
Proceedings of NAACL-HLT 2013, pages 1185–1195,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Supervised Learning of Complete Morphological Paradigms

Greg Durrett∗
Computer Science Division

University of California, Berkeley
gdurrett@cs.berkeley.edu

John DeNero
Google, Inc.

denero@google.com

Abstract

We describe a supervised approach to predict-
ing the set of all inflected forms of a lexical
item. Our system automatically acquires the
orthographic transformation rules of morpho-
logical paradigms from labeled examples, and
then learns the contexts in which those trans-
formations apply using a discriminative se-
quence model. Because our approach is com-
pletely data-driven and the model is trained
on examples extracted from Wiktionary, our
method can extend to new languages without
change. Our end-to-end system is able to pre-
dict complete paradigms with 86.1% accuracy
and individual inflected forms with 94.9% ac-
curacy, averaged across three languages and
two parts of speech.

1 Introduction

For natural languages with rich morphology, knowl-
edge of how to inflect base forms is critical for both
text generation and analysis. Hand-engineered, rule-
based methods for predicting inflections can offer
extremely high accuracy, but they are laborious to
construct and do not exist with full lexical cover-
age in all languages. By contrast, a large number
of example inflections are freely available in a semi-
structured format on the Web. The English Wik-
tionary1 is a crowd-sourced lexical resource that in-
cludes complete inflection tables for many lexical
items in many languages. We present a supervised

∗Research conducted during an internship at Google.
1http://en.wiktionary.org

system that, given only data from Wiktionary, au-
tomatically discovers and learns to apply the ortho-
graphic transformations governing a language’s in-
flectional morphology.2

Our data-driven approach is designed to extend to
any language for which we have a substantial num-
ber of example inflection tables. The design of our
model is guided by three structural assumptions:

1. The inflections of many lexical items are
governed by a few repeated morphological
paradigms.

2. A morphological paradigm can be decom-
posed into independent orthographic transfor-
mation rules (including prefix, suffix, and stem
changes), which are triggered by orthographic
context.

3. A base form is transformed in consistent, cor-
related ways to produce its inflected variants.

Learning proceeds in two stages that both utilize
the same training set of labeled inflection tables.
First, an inventory of interpretable transformation
rules is generated by aligning each base form to all
of its inflected forms. Second, a semi-Markov con-
ditional random field (CRF) (Sarawagi and Cohen,
2004) is trained to apply these rules correctly to un-
seen base forms. As we demonstrate experimentally,
the CRF is most effective when jointly predicting all
inflected forms of a lexical item together, forcing the
system to adopt a single consistent analysis of each
base form.

2See http://eecs.berkeley.edu/~gdurrett for
our datasets and code.
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Previous work has also described supervised and
semi-supervised approaches to predicting inflec-
tional morphology (Yarowsky and Wicentowski,
2000; Wicentowski, 2004; Dreyer and Eisner, 2011).
Our approach differs primarily in its use of auto-
matically extracted morphological rules and our dis-
criminative prediction method which jointly mod-
els entire inflection tables. These modeling choices
are directly inspired by the data setting: Wiktionary
contains complete inflection tables for many lexical
items in each of a large number of languages, so it
is natural to make full use of this information with a
joint model of all inflected forms.

We evaluate our predictions on held-out Wik-
tionary inflection tables for three languages and two
parts of speech. Our language-independent method
predicts inflections for unseen base forms with ac-
curacies ranging from 88.9% (German nouns) to
99.7% (Spanish verbs). For comparability with pre-
vious work, we also evaluate our approach on Ger-
man verb forms in the CELEX lexical database
(Baayen et al., 1995). Our approach outperforms
the semi-supervised hierarchical Bayesian model of
Dreyer and Eisner (2011), while employing scal-
able exact inference and interpretable transforma-
tion rules.

2 Background: Inflectional Morphology

Among the valid words W and parts of speech P
in a language, the base forms B ⊂ W × P are the
canonical forms of the language’s lexical items. A
base form relates to an inflected form via an inflec-
tional relation (b, w, a), where b ∈ B is a base form,
w ∈ W is the inflected form, and a is a vector of
morphological attributes. An inflection table T (b) is
the set of all such relations for a base form b.

