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Abstract

We present a morphology-aware nonparamet-
ric Bayesian model of language whose prior
distribution uses manually constructed finite-
state transducers to capture the word forma-
tion processes of particular languages. This
relaxes the word independence assumption
and enables sharing of statistical strength
across, for example, stems or inflectional
paradigms in different contexts. Our model
can be used in virtually any scenario where
multinomial distributions over words would
be used. We obtain state-of-the-art results in
language modeling, word alignment, and un-
supervised morphological disambiguation for
a variety of morphologically rich languages.

1 Introduction

Despite morphological phenomena’s salience in
most human languages, many NLP systems treat
fully inflected forms as the atomic units of language.
By assuming independence of lexical stems’ vari-
ous surface forms, this avoidance approach exacer-
bates the problem of data sparseness. If it is em-
ployed at all, morphological analysis of text tends
to be treated as a preprocessing step to other NLP
modules. While this latter disambiguation approach
helps address data sparsity concerns, it has substan-
tial drawbacks: it requires supervised learning from
expert-annotated corpora, and determining the op-
timal morphological granularity is labor-intensive
(Habash and Sadat, 2006).

Neither approach fully exploits the finite-state
transducer (FST) technology that has been so suc-
cessful for modeling the mapping between surface

forms and their morphological analyses (Karttunen
and Beesley, 2005), and the mature collections of
high quality transducers that already exist for many
languages (e.g., Turkish, Russian, Arabic). Much
linguistic knowledge is encoded in such FSTs.

In this paper, we develop morphology-aware non-
parametric Bayesian language models that bring to-
gether hand-written FSTs with statistical modeling
and require no token-level annotation. The sparsity
issue discussed above is addressed by hierarchical
priors that share statistical strength across different
inflections of the same stem by backing off to word
formation models that piece together morphemes us-
ing FSTs. Furthermore, because of the nonparamet-
ric formulation of our models, the regular morpho-
logical patterns found in the long tail of word types
will rely more heavily on deeper analysis, while fre-
quent and idiosyncratically behaved forms are mod-
eled opaquely.

Our prior can be used in virtually any generative
model of language as a replacement for multino-
mial distributions over words, bringing morphologi-
cal awareness to numerous applications. For various
morphologically rich languages, we show that:

• our model can provide rudimentary unsuper-
vised disambiguation for a highly ambiguous
analyzer;

• integrating morphology into n-gram language
models allows better generalization to unseen
words and can improve the performance of ap-
plications that are truly open vocabulary; and

• bilingual word alignment models also bene-
fit greatly from sharing translation information
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across stems.

We are particularly interested in low-resource sce-
narios, where one has to make the most of the
small quantity of available data, and overcoming
data sparseness is crucial. If analyzers exist in such
settings, they tend to be highly ambiguous, and an-
notated data for learning to disambiguate are also
likely to be scarce or non-existent. Therefore, in our
experiments with Russian, we compare two analyz-
ers: a rapidly-developed guesser, which models reg-
ular inflectional paradigms but contains no lexicon
or irregular forms, and a high-quality analyzer.

2 Word Models with Morphology

In this section, we describe a generative model of
word formation based on Pitman-Yor processes that
generates word types using a finite-state morpho-
logical generator. At a high level, the process first
produces lexicons of stems and inflectional patterns;
then it generates a lexicon of inflected forms us-
ing the finite-state generator. Finally, the inflected
forms are used to generate observed data. Different
independence assumptions can be made at each of
these levels to encode beliefs about where stems, in-
flections, and surface forms should share statistical
strength.

2.1 Pitman-Yor Processes
Our work relies extensively on Pitman-Yor pro-
cesses, which provide a flexible framework for ex-
pressing backoff and interpolation relationships and
extending standard models with richer word distri-
butions (Pitman and Yor, 1997). They have been
shown to match the performance of state-of-the-art
language models and to give estimates that follow
appropriate power laws (Teh, 2006).

