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Abstract

We introduce a novel algorithm for generat-
ing referring expressions, informed by human
and computer vision and designed to refer to
visible objects. Our method separates abso-
lute properties like color from relative proper-
ties like size to stochastically generate a di-
verse set of outputs. Expressions generated
using this method are often overspecified and
may be underspecified, akin to expressions
produced by people. We call such expressions
identifying descriptions. The algorithm out-
performs the well-known Incremental Algo-
rithm (Dale and Reiter, 1995) and the Graph-
Based Algorithm (Krahmer et al., 2003; Vi-
ethen et al., 2008) across a variety of images
in two domains. We additionally motivate
an evaluation method for referring expression
generation that takes the proposed algorithm’s
non-determinism into account.

1 Introduction

Referring expression generation (REG) is the task
of generating an expression that can identify a ref-
erent to a listener. These expressions generally take
the form of a definite noun phrase such as “the large
orange plate” or “the furry running dog”. Research
in REG primarily focuses on the subtask of select-
ing a set of properties that may be used to construct
the final surface expression, e.g., 〈color:orange,
size:large, type:plate〉. This property selection task
is optimized to meet different goals: for example,
to be identical to those a person would generate in
the same situation, or to be unique to the intended
referent and no other item in the discourse.

We focus on the task of generating referring ex-
pressions for visible objects, specifically with the
goal of generating descriptive, human-like referring
expressions. We are motivated by the desire to con-
nect this algorithm to input from a computer vision
system, and discuss how this may work through-
out the paper. Computer vision (CV) does not yet
reliably provide features for some of the most fre-
quent properties that people use in visual descrip-
tion (in particular, size-based features), and so we
use a gold-standard visual input, evaluating purely
on REG. The proposed algorithm, which we call
the Visible Objects Algorithm, is designed to ap-
proximate human variation identifying an object in
a group of visible, real world objects.

Our primary contributions are the following.
Background for each issue is provided in Section 2:

1. An approach accounting for overspecification,
underspecification, and some of the known ef-
fects of vision on reference.

2. A function to approximate the stochastic nature
of reference. This reflects that people will pro-
duce different references to the same object.

3. A separation between absolute properties like
color, which may be detected directly by CV,
from relative properties like size and loca-
tion, which require reasoning over visual fea-
tures to determine an appropriate form (e.g.,
height/width and distance features between
pixels are available from a visual input; saying
an object is “tall” requires further reasoning).

4. An evaluation method for non-deterministic
REG that aligns generated and observed data
and calculates accuracy over alignments.
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2 Motivation & Overview

Most implemented algorithms for referring expres-
sion generation focus on unique identification of a
referent, determining the set of properties that dis-
tinguish a particular target object from the other ob-
jects in the scene (the contrast set) (Dale, 1989; Re-
iter and Dale, 1992; Dale and Reiter, 1995; Krahmer
et al., 2003; Areces et al., 2008). This view of refer-
ence was first outlined by Olson (1970), “the spec-
ification of an intended referent relative to a set of
alternatives”. A substantial body of evidence now
shows that contrastive value relative to alternatives
is not the only factor motivating speakers’ property
choices, specifically in visual domains. The phe-
nomena of overspecification and redundancy, where
speakers select properties that have little or no con-
trastive value, was observed in early developmen-
tal studies in visual domains (Ford and Olson, 1975;
Whitehurst, 1976; Sonnenschein, 1985) as well as
later studies on adult speakers in visual domains
(Pechmann, 1989; Engelhardt et al., 2006; Koolen et
al., 2011). The related phenomenon of underspecifi-
cation, where speakers select a set of properties that
do not linguistically specify the referent, has also re-
ceived some attention, particularly in visual domains
(Clark et al., 1983; Kelleher et al., 2005).