Two partial inflection tables are shown in Table 1,
for the base forms (infinitives) of the German verbs
machen and schleichen, containing such inflec-
tional relations as (machen, mache, [1P,PRES,SING])
and (machen, gemacht, [PAST PART.]). Only a
small sample of the valid attribute combinations are
shown; a full inflection table for a German verb in
our Wiktionary dataset contains 27 relations.

The goal of this paper is to learn how to map b
to T (b). We generate candidate inflection tables by
applying compact, interpretable orthographic trans-

INFINITIVE machen schleichen
1P,PRES,SING mache schleiche
2P,PRES,SING machst schleichst
3P,PRES,SING macht schleicht

PAST PART. gemacht geschlichen
... ... ...

Table 1: Two partial inflection tables for the German
verbs machen (to make) and schleichen (to crawl).

formation rules that have been extracted from ex-
ample tables. As an example of our rule applica-
tion process, to inflect machen appropriately in the
forms listed in Table 1, one could apply the follow-
ing rules:

1. Replace a suffix -en with -e for first person, -st
for second person, -t for third person, and -t for
the past participle.

2. Add a prefix ge- for the past participle.

To inflect schleichen, one could apply a larger set of
three rules:

1. Replace a suffix -en with -e for first person, -st
for second person, -t for third person, and -en
for the past participle.

2. Add a prefix ge- for the past participle.

3. Delete the first e for the past participle.

The inflection tables of other German verbs can be
generated using precisely the same rules above, and
different inflection patterns may share rules, such as
the repeated rule 2. This example illustrates one of
our chief assumptions, that the inflections of many
base forms can be modeled with a small number of
such rules, applied in various combinations.

3 Learning Transformation Rules

From a training set of inflection tables
{T (b1), ..., T (bn)}, our system learns a set of
orthographic transformation rules. A rule is a func-
tion R : s, a→ s′ that takes as input a substring s of
a base form and an attribute vector a and outputs a
replacement substring s′. The suffix transformation
from Section 2 for machen can be described using a
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Algorithm 1 Learning rules from examples.
Input: n training instances T (b1), . . . , T (bn)
Rule setR ← {}
for i← 1 to n do

Changed source spans C ← {}
for all a ∈ A do
Ca ← PROJECTSPANS(ALIGN(bi, Ta(bi)))
C ← UNIONSPANS(C,Ca)

end for
for all c ∈ C do
R ← R∪ {EXTRACTRULE(c)}

end for
end for
return R

rule with four entries:

R(en, [1P,PRES,SING]) = e

R(en, [2P,PRES,SING]) = st

R(en, [3P,PRES,SING]) = t

R(en, [PAST PART.]) = t

Our method for learning rules from examples is
described in Algorithm 1 and depicted in Figure 1.
We extract rules from each observed inflection table
T (bi) independently, and the final set of rules is sim-
ply the union of the sets of rules learned from each
example. The procedure for a single inflection table
has three steps:

Alignment: Align each inflected form to the base
form with an iterated edit-distance algorithm.

Span Merging: Extract the set of spans of the
base form that changed to produce the inflected
form, and take their union across all attribute vec-
tors to identify maximal changed spans.

Rule Extraction: Extract a rule for each maxi-
mal changed span.

Alignment. For each setting of attributes a, we
find the lowest-cost transformation of the base form
b into the corresponding inflected form Ta(b) using
single-character insertions, deletions, and substitu-
tions. This minimum edit distance calculation is
computed via the following recurrence, where i is
an index into the base form b and j is an index into
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s c h l e i c h e

s c h l     i c h

g e s c h l     i c h e n
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Figure 1: Demonstration of the rule extraction algorithm
with the base form schleichen and three inflected forms:
schleiche (first person singular present), schlich (first per-
son singular past), and geschlichen (past participle). We
ideally want to extract appropriate transformation rules
like those described in Section 2. In the alignment step,
we minimize the edit distance between each inflected
form and the base form to identify changed spans. In
the span merging step, we project changes onto the base
form and take the union of adjacent or overlapping spans.
In the rule extraction step, we project these spans back
onto the inflected forms to identify transformation rules.