A draw from a Pitman-Yor process (PYP), de-
noted G ∼ PY(d, θ,G0), is a discrete distribution
over a (possibly infinite) set of events, which we de-
note abstractly E . The process is parameterized by a
discount parameter 0 ≤ d < 1, a strength parameter
θ > −d, and a base distribution G0 over the event
space E .

In this work, our focus is on the base distribution
G0. We place vague priors on the hyperparameters
d ∼ U([0, 1]) and (θ + d) ∼ Gamma(1, 1). Infer-
ence in PYPs is discussed below.

2.2 Unigram Morphology Model

The most basic expression of our model is a uni-
gram model of text. So far, we only assume that
each word can be analyzed into a stem and a se-
quence of morphemes forming an inflection pattern.
LetGs be a distribution over stems,Gp be a distribu-
tion over inflectional patterns, and let GENERATE be
a deterministic mapping from 〈stem, pattern〉 pairs
to inflected word forms.1 An inflected word type is
generated with the following process, which we des-
ignate MP(Gs, Gd,GENERATE):

stem ∼ Gs

pattern ∼ Gp

word = GENERATE(stem, pattern)

For example, in Russian, we might sample stem
= прочий,2 pattern = STEM+Adj+Pl+Dat, and
obtain word = прочим.

This model could be used directly to generate ob-
served tokens. However, we have said nothing about
Gs and Gp, and the assumption that stems and pat-
terns are independent is clearly unsatisfying. We
therefore assume that both the stem and the pattern
distributions are generated from PY processes, and
that MP(Gs, Gp,GENERATE) is itself the base dis-
tribution of a PYP.

Gs ∼ PY(ds, θs, G
0
s)

Gp ∼ PY(dp, θp, G
0
p)

Gw ∼ PY(d, θ,MP(Gs, Gp,GENERATE))

A draw Gw from this PYP is a unigram distribu-
tion over tokens.

2.3 Base Stem Model G0
s

In general there are an unbounded number of stems
possible in any language, so we set G0

s to be charac-
ter trigram model, which we statically estimate, with
Kneser-Ney smoothing, from a large corpus of word
types in the language being modeled. While using
fixed parameters estimated to maximize likelihood is

1The assumption of determinism is only inappropriate in
cases of inflectional spelling variants (e.g., modeled vs. mod-
elled) or pronunciation variants (e.g., reduced forms in certain
environments).

2прочий (pronounced [pr5tCij]) = other
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questionable from the perspective of Bayesian learn-
ing, it is tremendously beneficial for computational
reasons. For some applications (e.g., word align-
ment), the set of possible stems for a corpus S can be
precomputed, so we will also experiment with using
a uniform stem distribution based on this set.

2.4 Base Pattern Model G0
p

Several choices are possible for the base pattern dis-
tribution:

MP0 We can assume a uniformG0
p when the num-

ber of patterns is small.

MP1 To be able to generalize to new patterns, we
can draw the length of the pattern from a Poisson
distribution and generate morphemes one by one
from a uniform distribution.

MP2 A more informative prior is a Markov chain
of morphemes, where each morpheme is generated
conditional on the preceding morpheme.

The choice of the base pattern distribution could
depend on the complexity of the inflectional patterns
produced by the morphological analyzer, reflecting
the type of morphological phenomena present in a
given language. For example, the number of possi-
ble patterns can practically be considered finite in
Russian, but this assumption is not valid for lan-
guages with more extensive derivational morphol-
ogy like Turkish.

2.5 Posterior Inference

For most applications, rather than directly gener-
ating from a model using the processes outlined
above, we seek to infer posterior distributions over
latent parameters and structures, given a sample of
data.