These findings make sense in light of visual ev-
idence that some properties “pop out” in the scene
(Treisman and Gelade, 1980), and speakers may be-
gin referring before scanning the full set of scene ob-
jects (Pechmann, 1989), selecting those properties
that are salient for them (Horton and Keysar, 1996;
Bard et al., 2009) without spending a great amount
of cognitive effort considering the perception of a
hearer (Keysar and Henly, 2002).

We take this evidence to suggest an approach for
a visual reference algorithm that generates natural,
human-like reference by generating visual proper-
ties that are salient for a speaker.1 We can under-
stand what is salient visually (what does the visual
system first respond to, what guides attention?), lin-
guistically (what do people tend to mention in visual
scenes?), and cognitively, which we will not have
room to discuss in this paper (what is atypical for

1We can also add functionality to ensure that a referent is
uniquely identified against the contrast set (whether or not that
reflects what a person would do), which we will describe.

Figure 1: Relative properties, like size and location, are
difficult to obtain from a two-dimensional image. We find
it easy to perceive the background object as larger than
the one in the front; but they are technically the same size
in the image (from Murray et al. (2006)).

this object?); as well as in terms of broader notions
of salience, e.g., discourse salience (Krahmer and
Theune, 2002).

This suggests a paradigm shift in the generation
task when referring to visible objects, if the goal is
to produce human-like reference. In particular, this
suggests moving from selecting properties that rule
out other scene objects to selecting properties that
are salient for the speaker (visually, conversation-
ally, based on previous experiences, etc.). This mir-
rors related research on the tradeoff between audi-
ence design and egocentrism in language production
(Clark and Murphy, 1982; Horton and Keysar, 1996;
Bard et al., 2009; Gann and Barr, 2013). Under-
and overspecification naturally fall out from such an
approach, with no need to specifically model either
phenomenon.

Perhaps unsurprisingly, the set of properties that
are visually salient and the set of properties that are
linguistically salient largely overlap. Color is the
first property our visual system processes, followed
soon after by size (Murray et al., 2006; Fang et al.,
2008; Schwarzkopf et al., 2010); and people tend
to use color (Pechmann, 1989; Viethen et al., 2012)
and size when identifying objects, with size com-
mon when there is another object of the same type
in the scene (Brown-Schmidt and Tanenhaus, 2006).

Following this, our algorithm gives a privileged
position to these properties, processing them first.
Using computer vision techniques to determine an
object’s color works reasonably well (Berg et al.,
2011), and the relevant visual features for this task
may be useful in future work to return several pos-
sible color labels that capture differences in lexical
choice (cf. Reiter and Sripada (2002)).

Detecting size does not work well (Forsyth,
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2011); and when it does, it will likely not take the
form supposed in recent generation work. Most
REG algorithms use a predefined single-featured
value, such as “big”; however, given an image-based
input, obtaining such a value requires (1) determin-
ing how the object is situated in a three-dimensional
space, difficult to obtain from a two-dimensional im-
age (see Figure 1); and (2) determining what the
value should be: object detectors currently can pro-
vide the height and width of the location where an
object is likely to exist (its bounding box), as well as
the x- and y-axis locations of the pixels within the
object detection; but a value from these features like
“big”, “tall”, or “long” requires further reasoning.
As such, we incorporate the top-performing size al-
gorithm introduced in Mitchell et al. (2011), which
takes as input the height and widths of objects in the
image and outputs a size value or NONE, indicating
that size should not be used to describe the object.

In addition to color and size, location and orien-
tation begin to be processed early on in the visual
system (Treisman, 1985; Itti and Koch, 2001), with
our first perception of location corresponding to ba-
sic cues of where an object is relative to our focus
of attention. For an input image, this simple type of
location corresponds to surface forms such as, e.g.,
“on the right of the image” or “at the top of the im-
age”. Along with size, location and orientation make
up the three primary relative properties that we aim
to generate language for.