an inflected form Ta(b):

L(i, j) = min{L(i, j − 1) + I,

L(i− 1, j) +D,

L(i− 1, j − 1) + S(i, j)}

I , D, and S are insertion, deletion, and substi-
tion costs, respectively. Tracing the computation of
L(len(b), len(Ta(b))) yields an optimal sequence of
edit operations. The alignments output by this pro-
cedure are depicted in the first panel of Figure 1.

The most typical cost scheme sets I = 1, D = 1,
and S(i, j) = (1 − I[match(i, j)]), i.e. 0 if the ith
character of b is the same as the jth character of
Ta(b), and 1 otherwise. However, this cost scheme
did not yield intuitive alignments for some of our
training instances. For example, in the case of the
verb denken aligning to its past participle gedacht,
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the initial d and g will be aligned and the follow-
ing e’s will be aligned, preventing the algorithm
from recognizing the addition of the prefix ge-. To
solve this problem, we use a dynamic edit distance
cost scheme in which I , D, and unmatched substi-
tutions all have a cost of 0. Matched substitutions
have a negative cost −ci, where i is the index in the
base form and ci is the number of other inflected
forms for which i is aligned to a matching char-
acter. The inflected forms are iteratively realigned
with the base form until the ci converge (Eisner,
2002; Oncina and Sebban, 2006). This cost scheme
encourages a single consistent analysis of the base
form as it aligns to all of its inflected forms.

Span Merging. From each aligned pair of words,
the PROJECTSPANS procedure identifies sequences
of character edit operations with contiguous spans of
the base form. We construct a set of changed spans
Ca of b as follows: include the span (i, j) if and
only if no characters between i and j were aligned
to matching characters in Ta(b) and no smaller span
captures the same set of changes. Projected spans
for the inflected forms of schleichen are shown in
the “Span Merging” panel of Figure 1.

The UNIONSPANS procedure combines two sets
of spans by iteratively merging any two spans that
are overlapping or adjacent. Repeating this proce-
dure to accumulate spans for each setting of a yields
the set C of maximal changed spans for a base form.
Any span inC is bordered either by word boundaries
or by characters that are match-aligned in every in-
flected form, meaning that we have isolated a region
characterized by a particular orthographic transfor-
mation.

Rule Extraction. The final step of Algorithm 1
extracts one rule for each maximal changed span of
the base form. The Rule Extraction panel of Figure 1
depicts how maximal changed spans in the base
form correspond to transformation rules. Because
UNIONSPANS guarantees that match-aligned char-
acters border each maximal changed span, there is
no ambiguity about the segmentation of transforma-
tions. The EXTRACTRULE procedure produces one
rule R(s, a) corresponding to each changed span.

Table 2 contains examples of the transformation
rules we extract from German verbs. The extracted

Attributes Suffix Stem Pre.
INFINITIVE en en en n e

1P,PRES,SING e e e e e
1P,PAST,SING te te te
2P,PRES,SING st t st st e
2P,PAST,SING test test st test
3P,PRES,SING t t t t e
3P,PAST,SING te te te

PAST PART. t t en t ge
... ... ... ... ... ... ...

Label Rsuf,1 Rsuf,2 Rsuf,3 Rsuf,4 Rst,1 Rpre,1

Table 2: Each column is an example of a morphological
transformation rule extracted by our approach. The first
four are suffix changes; these apply to, in order, regular
verbs such as machen, verbs ending in -zen or -sen such as
setzen, verbs such as schleichen and beheben, and verbs
ending in -ern or -eln such as sprenkeln. The stem change
occurs in strong verbs of the first class such as schleichen,
greifen, and streiten. Finally, we learn that ge- can be
added as a prefix to indicate the past participle.

rules are interpretable descriptions of common in-
flection patterns.