Although there is no known analytic form of
the PYP density, it is possible to marginalize the
draws from it and to work directly with observa-
tions. This marginalization produces the classi-
cal Chinese restaurant process representation (Teh,
2006). When working with the morphology mod-
els we are proposing, we also need to marginalize
the different latent forms (stems s and patterns p)
that may have given rise to a given word w. Thus,
we require that the inverse relation of GENERATE is

available to compute the marginal base word distri-
bution:

p(w | G0
w) =

∑
GENERATE(s,p)=w

p(s | Gs) p(p | Gp)

Since our approach encodes morphology using
FSTs, which are invertible, this poses no problem.

To illustrate, consider the Russian word прочим,
which may be analyzed in several ways:

прочий +Adj +Sg +Neut +Instr
прочий +Adj +Sg +Masc +Instr
прочий +Adj +Pl +Dat

прочить +Verb +Pl +1P
прочее +Pro +Sg +Ins

Because the set of possible analyses is in general
small, marginalization is fast and complex blocked
sampling is not necessary.

Finally, to infer hyperparameter values (d, θ, . . .),
a Metropolis-Hastings update is interleaved with
Gibbs sampling steps for the rest of the hidden vari-
ables.3

Having described a model for generating words,
we now show its usage in several contexts.

3 Unsupervised Morphological
Disambiguation

Given a rule-based morphological analyzer encoded
as an unweighted FST and a corpus on which the
analyzer has been run – possibly generating multi-
ple analyses for each token – we can use our un-
igram model to learn a probabilistic model of dis-
ambiguation in an unsupervised setting (i.e., with-
out annotated examples). The corpus is assumed to
be generated from the unigram distribution Gw, and
the base stem model is set to a fixed character tri-
gram model.4 After learning the parameters of the
model, we can find for each word in the vocabulary
its most likely analysis and use this as a crude dis-
ambiguation step.

3The proposal distribution for Metropolis-Hastings is a Beta
distribution (d) or a Gamma distribution (θ+d) centered on the
previous parameter values.

4Experiments suggest that this is important to constrain the
model to realistic stems.
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3.1 Morphological Guessers

Finite-state morphological analyzers are usually
specified in three parts: a stem lexicon, which de-
fines the words in the language and classifies them
into several categories according to their grammat-
ical function and their morphological properties; a
set of prefixes and suffixes that can be applied to
each category to form surface words; and possibly
alternation rules that can encode exceptions and
spelling variations. The combination of these parts
provides a powerful framework for defining a gener-
ative model of words. Such models can be reversed
to obtain an analyzer. However, while the two latter
parts can be relatively easy to specify, enumerating
a comprehensive stem lexicon is a time consuming
and necessarily incomplete process, as some cate-
gories are truly open-class.

To allow unknown words to be analyzed, one
can use a guesser that attempts to analyze words
missing in the lexicon. Can we eliminate the stem
lexicon completely and use only the guesser? This
is what we try to do by designing a lexicon-free
analyzer for Russian. A guesser was developed
in three hours; it is prone to over-generation and
produces ambiguous analyses for most words
but covers a large number of morphological phe-
nomena (gender, case, tense, etc.). For example,
the word иврите5 can be correctly analyzed as
иврит+Noun+Masc+Prep+Sg but also as the in-
correct forms: иврить+Verb+Pres+2P+Pl,
иврита+Noun+Fem+Dat+Sg, иври-
тя+Noun+Fem+Prep+Sg, and more.

3.2 Disambiguation Experiments

We train the unigram model on a 1.7M-word cor-
pus of TED talks transcriptions translated into Rus-
sian (Cettolo et al., 2012) and evaluate our ana-
lyzer against a test set consisting of 1,500 gold-
standard analyses obtained from the morphology
disambiguation task of the DIALOG 2010 confer-
ence (Lyaševskaya et al., 2010).6

Each analysis is composed of a lemma (иврит),
a part of speech (Noun), and a sequence of ad-
ditional functional morphemes (Masc,Prep,Sg).
We consider only open-class categories: nouns, ad-

5иврите = Hebrew (masculine noun, prepositional case)
6http://ru-eval.ru

jectives, adverbs and verbs, and evaluate the output
of our model with three metrics: the lemma accu-
racy, the part-of-speech accuracy, and the morphol-
ogy F -measure.7

As a baseline, we consider picking a random anal-
ysis from output of the analyzer or choosing the
most frequent lemma and the most frequent morpho-
logical pattern.8 Then, we use our model with each
of the three versions of the pattern model described
in §2.2. Finally, as an upper bound, we use the gold
standard to select one of the analyses produced by
the guesser.