After the simple forms for color, size, location,
and orientation properties are processed, our visual
system feeds forward to two parallel pathways, the
so-called “what” and “where” pathways (Ungerlei-
der and Mishkin, 1982), which process properties
with growing complexity. The “what” pathway in-
cludes absolute properties like shape and material,
which computer vision has had some success de-
tecting (Ferrari and Zisserman, 2007; Farhadi et al.,
2009) while the “where” pathway corresponds to
more complex spatial orientation and location infor-
mation, such as where objects are relative to one an-
other and which way they are facing.

To begin connecting this process to the genera-
tion of human-like descriptions of visible objects,
we start with the following simplification: Color and
size have a privileged status, the first properties pro-
cessed. These are followed by the relative properties

Figure 2: Initial model for generating visual reference.

of location and orientation, which may feed forward
to more complex location and orientation properties
in one pathway; and absolute properties following
color, like material and shape, which may be pro-
cessed in another pathway.

This gives us the basic model for generating ref-
erence to visible objects shown in Figure 2. To gen-
erate reference in this model, nodes correspond to
general visual attributes and may generate forms for
visual properties (attribute:value pairs). That is, a
property such as color:red is generated from the at-
tribute node color and a property such as size:tall is
generated from the attribute node size. We are lim-
ited by existing REG corpora in which properties we
can evaluate; in this paper, we examine the effect of
the independent selection of color and size, followed
by location and orientation.2

Generating human-like expressions in this setting
begins to be possible by adopting recent propos-
als that REG handle speaker variation (Viethen and
Dale, 2010) and the non-deterministic nature of ref-
erence (van Gompel et al., 2012; van Deemter et
al., 2012b). We can capture such variation simply
by estimating αatt, the likelihood that an attribute
att generates a corresponding visual property. Dur-
ing generation, the algorithm passes through each at-
tribute node, and uses this estimate to stochastically
add each property to the output property set.

Such a non-deterministic process means that the
algorithm will not return the same output every time,
which offers new challenges for evaluation. If we
run the algorithm 1,000 times, we have a distribu-
tion over several possible output property sets. From
this we can obtain the majority set and check if it
matches the majority observed set. Similarly, we can

2We have also built an algorithm and corpus with more com-
plex properties in order to tease out further details of visual ref-
erence, but must leave these details for follow up work; for now,
we focus on the properties common to REG corpora.
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run the algorithm for as many instances as we have
in our test data, and see how well the property sets
it produces aligns to the observed property sets. We
discuss evaluation using both methods in Section 6.

3 The State of the Art in REG

3.1 Algorithms

In order to understand how this approach compares
to the state of the art in REG, we evaluate against
two of the most well-known algorithms, the Incre-
mental Algorithm (Dale and Reiter, 1995) and the
Graph-Based Algorithm (Krahmer et. al, 2003, as
implemented in Viethen et al., 2008). Details on
these algorithms are available in their corresponding
papers. As a brief summary, both algorithms formal-
ize the objects in the discourse as a set of properties
(attribute:value pairs). For example, one object may
be represented as 〈type:box, color:red, size:large〉.
The task is to find the set of properties that uniquely
specify the referent. This is known as a content se-
lection problem, and the set of properties chosen by
the algorithm is called a distinguishing description.

The Incremental Algorithm (IA) proceeds by it-
erating through attributes in a predefined order (a
preference order), and for each attribute, it checks
whether specifying a value would rule out at least
one item in the contrast set that has not already been
ruled out. If it will, the attribute:value is added to
the distinguishing description. This process contin-
ues until all contrast items (distractors) are ruled out
or all available properties have been checked. We
use the implementation of the IA available from the
NLTK (Bird et al., 2009).3

In the Graph-Based Algorithm (GB), the objects
in the discourse are represented within a labeled di-
rected graph, and content selection is a subgraph
construction problem. Each object is represented as
a vertex, with properties for an object represented as
self-edges on the object vertex, and spatial relations
between objects represented as edges between ver-
tices. The algorithm seeks to find the cheapest sub-
graph, calculated from the edge costs. We use the
implementation available from Viethen et al. (2008),
which adds a preference order to decide between
edges with the same cost during search. This has

3https://github.com/nltk/nltk contrib/blob/master/
nltk contrib/referring.py retrieved 1.Aug.2012.

been one of the best-performing systems in recent
generation challenges (Gatt and Belz, 2008; Gatt et
al., 2009).