4 Applying Transformation Rules

For a novel base form b, the inventory of learned
transformation rules R = {R(s, a)} can typically
generate many candidate inflection tables T (b) for
us to choose between. A rule can potentially apply
to a base form in a number of places; we define an
anchored rule A = (R, i, j, b) to be the application
of R to a span (i, j) in b. A is only a valid anchoring
if the substring of b between i and j matches the
input of rule R.

Given a set A of non-overlapping anchored rules
for b, each entry of T (b) can be deterministically
produced by rewriting each anchored rule’s span
(i, j) using the ruleR. Therefore, the task of predict-
ing T (b) is equivalent to selecting a coherent subset
A of anchored rules from the set of all possible an-
chored rules for this base form. By coherent, we
mean that the selected rules are anchored to non-
overlapping, non-adjacent3 spans of b. Figure 2a
shows two coherent anchored rule subsets for schle-
ichen (the top one being correct). Underlining indi-

3During rule extraction, any adjacent changed spans are
merged into a single rule. Disallowing adjacent spans here
therefore prevents us from synthesizing new rules.
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cates length-one spans S = (i, i + 1, b) that are not
part of any anchored rule in A. We denote the set of
such spans by S(A); this set is uniquely defined for
the given base form by the selected anchored rules.

We use a log-linear model to place a conditional
distribution over valid anchored rule subsetsA given
the base form b:

pw(A|b) ∝ expwT

∑
A∈A

φ(A) +
∑

S∈S(A)

ψ(S)


where w is a weight vector, φ(A) computes a fea-
ture vector for anchored rule A, and ψ(S) computes
a feature vector for preserved spans S. We train
this model to maximize the regularized conditional
log-likelihood of the training data, which consists of
base forms bi and gold subsets of anchored rulesA∗i
derived using Algorithm 1 on the gold inflection ta-
bles.

L(w) =
n∑

i=1

log p(A∗i |bi) +
γ

2
‖w‖2.

We find w∗ = arg maxw L(w) using L-BFGS (Liu
and Nocedal, 1989), which requires computing ∂L

∂w .
This gradient takes the standard form of the differ-
ence between gold feature counts and expected fea-
ture counts under the model:

∂L

∂w
=

n∑
i=1

 ∑
A∈A∗i

φ(A) +
∑

S∈S(A∗i )

ψ(S)

 −
 ∑

A∈A(R,b)

Epwφ(A) +
∑

S∈S(b)

Epwψ(S)

− γw
where, by a slight abuse of notation, S(b) is the set
of all length-one spans of b.

In general, the normalizer of pw and the expec-
tation over pw cannot be computed directly, since
there may be exponentially many coherent subsets
of anchored rules. However, we note that A and
its corresponding S(A) form a segmentation of the
base form b, with features decomposing over indi-
vidual segments. Our model can therefore be viewed
a semi-Markov model over b (Sarawagi and Co-
hen, 2004); more precisely, a zeroth-order semi-
Markov model, since we do not include features on
state transitions. At training time, we can use the

s c h l e i c h e n
s c h l e i c h e n

a) b)

s c h l e i c h e n
Rpre,1

Rst,1

Rst,1

Rpre,1

Rst,1:l[e]

Rst,1:[e]i

Rsuf,3

S:c[h]

S:[h]e

�

�

 

 

Figure 2: a) Two possible anchored rule sets for schle-
ichen. The indicated rules are prefix, stem, and suffix
rules as found in Table 2. The top anchoring is correct,
while the bottom misplaces the stem change and does not
include a suffix change. Underlined letters indicate pre-
served spans S. b) Bigram context features computed by
φ(Rst,1), where the stem change is applied to the high-
lighted e, and similar features computed by ψ(S) for the
underlined h, which is unchanged by the applied rules.

forward-backward algorithm for semi-Markov mod-
els to compute the gradient of pw, and at test time,
the Viterbi algorithm can exactly find the best rule
subset under the model: Â = arg maxA pw(A|b).

