaves us with 180,000 videos.

To train the recipe classifier, we need labeled
examples, which we obtain by exploiting the fact
that many text webpages containing recipes use
the machine-readable markup defined at http:
//schema.org/Recipe. From this we extract
500k examples of recipe sentences, and 500k exam-
ples of ingredient sentences. We also sample 500k
sentences at random from webpages to represent the
non-recipe class. Finally, we train a 3-class naı̈ve
Bayes model on this data using simple bag-of-words
feature vectors. The performance of this model on a
separate test set is shown in Table 1.

2.2 Parsing the recipe text

For each recipe, we apply a suite of in-house NLP
tools, similar to the Stanford Core NLP pipeline. In
particular, we perform POS tagging, entity chunk-
ing, and constituency parsing (based on a re-
implementation of (Petrov et al., 2006)).1 Following
(Druck and Pang, 2012), we use the parse tree struc-
ture to partition each sentence into “micro steps”. In
particular, we split at any token categorized by the
parser as a conjunction only if that token’s parent in
the sentence’s constituency parse is a verb phrase.
Any recipe step that is missing a verb is considered
noise and discarded.

We then label each recipe step with an optional
action and a list of 0 or more noun chunks. The ac-

1Sometimes the parser performs poorly, because the lan-
guage used in recipes is often full of imperative sentences, such
as “Mix the flour”, whereas the parser is trained on newswire
text. As a simple heuristic for overcoming this, we classify any
token at the beginning of a sentence as a verb if it lexically
matches a manually-defined list of cooking-related verbs.
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tion label is the lemmatized version of the head verb
of the recipe step. We look at all chunked noun en-
tities in the step which are the direct object of the
action (either directly or via the preposition “of”, as
in “Add a cup of flour”).

We canonicalize these entities by computing their
similarity to the list of ingredients associated with
this recipe. If an ingredient is sufficiently similar,
that ingredient is added to this step’s entity list. Oth-
erwise, the stemmed entity is used. For example,
consider the step “Mix tomato sauce and pasta”; if
the recipe has a known ingredient called “spaghetti”,
we would label the action as “mix” and the entities
as “tomato sauce” and “spaghetti”, because of its
high semantic similarity to “pasta”. (Semantic sim-
ilarity is estimated based on Euclidean distance be-
tween word embedding vectors computed using the
method of (Mikolov et al., 2013) trained on general
web text.)

In many cases, the direct object of a transitive verb
is elided (not explicitly stated); this is known as the
“zero anaphora” problem. For example, the text may
say “Add eggs and flour to the bowl. Mix well.”. The
object of the verb “mix” is clearly the stuff that was
just added to the bowl (namely the eggs and flour),
although this is not explicitly stated. To handle this,
we use a simple recency heuristic, and insert the en-
tities from the previous step to the current step.

2.3 Processing the speech transcript

The output of Youtube’s ASR system is a sequence
of time-stamped tokens, produced by a standard
Viterbi decoding system. We concatenate these to-
kens into a single long document, and then apply our
NLP pipeline to it. Note that, in addition to errors in-
troduced by the ASR system2, the NLP system can
introduce additional errors, because it does not work
well on text that may be ungrammatical and which is
entirely devoid of punctuation and sentence bound-
ary markers.

To assess the impact of these combined sources

2According to (Liao et al., 2013), the Youtube ASR system
we used, based on using Gaussian mixture models for the acous-
tic model, has a word error rate of about 52% (averaged over all
English-language videos; some genres, such as news, had lower
error rates). The newer system, which uses deep neural nets for
the acoustic model, has an average WER of 44%; however, this
was not available to us at the time we did our experiments.

Figure 1: Graphical model representation of the factored
HMM. See text for details.

of error, we also collected a much smaller set of 480
cooking videos (with corresponding recipe text) for
which the video creator had uploaded a manually
curated speech transcript; this has no transcription
errors, it contains sentence boundary markers, and
it also aligns whole phrases with the video (instead
of just single tokens). We applied the same NLP
pipeline to these manual transcripts. In the results
section, we will see that the accuracy of our end-to-
end system is indeed higher when the speech tran-
script is error-free and well-formed. However, we
can still get good results using noisier, automatically
produced transcripts.

3 Methods

In this section, we describe our system for aligning
instructional text and video.