Since our evaluation is not directly comparable
to the standard for this task, we use for reference
a high-quality analyzer from Xerox9 disambiguated
with the MP0 model (all of the models have very
close accuracy in this case).

Model Lemma POS Morph.
Random 29.8 70.9 50.2
Frequency 31.1 74.4 48.8
Guesser MP0 60.0 82.2 66.3
Guesser MP1 58.9 82.5 69.5
Guesser MP2 59.9 82.4 65.5
Guesser oracle 68.4 84.9 83.0
Xerox MP0 83.6 96.4 78.1

Table 1: Russian morphological disambiguation.

Considering the amount of effort put in develop-
ing the guesser, the baseline POS tagging accuracy
is relatively good. However, the disambiguation is
largely improved by using our unigram model with
respect to all the evaluation categories. We are still
far from the performance of a high-quality analyzer
but, in absence of such a resource, our technique
might be a sensible option. We also note that there is
no clear winner in terms of pattern model, and con-
clude that this choice is task-specific.

7F -measure computed for the set of additional morphemes
and averaged over the words in the corpus.

8We estimate these frequencies by assuming each analysis of
each token is uniformly likely, then summing fractional counts.

9http://open.xerox.com/Services/
fst-nlp-tools/Pages/morphology
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4 Open Vocabulary Language Models

We now integrate our unigram model in a hierar-
chical Pitman-Yor n-gram language model (Fig. 1).
The training corpus words are assumed to be
generated from a distribution Gn

w drawn from
PY(dn, θn, G

n−1
w ), where Gn−1

w is defined recur-
sively down to the base model G0

w. Previous work
Teh (2006) simply used G0

w = U(V ) where V is
the word vocabulary, but in our case G0

w is the MP
defined in §2.2.

G2
wG3

w G1
w

d3, ✓3 d2, ✓2 d1, ✓1

Gs

ds, ✓s

Gp G0
p

dp, ✓p

G0
sw

Figure 1: The trigram version of our language model rep-
resented as a graphical model. G1

w is the unigram model
of §2.2.

We are interested in evaluating our model in an
open vocabulary scenario where the ability to ex-
plain new unseen words matters. We expect our
model to be able to generalize better thanks to the
combination of a morphological analyzer and a stem
distribution which is less sparse than the word dis-
tribution (for example, for the 1.6M word Turkish
corpus, |V | ≈ 3.5|S| ≈ 140k).

To integrate out-of-vocabulary words in our eval-
uation, we use infinite base distributions: G0

w (in the
baseline model) or G0

s (in the MP) are character tri-
gram models. We define perplexity of a held-out test
corpus in the standard way:

ppl = exp

(
− 1

N

N∑
i=1

log p (wi | wi−n+1 · · ·wi−1)

)

but compared to the common practice, we do not
need to discount OOVs from this sum since the
model vocabulary is infinite. Note that we also
marginalize by summing over all the possible analy-
ses for a given word when computing its base prob-
ability according to the MP.

4.1 Language Modeling Experiments

We train several trigram models on the Russian TED
talks corpus used in the previous section. Our base-
line is a hierarchical PY trigram model with a tri-
gram character model as the base word distribution.
We compare it with our model using the same char-
acter model for the base stem distribution. Both of
the morphological analyzers described in the previ-
ous section help obtaining perplexity reductions (Ta-
ble 2). We ran a similar experiment on the Turkish
version of this corpus (1.6M words) with a high-
quality analyzer (Oflazer, 1994) and obtain even
larger gains (Table 3).