Features. The feature function φ captures contex-
tual information in the base form surrounding the
site of the anchored rule application. It is well under-
stood that different morphological rules may require
examining different amounts of context to apply cor-
rectly (Kohonen, 1986; Torkkola, 1993; Shalonova
and Golénia, 2010); to this end, we will use local
character n-gram features, which have been success-
fully applied to related problems (Jiampojamarn et
al., 2008; Dinu et al., 2012).

A sketch of our feature computation scheme is
shown in Figure 2b. Our basic feature template is
an indicator on a character n-gram with some off-
set from the rule application site, conjoined with the
identity of the rule R being applied. Our features
look at variable amounts of context: we include fea-
tures on unigrams through 4-grams, starting up to
five letters behind the anchored rule span and end-
ing up to five letters past the anchored rule span.
These features can model most hand-coded morpho-
logical rules, but are in many cases more numerous
than necessary. However, we find that regularization
is effective at balancing high model capacity with
generalization, and reducing the size of the feature
set empirically harms overall accuracy.

We also employ factored features that only look at
predictions over particular inflected forms; these are
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coarser features that are shared between two rules
when they predict the same orthographic change for
a particular setting of attributes. These features are
indicators onRa (the restriction ofR to attributes a),
the context n-gram, and its offset from the span.

The feature function ψ is almost identical to φ,
but instead of indicating a rule appearing in some
context, it instead indicates that a particular length-
one span is being preserved in its n-gram context.
Examples of ψ features are shown in Figure 2b.

Pruning. Thus far, the only requirement on an an-
choring A is that the source side of its rule R must
match the span it is anchored to in the base form
b. We further filter the set of possible A as follows:
if every occurrence of R in the training set is pre-
ceded by the same character (including a start-of-
word character) or followed by the same character
(including an end-of-word character), any anchoring
A must be preceded or followed accordingly. This
stipulation is most useful in restricting prefixing or
suffixing insertions, which have an empty source
side, to apply only at the beginnings or ends of base
forms (rather than at arbitrary points throughout). In
doing so, we prune out many erroneous anchored
rules and speed up inference substantially without
prohibiting correct rule applications.

5 Wiktionary Morphology Data

Our primary source of supervised inflection table
data is English Wiktionary. The collective editors
of English Wiktionary have created complete, con-
sistent inflection tables for many lexical items in
many languages. Previous work has successfully
parsed other information from Wiktionary, such as
parts of speech, glosses, and etymology (Zesch et
al., 2008; Li et al., 2012); however, to our knowl-
edge, inflection tables have not previously been ex-
tracted in a format easily amenable to natural lan-
guage processing applications. These inflection ta-
bles are challenging to extract because the layout of
tables varies substantially by language (beyond the
expected changes due to differing sets of relevant
morphological attributes), and some tables contain
annotations in addition to word forms.

In order to extract this data, we built a Wiktionary
scraper which generates fully structured output by
interpreting the templates that generate the rendered

Lang/POS Base forms Infl. forms per base
DE-NOUNS 2764 8
DE-VERBS 2027 27
ES-VERBS 4055 57
FI-NOUNS 40589 28
FI-VERBS 7249 53

Table 3: Number of full morphology tables extracted
from Wiktionary for each language and part of speech
pair that we considered, as well as the number of inflected
forms associated with each base form.

inflection tables. Table 3 gives statistics for the num-
ber of base forms and inflected forms extracted from
Wikitionary. When multiple forms were listed in an
inflection table for the same base form and attribute
vector, we selected the first in linear order; applying
the same principle, we also kept only the first inflec-
tion table when more than one was listed for a given
base form. Furthermore, base forms and inflected
forms separated by spaces, hyphens, or colons were
discarded. As a result, we discarded German verb-
preposition compounds such as ablehnen4 and Span-
ish reflexives such as lavarse.

6 Experiments

We evaluate our model under two experimental con-
ditions. First, we use the German verb lexicon in
the CELEX lexical database (Baayen et al., 1995)
with the same train/test splits as Dreyer and Eisner
(2011). Second, we train on our Wiktionary data de-
scribed in Section 5 and evaluate on held-out forms
from this same dataset.