An important commonality between these algo-
rithms, and much of the work on REG that they
have influenced, is the focus on unique identifica-
tion and operating deterministically. Both produce
one property set (and only one), and stop once a tar-
get item has been uniquely identified (or else fail).
Their driving goal is to rule out distractor objects.

In the approach introduced here, the algorithm
produces a distribution over several possible out-
puts, and the initial driving mechanism is based on
likelihood estimates for each attribute independent
of the other objects in the scene, rather than ruling
out all distractors. This offers a way to capture some
aspects of human-like reference, including under-
and overspecification and speaker variation. Due to
the fundamentally different objective of this algo-
rithm, we will call the kind of expression it generates
an identifying description, following Searle (1969).
This is a description that the system finds (1) useful
to describe the referent and (2) true of the referent.

4 The Algorithm

The Visible Objects Algorithm iterates through lists
of visible attributes, stochastically adding properties
to the property set it will generate. After this initial
search, the algorithm then scans through the objects
in the scene, roughly corresponding to how people
scan a scene when referring (Pechmann, 1989). The
target referent type, corresponding to the head noun
in the final generated description, is added to the
property set at the end of the algorithm.

We represent the basic components of the algo-
rithm graphically in Figure 3. Full code is available
online.4 After START, the algorithm proceeds in par-
allel through a list of absolute attributes and a list
of relative attributes. The likelihood of generating a
property is a function of the prior likelihood αatt and
γ, a penalty on the length of the constructed prop-
erty set up to that point. This ensures that only a few
properties are generated for a referent, and the ex-
pression will not be too complex. This is also in line
with recent research suggesting that there are rarely
more than three adjectives in a visual noun phrase

4https://github.com/itallow/VisibleObjectsAlgorithm.
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(Berg et al., 2011). Once the algorithm hits END,
it scans through the objects in the scene. If it finds
an object that is the same type as the referent object,
the algorithm checks through the attributes again in
a preference order akin to the IA, comparing the ob-
ject’s properties against the referent’s and generating
properties as a function of the length penalty alone.
If the algorithm does not find an object that it is the
same type, no further properties are added.

4.1 Requirements
The algorithm requires the following:

1. Prior likelihood estimates on the inclusion of
different attributes. Represented as αatt.

2. Ordered list of absolute attributes beyond color.
Represented as AP.

3. Ordered list of relative attributes beyond size.
Represented as RP.

4. Ordered list of all attributes. Represented as P.

5. Ordered list specifying the order in which to
scan through other scene objects. The current
implementation uses the order in which the ob-
jects are listed in the corpora it is run on.

(1) is similar to the cost functions for GB, but
attributes are selected non-deterministically using
prior likelihoods. (2), (3), and (4) are similar to
the IA’s and GB’s preference order. For our eval-
uation corpora, AP is empty and RP contains loca-
tion and orientation. (5) is novel to this algorithm,
defining an order in which to compare the target ob-
ject against other objects in the scene. This is in-
spired by the process of incremental speech produc-
tion (Pechmann, 1989), where speakers scan objects
during naming, incrementally producing properties.

4.2 The Stochastic Process
Generally speaking, we want to penalize longer de-
scriptions and encourage the attributes that we know
people are likely to use. We can encourage a likely
attribute by using its prior likelihood as an estimate
of whether to include it. We can penalize longer de-
scriptions with a penalty proportional to the length
of the property set under construction. In other
words, given a prior likelihood estimate for includ-
ing an attribute att, αatt, and the property set con-
structed so farA, we compute whether to add a prop-

a. b.