3.1 HMM to align recipe with ASR transcript
We align each step of the recipe to a corresponding
sequence of words in the ASR transcript by using the
input-output HMM shown in Figure 1. Here X(1 :
K) represents the textual recipe steps (obtained us-
ing the process described in Section 2.2); Y (1 : T )
represent the ASR tokens (spoken words); R(t) ∈
{1, . . . ,K} is the recipe step number for frame t;
and B(t) ∈ {0, 1} represents whether timestep t is
generated by the background (B = 1) or foreground
model (B = 0). This background variable is needed
since sometimes sequences of spoken words are un-
related to the content of the recipe, especially at the
beginning and end of a video.

The conditional probability distributions (CPDs)
for the Markov chain is as follows:

p(R(t) = r|R(t− 1) = r′) =


α if r = r′+1
1− α if r = r′

0.0 otherwise

p(B(t) = b|B(t− 1) = b) = γ.
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This encodes our assumption that the video fol-
lows the same ordering as the recipe and that back-
ground/foreground tokens tend to cluster together.
Obviously these assumptions do not always hold,
but they are a reasonable approximation.

For each recipe, we set α = K/T , the ratio of
recipe steps to transcript tokens. This setting corre-
sponds to an a priori belief that each recipe step is
aligned with the same number of transcript tokens.
The parameter γ in our experiments is set by cross-
validation to 0.7 based on a small set of manually-
labeled recipes.

For the foreground observation model, we gener-
ate the observed word from the corresponding recipe
step via:

log p(Y (t) = y|R(t) = k,X(1 : K), B(t) = 0) ∝
max({WordSimilarity(y, x) : x ∈ X(k)}),

where X(k) is the set of words in the k’th recipe
step, and WordSimilarity(s, t) is a measure of simi-
larity between words s and t, based on word vector
distance.

If this frame is aligned to the background, we
generate it from the empirical distribution of words,
which is estimated based on pooling all the data:

p(Y (t) = y|R(t) = k,B(t) = 1) = p̂(y).

Finally, the prior for p(B(t)) is uniform, and
p(R(1)) is set to a delta function on R(1) = 1 (i.e.,
we assume videos start at step 1 of the recipe).

Having defined the model, we “flatten” it to a
standard HMM (by taking the cross product of Rt

and Bt), then estimate the MAP sequence using the
Viterbi algorithm. See Figure 2 for an example.

Finally, we label each segment of the video as
follows: use the segmentation induced by the align-
ment, and extract the action and object from the cor-
responding recipe step as described in Section 2.2.
If the segment was labeled as background by the
HMM, we do not apply any label to it.

3.2 Keyword spotting

A simpler approach to labeling video segments is to
just search for verbs in the ASR transcript, and then
to extract a fixed-sized window around the times-
tamp where the keyword occurred. We call this ap-
proach “keyword spotting”. A similar method from

(Yu et al., 2014) filters ASR transcripts by part-of-
speech tag and finds tokens that match a small vo-
cabulary to create a corpus of video clips (extracted
from instructional videos), each labeled with an ac-
tion/object pair.

In more detail, we manually define a whitelist of
∼200 actions (all transitive verbs) of interest, such
as “add”, “chop”, “fry”, etc. We then identify when
these words are spoken (relying on the POS tags to
filter out non-verbs), and extract an 8 second video
clip around this timestamp. (Using 2 seconds prior
to the action being mentioned, and 6 seconds follow-
ing.) To extract the object, we take all tokens tagged
as “noun” within 5 tokens after the action.

3.3 Hybrid HMM + keyword spotting

We cannot use keyword spotting if the goal is to
align instructional text to videos. However, if our
goal is just to create a labeled corpus of video clips,
keyword spotting is a reasonable approach. Unfor-
tunately, we noticed that the quality of the labels
(especially the object labels) generated by keyword
spotting was not very high, due to errors in the ASR.
On the other hand, we also noticed that the recall of
the HMM approach was about 5 times lower than us-
ing keyword spotting, and furthermore, that the tem-
poral localization accuracy was sometimes worse.