In each case, we evaluate two variants of our
model in order to examine the importance of jointly
modeling the production of the entire inflection ta-
ble. Our JOINT model is exactly as defined in Sec-
tion 4. For our FACTORED model, the dictionary of
rules is extracted separately for each setting of the
attributes a; i.e., we run the entire procedure in Sec-
tion 3 with only one inflected form at a time and
forego the UNIONSPANS step. A separate predic-
tion model is trained for each a and so features are
not shared across multiple predictions as they are in
the JOINT case. Note that this FACTORED approach

4This class of verbs was also ignored by Dreyer and Eisner
(2011).
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No. of training examples
50 100 200

NAÏVE 87.61 87.70 87.70
FACTORED 89.61 91.40 92.64

JOINT 90.47 92.31 93.18
DE11 89.9 91.5

DE11+CORPUS 90.9 92.2
ORACLE 95.47 96.09 96.77

Table 4: Accuracies on reconstructing individual in-
flected forms in CELEX, averaged over the 5415 inflec-
tion tables in each of 10 test sets. Three training set
sizes are reported. DE11 indicates a reported result from
Dreyer and Eisner (2011), with blank results unreported
in that work. Our FACTORED model is able to do approx-
imately as well as the DE11 baseline method, and our
JOINT model performs better yet, performing compara-
bly to DE11+CORPUS, which uses additional monolin-
gual text. All models substantially outperform the NAÏVE
suffixing baseline. The relatively low ORACLE accuracy
indicates that some errors arise from failing to apply rules
that are not attested in these small training sets.

can produce inflection tables that the JOINT model
cannot, due to its ability to “mix and match” ortho-
graphic changes in the same inflection table.

We also evaluate a NAÏVE method for applying
the joint rules which selects the most common suffix
rule available after pruning.5 Finally, we report the
ORACLE accuracy attainable with the morphologi-
cal rule dictionary of the JOINT model.

For our conditional likelihood objective, we use
γ = 0.0002; this parameter and the feature set were
tuned on a small development set and held fixed for
all experiments.

6.1 CELEX Experiments

Dreyer and Eisner (2011) construct ten train/test
splits of the 5615 German verb forms in the CELEX
lexical database, keeping 200 forms for training in
each case, which they further subsample. These ran-
dom splits serve to control for instability due to the
small training set sizes. Each infinitive verb form
has 22 corresponding inflected forms capturing vari-
ation such as person, number, mood, and tense.

5For example, for German verbs ending in -en, this applies
the most regular -en suffix change, that exhibited by machen
and many other verbs.

Table 4 shows our results compared to those of
Dreyer and Eisner (2011). The FACTORED model
performs on par with the DE11 baseline model, but
the stronger performance of the JOINT model in-
dicates that making joint predictions is important.
With 100 training examples, our model is able to
equal the performance of DE11+CORPUS, which
additionally uses ten million tokens of monolingual
German text.

We emphasize that this is not the data condition
for which our model was designed. It is unfavor-
able for two reasons: first, feature-rich models can
be learned more stably on larger training sets, and
second, the train/test splits are chosen randomly, and
therefore the test sets may contain completely irreg-
ular verbs using morphological rules that we have
never observed. As can be seen from the ORA-
CLE results in Table 4, a substantial fraction of the
missed test examples cannot be produced using our
extracted rules simply because we have not seen the
relevant examples; in many cases, even a human
could not generalize correctly from the given ex-
amples without exploiting external knowledge of the
German language.

6.2 Held-Out Wiktionary Data
Our algorithm was designed with the fundamental
assumption that the training set should be a com-
prehensive description of the morphology of a given
language, which is not true for the CELEX data. In
order to evaluate on a broader set of languages under
these training conditions, we turn to our Wiktionary
data. For each language and part of speech, we train
on all but 400 inflection tables, holding back 200 ex-
amples as a development set and 200 examples as a
blind test set.6 The forms selected for the develop-
ment and test data were purposely chosen not to be
among the 200 most frequently occurring forms in
the language, since these common cases can be eas-
ily memorized from Wiktionary.