Model ppl
PY-character LM 563
Guesser MP2 530
Xerox MP2 522

Table 2: Evaluation of the Russian n-gram model.

Model ppl
PY-character LM 1,640
Oflazer MP2 1,292

Table 3: Evaluation of the Turkish n-gram model.

These results can partly be attributed to the high
OOV rate in these conditions: 4% for the Russian
corpus and 6% for the Turkish corpus.

4.2 Predictive Text Input

It is difficult to know whether a decrease in perplex-
ity, as measured in the previous section, will result in
a performance improvement in downstream applica-
tions. As a confirmation that correctly modeling new
words matters, we consider a predictive task with a
truly open vocabulary and that requires only a lan-
guage model: predictive text input.

Given some text, we encode it using a lossy de-
terministic character mapping, and try to recover the
original content by computing the most likely word
sequence. This task is inspired by predictive text
input systems available on cellphones with a 9-key
keypad. For example, the string gave me a cup
is encoded as 4283 63 2 287, which could also
be decoded as: hate of a bus.
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Silfverberg et al. (2012) describe a system de-
signed for this task in Finnish, which is composed
of a weighted finite-state morphological analyzer
trained on IRC logs. However, their system is re-
stricted to words that are encoded in the analyzer’s
lexicon and does not use context for disambiguation.

In our experiments, we use the same Turkish TED
talks corpus as the previous section. As a baseline,
we use a trigram character language model. We pro-
duce a character lattice which encodes all the pos-
sible interpretations for a word and compose it with
a finite-state representation of the character LM us-
ing OpenFST (Allauzen et al., 2007). Alternatively,
we can use a unigram word model to decode this lat-
tice, backing off to the character language model if
no solution is found. Finally, to be able to make use
of word context, we can extract the k most likely
paths according to the character LM and produce a
word lattice, which is in turn decoded with a lan-
guage model defined over the extracted vocabulary.

Model WER CER
Character LM 48.37 16.72
1-gram + character LM 8.50 3.28
1-gram MP2 6.46 2.37
3-gram + character LM 7.86 3.07
3-gram MP2 5.73 2.15

Table 4: Evaluation of Turkish predictive text input.

We measure word and character error rate (WER,
CER) on the predicted word sequence and observe
large improvements in both of these metrics by mod-
eling morphology, both at the unigram level and
when context is used (Table 4).

Preliminary experiments with a corpus of 1.6M
Turkish tweets, an arguably more appropriate do-
main this task, show smaller but consistent improv-
ing: the trigram word error rate is reduced from 26%
to 24% when our model is used.

4.3 Limitations

While our model is an important step forward in
practical modeling of OOVs using morphological
processes, we have made the linguistically naive as-
sumption that morphology applies inside the lan-
guage’s lexicon but has no effect on the process that
put inflected lexemes together into sentences. In this

regard, our model is a minor variant on traditional n-
gram models that work with “opaque” word forms.
How to best relax this assumption in a computation-
ally tractable way is an important open question left
for future work.

5 Word Alignment Model

Monolingual models of language are not the only
models that can benefit from taking into account
morphology. In fact, alignment models are a good
candidate for using richer word distributions: they
assume a target word distribution conditioned on
each source word. When the target language is mor-
phologically rich, classic independence assumptions
produce very weak models unless some kind of pre-
processing is applied to one side of the corpus. An
alternative is to use our unigram model as a word
translation distribution for each source word in the
corpus.