To get the best of both worlds, we employ the fol-
lowing hybrid technique. We perform keyword spot-
ting for the action in the ASR transcript as before,
but use the HMM alignment to infer the correspond-
ing object. To avoid false positives, we only use
the output of the HMM for this video if at least half
of the recipe steps are aligned by it to the speech
transcript; otherwise we back off to the baseline ap-
proach of extracting the noun phrase from the ASR
transcript in the window after the verb.

3.4 Temporal refinement using vision

In our experiments, we noticed that sometimes the
narrator describes an action before actually perform-
ing it (this was also noted in (Yu et al., 2014)). To
partially combat this problem, we used computer vi-
sion to refine candidate video segments as follows.
We first trained visual detectors for a large collec-
tion of food items (described below). Then, given
a candidate video segment annotated with an ac-
tion/object pair (coming from any of the previous
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1: In a bowl combine flour, chilli powder, cumin, paprika and five spice. Once thoroughly 
mixed, add in chicken strips and coat in mixture. 
2: Heat oil in a wok or large pan on medium to high heat. Add in chicken and cook until 
lightly brown for 3 -- 5 minutes. 
3: Add in chopped vegetables along with garlic, lime juice, hot sauce and Worcestershire 
sauce. 
4: Cook for a further 15 minutes on medium heat. 
5: As the mixture cooks, chop the tomatoes and add lettuce, and cucumber into a 
serving bowl. 
6: Once cooked, serve fajita mix with whole wheat wrap. Add a spoonful of fajita mix into 
wrap with salsa and natural yogurt. Wrap or roll up the tortilla and serve with side salad.

 in a bowl combine the flower chili powder paprika cumen and five-spice do 130 mixed 
add in the chicken strips and post in the flour mixture he's oil in a walk for large pan on 
medium to high heat add in the chicken and cook until lightly browned for three to five 
minutes add in chopped vegetables along with the garlic lime juice hot sauce and 
Worcestershire sauce dome cook for a further 15 minutes on medium peace and the 
mixture coax chop the tomatoes and as blessed tomato and cucumber into a serving 
bowl up we've cooked add a spoonful up the fajita mix into a wrap with the salsa and after 
yogurt throughout the rack and served with side salad this recipe makes to avalanche 
portions done they have just taken but he says and delicious introduction to Mexican 
flavors blue that

Recipe Steps Automatic Speech Transcription

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Video Position 

Fried chicken 
Tomato 

Step 1

Step 2

Step 5

Figure 2: Examples from a Chicken Fajitas recipe at https://www.youtube.com/watch?v=mGpvZE3udQ4 (figure best
viewed in color). Top: Alignment between (left) recipe steps to (right) automatic speech transcript. Tokens from the ASR are
allowed to be classified as background steps (see e.g., the uncolored text at the end). Bottom: Detector scores for two ingredients
as a function of position in the video.

three methods), we find a translation of the window
(of up to 3 seconds in either direction) for which the
average detector score corresponding to the object is
maximized. The intuition is that by detecting when
the object in question is visually present in the scene,
it is more likely that the corresponding action is ac-
tually being performed.

Training visual food detectors. We trained a
deep convolutional neural network (CNN) classi-
fier (specifically, the 16 layer VGG model from (Si-
monyan and Zisserman, 2014)) on the FoodFood-
101 dataset of (Bossard et al., 2014), using the Caffe
open source software (Jia et al., 2014). The Food-
101 dataset contains 1000 images for 101 different
kinds of food. To compensate for the small training
set, we pretrained the CNN on the ImageNet dataset
(Russakovsky et al., 2014), which has 1.2M images,
and then fine-tuned on Food-101. After a few hours
of fine tuning (using a single GPU), we obtained
79% classification accuracy (assuming all 101 labels
are mutually exclusive) on the test set, which is con-
sistent with the state of the art results.3

3In particular, the website https://www.metamind.
io/vision/food (accessed on 2/25/15) claims they also got
79% on this dataset. This is much better than the 56.4% for a
CNN reported in (Bossard et al., 2014). We believe the main
reason for the improved performance is the use of pre-training
on ImageNet.