Results are shown in Table 5. As with the CELEX
results, we see that the joint prediction improves ac-
curacy over the factored model, obtaining a 9% er-
ror reduction on individual forms and a 35% error
reduction on exact match. The more pronounced

6For Finnish nouns, because there were so many inflection
tables, we trained only on the first 6000 examples. Using more
examples did not significantly change performance.
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Exact table match Individual form accuracy
Lang/POS NAÏVE FACT. JOINT ORACLE NAÏVE FACT. JOINT ORACLE

DE-VERBS 42.0 74.5 85.0 99.5 89.13 94.76 96.19 99.98
DE-NOUNS 12.0 74.0 79.5 98.5 49.06 88.31 88.94 99.25
ES-VERBS 81.5 93.5 95.0 99.5 97.20 99.61 99.67 99.99
FI-VERBS 33.5 82.0 87.5 99.5 75.32 97.23 96.43 99.86
FI-NOUNS 31.0 69.0 83.5 100.0 61.23 92.14 93.41 100.00

AVG 40.0 78.6 86.1 99.4 74.39 94.41 94.93 99.81

Table 5: Accuracies on reconstructing complete inflection tables and individual inflected forms for held-out base forms
in our Wiktionary dataset. Results are shown for our fully JOINT model, a FACTORED model that predicts individual
inflected forms independently, a NAÏVE baseline that picks the most common applicable suffix rule, and an ORACLE
that selects the best inflection table within our model’s capacity. For each language and part of speech, regardless of
training set size, evaluation is based on a blind test set of 200 held-out forms.

improvement on exact match is unsurprising, since
we expect that the joint predictions should get in-
flection tables correct in an “all-or-nothing” fashion,
whereas factored predictions are more likely to re-
flect divergent feature weights of the different com-
ponent models. The NAÏVE baseline performs rather
poorly overall, indicating our algorithm is being so-
phisticated about applying more than just the most
common changes. Finally, we note that the ORA-
CLE performance is much higher in this case than
on the CELEX data, confirming our intuition that
with the appropriate level of supervision our model
at least has the capacity to make correct predictions
in almost every case.

6.3 Error Analysis

We conducted an error analysis on the output of
our JOINT model on German nouns. From 2364
paradigms, we learn 53 different orthographic trans-
formation rules, of which our 200-example develop-
ment set exhibits 14.7

On our development set, 196 inflection tables are
within the capacity of our model. Of those 196, 159
are exactly correct. In Table 6, we show the top
six rules by frequency in the development set, along

7Nineteen of our 53 extracted rules only occur on one ex-
ample; this suggests a few reasons that fewer rules are applied
than are extracted. First, very common base forms with irreg-
ular morphology may give rise to completely irregular rules.
Second, our edit distance alignment procedure can sometimes
merge two adjacent rules if the orthographic context is such that
there are multiple minimum-cost analyses. Finally, errors and
inconsistencies in Wiktionary can yield nonsense rules that are
never applied elsewhere.

NOM,SING a
NOM,PL n e ä en

ACC,SING a
ACC,PL n e ä en

DAT,SING a
DAT,PL n en ä n en

GEN,SING es a s
GEN,PL n e ä en

Example Klasse Krieg Haus Nutzer Frau
Gold 49 48 26 26 20
Prec 95.7 72.9 88.0 82.8 87.0
Rec 91.8 89.6 84.6 92.3 100.0
F1 93.8 80.4 86.3 87.3 93.0

Table 6: Breakdown of errors by morphological rule be-
ing applied by the JOINT model on the DE-NOUNS devel-
opment set. We show the rule itself, treating the nomina-
tive singular as the base form, an example of a German
word using that rule, and then the model’s accuracy at
predicting applications of that rule. Errors are spread out
over many rules, but it generally appears that common
rules are to blame for the errors that are made, due in
large part to gender confusion in this case.