Our alignment model is based on a simple variant
of IBM Model 2 where the alignment distribution is
only controlled by two parameters, λ and p0 (Dyer et
al., 2013). p0 is the probability of the null alignment.
For a source sentence f of length n, a target sentence
e of lengthm and a latent alignment a, we define the
following alignment link probabilities (j 6= 0):

p(ai = j | n,m) ∝ (1− p0) exp

(
−λ
∣∣∣∣ im − j

n

∣∣∣∣)
λ controls the flatness of this distribution: larger val-
ues make the probabilities more peaked around the
diagonal of the alignment matrix.

Each target word is then generated given a source
word and a latent alignment link from the word
translation distribution p(ei | fai , Gw). Note that
this is effectively a unigram distribution over tar-
get words, albeit conditioned on the source word
fj . Here is where our model differs from classic
alignment models: the unigram distribution Gw is
assumed be generated from a PY process. There are
two choices for the base word distribution:

• As a baseline, we use a uniform base distribu-
tion over the target vocabulary: G0

w = U(V ).

• We define a stem distribution Gs[f ] for each
source word f , a shared pattern distributionGp,
and set G0

w[f ] = MP(Gs[f ], Gp). In this case,
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we obtain the model depicted in Fig. 2. The
stem and the pattern models are also given PY
priors with uniform base distribution (G0

s =
U(S)).

Finally, we put uninformative priors on the align-
ment distribution parameters: p0 ∼ Beta(α, β) is
collapsed and λ ∼ Gamma(k, θ) is inferred using
Metropolis-Hastings.

f e

a

p0�

Gw

dw, ✓w

Gp

G0
sGs

G0
p

dp, ✓p

↵, �

ds, ✓s

Figure 2: Our alignment model, represented as a graphi-
cal model.

Experiments
We evaluate the alignment error rate of our models
for two language pairs with rich morphology on the
target side. We compare to alignments inferred us-
ing IBM Model 4 trained with EM (Brown et al.,
1993),10 a version of our baseline model (described
above) without PY priors (learned using EM), and
the PY-based baseline. We consider two language
pairs.

English-Turkish We use a 2.8M word cleaned
version of the South-East European Times corpus
(Tyers and Alperen, 2010) and gold-standard align-
ments from Çakmak et al. (2012). Our morphologi-
cal analyzer is identical to the one used in the previ-
ous sections.

English-Czech We use the 1.3M word News
Commentary corpus and gold-standard alignments

10We use the default GIZA++ stage training scheme:
Model 1 + HMM + Model 3 + Model 4.

from Bojar and Prokopová (2006). The morpholog-
ical analyzer is provided by Xerox.

Results Results are shown in Table 5. Our lightly
parameterized model performs much better than
IBM Model 4 in these small-data conditions. With
an identical model, we find PY priors outperform
traditional multinomial distributions. Adding mor-
phology further reduced the alignment error rate, for
both languages.

AER
Model en-tr en-cs
Model 4 52.1 34.5
EM 43.8 28.9
PY-U(V ) 39.2 25.7
PY-U(S) 33.8 24.8

Table 5: Word alignment experiments on English-Turkish
(en-tr) and English-Czech (en-cs) data.

As an example of how our model generalizes bet-
ter, consider the sentence pair in Fig. 3, taken from
the evaluation data. The two words composing the
Turkish sentence are not found elsewhere in the cor-
pus, but several related inflections occur.11 It is
therefore trivial for the stem-base model to find the
correct alignment (marked in black), while all the
other models have no evidence for it and choose an
arbitrary alignment (gray points).

I wa
s

no
t

ab
le

to fi
ni
sh

my ho
me
wo
rk

ödevimi
bitiremedim

Figure 3: A complex Turkish-English word alignment
(alignment points in gray: EM/PY-U(V ); black: PY-
U(S)).

6 Related Work

Computational morphology has received consider-
able attention in NLP since the early work on two-
level morphology (Koskenniemi, 1984; Kaplan and

11ödevinin, ödevini, ödevleri; bitmez, bitirileceğinden,
bitmesiyle, ...
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Kay, 1994). It is now widely accepted that finite-
state transducers have sufficient power to express
nearly all morphological phenomena, and the XFST
toolkit (Beesley and Karttunen, 2003) has con-
tributed to the practical adoption of this modeling
approach. Recently, open-source tools have been re-
leased: in this paper, we used Foma (Hulden, 2009)
to develop the Russian guesser.