We then trained our model on an internal, propri-
etary dataset of 220 million images harvested from
Google Images and Flickr. About 20% of these im-
ages contain food, the rest are used to train the back-
ground class. In this set, there are 2809 classes of
food, including 1005 raw ingredients, such as avo-
cado or beef, and 1804 dishes, such as ratatouille or
cheeseburger with bacon. We use the model trained
on this much larger dataset in the current paper, due
to its increased coverage. (Unfortunately, we cannot
report quantitative results, since the dataset is very
noisy (sometimes half of the labels are wrong), so
we have no ground truth. Nevertheless, qualitative
behavior is reasonable, and the model does well on
Food-101, as we discussed above.)

Visual refinement pipeline. For storage and time
efficiency, we downsample each video temporally to
5 frames per second and each frame to 224 × 224
before applying the CNN. Running the food detector
on each video then produces a vector of scores (one
entry for each of 2809 classes) per timeframe.

There is not a perfect map from the names of
ingredients to the names of the detector outputs.
For example, an omelette recipe may say “egg”,
but there are two kinds of visual detectors, one
for “scrambled egg” and one for “raw egg”. We
therefore decided to define the match score between
an ingredient and a frame by taking the maximum

147



score for that frame over all detectors whose names
matched any of the ingredient tokens (after lemma-
tization and stopword filtering).

Finally, the match score of a video segment to
an object is computed by taking the average score
of all frames within that segment. By then scoring
and maximizing over all translations of the candi-
date segment (of up to three seconds away), we pro-
duce a final “refined” segment.

3.5 Quantifying confidence via vision and
affordances

The output of the keyword spotting and/or HMM
systems is an (action, object) label assigned to cer-
tain video clips. In order to estimate how much con-
fidence we have in that label (so that we can trade off
precision and recall), we use a linear combination of
two quantities: (1) the final match score produced
by the visual refinement pipeline, which measures
the visibility of the object in the given video seg-
ment, and (2) an affordance probability, measuring
the probability that o appears as a direct object of a.

The affordance model allows us to, for example,
prioritize a segment labeled as (peel, garlic) over a
segment labeled as (peel, sugar). The probabilities
P (object = o|action = a) are estimated by first
forming an inverse document frequency matrix cap-
turing action/object co-occurrences (treating actions
as documents). To generalize across actions and ob-
jects we form a low-rank approximation to this IDF
matrix using a singular value decomposition and set
affordance probabilities to be proportional to expo-
nentiated entries of the resulting matrix. Figure 3 vi-
sualizes these affordance probabilities for a selected
subset of frequently used action/object pairs.

4 Evaluation and applications

In this section, we experimentally evaluate how well
our methods work. We then briefly demonstrate
some prototype applications.

4.1 Evaluating the clip database
One of the main outcomes of our process is a set of
video clips, each of which is labeled with a verb (ac-
tion) and a noun (object). We generated 3 such la-
beled corpora, using 3 different methods: keyword
spotting (“KW”), the hybrid HMM + keyword spot-
ting (“Hybrid”), and the hybrid system with visual

Figure 3: Visualization of affordance model. Entries (a, o) are
colored according to P (object = o | action = a).
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Figure 4: Clip quality, as assessed by Mechanical Turk exper-
iments on 900 trials. Figure best viewed in color; see text for
details.

food detector (“visual refinement”). The total num-
ber of clips produced by each method is very similar,
approximately 1.4 million. The coverage of the clips
is approximately 260k unique (action, noun phrase)
pairs.

To evaluate the quality of these methods, we cre-
ated a random subset of 900 clips from each corpus
using stratified sampling. That is, we picked an ac-
tion uniformly at random, and then picked a corre-
sponding object for that action from its support set
uniformly at random, and finally picked a clip with
that (action, object) label uniformly at random from
the clip corpuses produced in Section 3; this ensures
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Figure 6: Histogram of human ratings comparing recipe steps
against ASR descriptions of a video clip. “2” indicate a strong
preference for the recipe step; “-2” a strong preference for the
transcript. See text for details.

the test set is not dominated by frequent actions or
objects.

We then performed a Mechanical Turk experi-
ment on each test set. Each clip was shown to 3
raters, and each rater was asked the question “How
well does this clip show the given action/object?”.
Raters then had to answer on a 3-point scale: 0
means “not at all”, 1 means “somewhat”, and 2
means “very well”.