with the precision, recall, and F-measure that our
model attains for each rule.8 These rules are mostly
interpretable: for example, the first two columns
correspond to common suffix rules for feminine and
masculine nouns, respectively. Our model’s per-
formance is consistently high for each of the rules
shown, including a stem change (a changing to ä
in plural forms), providing further evidence that our
model is useful for modeling rarer morphological

8Gold rules are obtained by running our rule extraction pro-
cedure over the examples in question.
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paradigms as well as more common ones.
As a concrete example of an error our model does

make, Löwe (lion) is incorrectly predicted to have
the first suffix, instead of the correct suffix (not
shown) which adds an -n for accusative, genitive,
and dative singular as well. However, making this
prediction correctly is essentially beyond the capac-
ity of a model based purely on orthography. Words
ending in -e are commonly feminine, and none of
our other training examples end in -we, so guess-
ing that Löwe follows a common feminine inflec-
tion pattern is reasonable (though Löwe is, in fact,
masculine). Disambiguating this case requires ei-
ther features on observed genders, a more complex
model of the German language, or observing the
word in a large corpus. Generally, when the model
fails, as in this case, it is because of a fundamental
linguistic information source that it does not have
access to.

7 Related Work

Much of the past work on morphology has focused
on concatenative morphology using unsupervised
methods (Goldsmith, 2001; Creutz and Lagus, 2007;
Monson, 2008; Poon et al., 2009; Goldwater et al.,
2009) or weak forms of supervision (Snyder and
Barzilay, 2008). These methods can handle aspects
of derivational morphology that we cannot, such as
compounding, but we can handle a much larger sub-
set of inflectional morphology, including more com-
plex prefix and suffix rules, stem changes, and ir-
regular forms. Some unsupervised work has specifi-
cally targeted these sorts of phenomena by, for ex-
ample, learning spelling rules for mildly noncon-
catenative cases (Dasgupta and Ng, 2007; Narad-
owsky and Goldwater, 2009) or mining lemma-base
form pairs from a corpus (Schone and Jurafsky,
2001), but it is extremely difficult to make unsu-
pervised methods perform as well as supervised ap-
proaches like ours.

Past supervised work on nonconcatenative inflec-
tional morphology has typically targeted individual
pairs of base forms and inflected forms for the pur-
poses of inflection (Clark, 2001) or lemmatization
(Yarowsky and Wicentowski, 2000; Wicentowski,
2004; Lindén, 2008; Toutanova and Cherry, 2009).
Some of these methods may use analysis (Lindén,

2008) or decoding (Toutanova and Cherry, 2009)
steps similar to those of our model, but none attempt
to jointly predict a complete inflection table based
on automatically extracted rules.

Some previous work has addressed the joint anal-
ysis (Zajac, 2001; Monson, 2008) or prediction
(Lindén and Tuovila, 2009; Dinu et al., 2012) of
whole inflection tables, as we do, but rarely are
both aspects addressed simultaneously and most ap-
proaches are tuned to one particular language or
use language-specific, curated resources. In over-
all setup, our work most closely resembles that of
Dreyer and Eisner (2011), but they focus on incor-
porating large amounts of raw text data rather than
using large training sets effectively.

Broadly similar techniques are also employed in
systems to filter candidate rules and aid in human an-
notation of paradigms (Zajac, 2001; Forsberg et al.,
2006; Détrez and Ranta, 2012) for resources such as
Grammatical Framework (Ranta, 2011).

8 Conclusion

In this work, we presented a method for inflecting
base forms in morphologically rich languages: we
first extract orthographic transformation rules from
observed inflection tables, then learn to apply these
rules to new base forms based on orthographic fea-
tures. Training examples for our supervised method
can be collected from Wiktionary for a large number
of languages and parts of speech. The changes we
extract are interpretable and can be associated with
particular classes of words. Moreover, our model
can successfully apply these changes to unseen base
forms with high accuracy, allowing us to rapidly
generate lexicons for new languages of interest.

Our Wiktionary datasets and an open-
source version of our code are available at
http://eecs.berkeley.edu/~gdurrett
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