Since some inflected forms have several possible
analyses, there has been a great deal of work on se-
lecting the intended one in context (Hakkani-Tür et
al., 2000; Hajič et al., 2001; Habash and Rambow,
2005; Smith et al., 2005; Habash et al., 2009). Our
disambiguation model is closely related to genera-
tive models used for this purpose (Hakkani-Tür et
al., 2000).

Rule-based analysis is not the only approach
to modeling morphology, and many unsupervised
models have been proposed.12 Heuristic segmenta-
tion approaches based on the minimum description
length principle (Goldsmith, 2001; Creutz and La-
gus, 2007; de Marcken, 1996; Brent et al., 1995)
have been shown to be effective, and Bayesian
model-based versions have been proposed as well
(Goldwater et al., 2011; Snyder and Barzilay, 2008;
Snover and Brent, 2001). In §3, we suggested a third
way between rule-based approaches and fully un-
supervised learning that combines the best of both
worlds.

Morphological analysis or segmentation is crucial
to the performance of several applications: machine
translation (Goldwater and McClosky, 2005; Al-
Haj and Lavie, 2010; Oflazer and El-Kahlout, 2007;
Minkov et al., 2007; Habash and Sadat, 2006, in-
ter alia), automatic speech recognition (Creutz et al.,
2007), and syntactic parsing (Tsarfaty et al., 2010).
Several methods have been proposed to integrate
morphology into n-gram language models, includ-
ing factored language models (Bilmes and Kirch-
hoff, 2003), discriminative language modeling (Arı-
soy et al., 2008), and more heuristic approaches
(Monz, 2011).

Despite the fundamentally open nature of the lex-
icon (Heaps, 1978), there has been distressingly lit-

12Developing a high-coverage analyzer can be a time-
consuming process even with the simplicity of modern toolkits,
and unsupervised morphology learning is an attractive problem
for computational cognitive science.

tle attention to the general problem of open vocabu-
lary language modeling problem (most applications
make a closed-vocabulary assumption). The classic
exploration of open vocabulary language modeling
is Brown et al. (1992), which proposed the strategy
of interpolating between word- and character-based
models. Character-based language models are re-
viewed by Carpenter (2005). So-called hybrid mod-
els that model both words and sublexical units have
become popular in speech recognition (Shaik et al.,
2012; Parada et al., 2011; Bazzi, 2002). Open-
vocabulary language language modeling has also re-
cently been explored in the context of assistive tech-
nologies (Roark, 2009).

Finally, Pitman-Yor processes (PYPs) have be-
come widespread in natural language processing
since they are natural power-law generators. It has
been shown that the widely used modified Kneser-
Ney estimator (Chen and Goodman, 1998) for n-
gram language models is an approximation of the
posterior predictive distribution of a language model
with hierarchical PYP priors (Goldwater et al., 2011;
Teh, 2006).

7 Conclusion

We described a generative model which makes use
of morphological analyzers to produce richer word
distributions through sharing of statistical strength
between stems. We have shown how it can be in-
tegrated into several models central to NLP appli-
cations and have empirically validated the effective-
ness of these changes. Although this paper mostly
focused on languages that are well studied and for
which high-quality analyzers are available, our mod-
els are especially relevant in low-resource scenarios
because they do not require disambiguated analyses.
In future work, we plan to apply these techniques to
languages such as Kinyarwanda, a resource-poor but
morphologically rich language spoken in Rwanda.
It is our belief that knowledge-rich models can help
bridge the gap between low- and high-resource lan-
guages.
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A. Koroleva, M. Kudrinskij, A. Lityagina, Y. Lučina,
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