The results are shown in Figure 4. We see that
the quality of the hybrid method is significantly bet-
ter than the baseline keyword spotting method, for
both actions and objects.4 While a manually curated

4Inter-rater agreement, measured via Fleiss’s kappa by ag-
gregating across all judgment tasks, is .41, which is statistically
significant at a p < .05 level.

speech transcript indeed yields better results (see the
bars labeled ‘manual’), we observe that automati-
cally generated transcripts allow us to perform al-
most as well, especially using our alignment model
with visual refinement.

Comparing accuracy on actions against that on
objects in the same figure, we see that keyword spot-
ting is far more accurate for actions than it is for
objects (by over 30%). This disparity is not surpris-
ing since keyword spotting searches only for action
keywords and relies on a rough heuristic to recover
objects. We also see that using alignment (which
extracts the object from the “clean” recipe text) and
visual refinement (which is trained explicitly to de-
tect ingredients) both help to increase the relative ac-
curacy of objects — under the hybrid method, for
example, the accuracy for actions is only 8% better
than that of objects.

Note that clips from the HMM and hybrid meth-
ods varied in length between 2 and 10 seconds
(mean 4.2 seconds), while clips from the keyword
spotting method were always exactly 8 seconds.
Thus clip length is potentially a confounding factor
in the evaluation when comparing the hybrid method
to the keyword-spotting method; however, if there is
a bias to assign higher ratings to longer clips (which
are a priori more likely to contain a depiction of a
given action than shorter clips), it would benefit the
keyword spoting method.

Segment confidence scores (from Section 3.5) can
be used to filter out low confidence segments, thus
improving the precision of clip retrieval at the cost of
recall. Figure 5 visualizes this trade-off as we vary
our confidence threshold, showing that indeed, seg-
ments with higher confidences tend to have the high-
est quality as judged by our human raters. More-
over, the top 167,000 segments as ranked by our con-
fidence measure have an average rating exceeding
1.75.

We additionally sought to evaluate how well
recipe steps from the recipe body could serve as
captions for video clips in comparison to the often
noisy ASR transript, which serves as a rough proxy
for evaluating the quality of the alignment model as
well as demonstration a potential application of our
method for “cleaning up” noisy ASR captions into
complete grammatical sentences. To that end, we
randomly selected 200 clips from our corpus that
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both have an associated action keyword from the
transcript as well as an aligned recipe step selected
by the HMM alignment model. For each clip, three
raters on Mechanical Turk were shown the clip, the
text from the recipe step, and a fragment of the ASR
transcript (the keyword, plus 5 tokens to the left and
right of the keyword). Raters then indicated which
description they preferred: 2 indicates a strong pref-
erence for the recipe step, 1 a weak preference, 0
indifference, -1 a weak preference for the transcript
fragment, and -2 a strong preference. Results are
shown in Figure 6. Excluding raters who indicated
indiffierence, 67% of raters preferred the recipe step
as the clip’s description.

A potential confound for using this analysis as
a proxy for the quality of the alignment model is
that the ASR transcript is generally an ungrammat-
ical sentence fragment as opposed to the grammati-
cal recipe steps, which is likely to reduce the raters’
approval of ASR captions in the case when both ac-
curately describe the scene. However, if users still
on average prefer an ASR sentence fragment which
describes the clip correctly versus a full recipe step
which is unrelated to the scene, then this experiment
still provides evidence of the quality of the align-
ment model.

4.2 Automatically illustrating a recipe

One useful byproduct of our alignment method is
that each recipe step is associated with a segment
of the corresponding video.5 We use a standard
keyframe selection algorithm to pick the best frame
from each segment. We can then associate this frame
with the corresponding recipe step, thus automati-
cally illustrating the recipe steps. An illustration of
this process is shown in Figure 7.

4.3 Search within a video

Another application which our methods enable is
search within a video. For example, if a user would
like to find a clip illustrating how to knead dough,
we can simply search our corpus of labeled clips,

5The HMM may assign multiple non-consecutive regions of
the video to the same recipe step (since the background state can
turn on and off). In such cases, we just take the “convex hull”
of the regions as the interval which corresponds to that step. It
is also possible for the HMM not to assign a given step to any
interval of the video.

Figure 8: Searching for “knead dough”. Note that the videos
have automatically been advanced to the relevant frame.

and return a list of matches (ranked by confidence).
Since each clip has a corresponding “provenance”,
we can return the results to the user as a set of videos
in which we have automatically “fast forwarded” to
the relevant section of the video (see Figure 8 for an
example). This stands in contrast to standard video
search on Youtube, which returns the whole video,
but does not (in general) indicate where within the
video the user’s search query occurs.

5 Related work

There are several pieces of related work. (Yu et al.,
2014) performs keyword spotting in the speech tran-
script in order to label clips extracted from instruc-
tional videos. However, our hybrid approach per-
forms better; the gain is especially significant on au-
tomatically generated speech transcripts, as shown
in Figure 4.

The idea of using an HMM to align instructional
steps to a video was also explored in (Naim et al.,
2014). However, their conditional model has to gen-
erate images, whereas ours just has to generate ASR
words, which is an easier task. Furthermore, they
only consider 6 videos collected in a controlled lab
setting, whereas we consider over 180k videos col-
lected “in the wild”.

Another paper that uses HMMs to process recipe
text is (Druck and Pang, 2012). They use the HMM
to align the steps of a recipe to the comments made
by users in an online forum, whereas we align the
steps of a recipe to the speech transcript. Also, we
use video information, which was not considered in
this earlier work.

(Joshi et al., 2006) describes a system to automat-
ically illustrate a text document, however they only
generate one image, not a sequence, and their tech-
niques are very different.

There is also a large body of other work on con-
necting language and vision; we only have space
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De-stem 2 medium plum 
tomatoes.

Cut them in half lengthwise and remove the seeds. Finely chop the tomatoes, combining them with 1/4 cup of 
finely chopped red onion, 2 
minced cloves of garlic, 1 
tablespoon of olive oil, 2 
tablespoons of fresh lime juice, 
and 1/8 teaspoon of black 
pepper

Cut an avocado into chunks and 
mash until it's smooth with just 
a few pieces intact. Stir the mashed avocados into 

the other mixture for a 
homemade guacamole recipe 
that 's perfect for any occasion! 

Use this easy guacamole for 
parties,

or serve chips with guacamole 
for an easy appetizer. You could even add some 

cayenne, jalapenos, or ancho 
chili for even more kick to add to 
your Mexican food night!

Figure 7: Automatically illustrating a Guacamole recipe from https://www.youtube.com/watch?v=H7Ne3s202lU.

to briefly mention a few key papers. (Rohrbach et
al., 2012b) describes the MPII Cooking Composite
Activities dataset, which consists of 212 videos col-
lected in the lab of people performing various cook-
ing activities. (This extends the dataset described in
their earlier work, (Rohrbach et al., 2012a).) They
also describe a method to recognize objects and ac-
tions using standard vision features. However, they
do not leverage the speech signal, and their dataset
is significantly smaller than ours.

(Guadarrama et al., 2013) describes a method for
generating subject-verb-object triples given a short
video clip, using standard object and action detec-
tors. The technique was extended in (Thomason et
al., 2014) to also predict the location/ place. Further-
more, they use a linear-chain CRF to combine the
visual scores with a simple (s,v,o,p) language model
(similar to our affordance model). They applied
their technique to the dataset in (Chen and Dolan,
2011), which consists of 2000 short video clips, each
described with 1-3 sentences. By contrast, we focus
on aligning instructional text to the video, and our
corpus is significantly larger.

(Yu and Siskind, 2013) describes a technique for
estimating the compatibility between a video clip
and a sentence, based on relative motion of the
objects (which are tracked using HMMs). Their
method is tested on 159 video clips, created under
carefully controlled conditions. By contrast, we fo-
cus on aligning instructional text to the video, and
our corpus is significantly larger.

6 Discussion and future work

In this paper, we have presented a novel method for
aligning instructional text to videos, leveraging both
speech recognition and visual object detection. We

have used this to align 180k recipe-video pairs, from
which we have extracted a corpus of 1.4M labeled
video clips – a small but crucial step toward build-
ing a multimodal procedural knowlege base. In the
future, we hope to use this labeled corpus to train
visual action detectors, which can then be combined
with the existing visual object detectors to interpret
novel videos. Additionally, we believe that combin-
ing visual and linguistic cues may help overcome
longstanding challenges to language understanding,
such as anaphora resolution and word sense disam-
biguation.

Acknowledgments. We would like to thank Alex
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