TUNA corpus GRE3D3 corpus
Figure 4: Example scenes from corpora.

erty for att toA as a function of αatt and the length-
based penalty γ:

f(A ∪ {x}) = γαatt
where

γ =

{
1

λ|A| if |A| > 0

1 otherwise

and λ is an empirically determined weight. The
algorithm then chooses a random number n, 0 ≤
n ≤ 1. If n < f(A ∪ {x}), it adds the property.

4.3 Scanning Through Objects

After the initial pass through the properties, the al-
gorithm compares each object in the scene that is
the same type as the target. If the values for an
attribute are different, then the corresponding prop-
erty is added to the property set based on the length
penalty alone; when the goal is unique identification,
the algorithm can use no penalty. In development,
we found that incrementally scanning through ob-
jects after initially adding properties resulted in bet-
ter performance than an algorithm that did not con-
tain this step.

4.4 Worked Example

Suppose the input in Figure 6 (visualized in Figure
4a), with the goal of referring to obj1 by producing
a property set A. First, the algorithm scans through
color and size in parallel. For color, it finds the cor-
responding value grey; with a computer vision in-
put, this would be possible using the object pixels
as features. There is no length penalty at this point
(|A|=0), so it adds the property color:grey to A with
likelihood αcolor. For our evaluation domains, αcolor
is around .90 across folds, and so a color property is
usually added.

For size, the algorithm finds an appropriate value
using the Size Algorithm from Mitchell et al. (2011).
The Size Algorithm uses the average height and
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Figure 3: Basic model for generating visual reference.

width of all objects that are the same type as the ref-
erent object; in this case, obj2, obj3, obj4. This re-
turns a size value large, and so the property size:large
is added toAwith likelihood αsize (around .40 to .70
across folds, depending on the domain).

The most likely property set at this point is sim-
ply 〈color:grey〉. The next most likely is 〈color:grey,
size:large〉, then 〈size:large〉. There are no fur-
ther absolute properties in this example, but there
are values for the relative attributes loc (location)
and ori (orientation). Assuming RP=〈location,
orientation〉, the algorithm first analyzes location,
then orientation. A location property is added to A
with likelihood αloc multiplied by the length penalty
γ= 1

(λ×1) if A=〈color:grey〉; γ= 1
(λ×2) if A=〈color:grey,

size:large〉, etc.; and an orientation property is added
to A with likelihood αori multiplied by the length
penalty γ= 1

(λ×1) if the property set is 〈color:grey〉,
etc. At this point, the likelihood of adding further
properties quickly diminishes.

Once all properties have been analyzed, the algo-
rithm scans through the objects in the scene. For
each object obj2. . . objn, if the object is the same
type as the target object obj1, then any different
property of the target referent is added to A with
a likelihood based on the length penalty alone γ.
〈type:desk〉 is added at the end.

For this example scene, the algorithm will gen-
erate the property sets 〈color:grey, type:desk〉,
〈color:grey, size:large, type:desk〉, 〈size:large,
type:desk〉, 〈color:grey, ori:front, type:desk〉,
〈color:grey, loc:(3, 1), type:desk〉, etc., with dif-
ferent frequencies. Due to the length penalty,
generated property sets will almost never have more
than 3 properties.

tg color:yellow size:(63,63) type:ball loc:right-hand
lm color:red size:(345,345) type:cube loc:right-hand
obj3 color:yellow size:(70,70) type:cube loc:left-hand

Figure 5: Example input scene: GRE3D3 corpus. For IA
And GB, gold-standard size values are provided rather
than measurements (small, large).

obj1 colour:grey size:(454,454) type:desk loc:(3,1) ori:front
obj2 colour:blue size:(454,454) type:desk loc:(2,1) ori:front
obj3 colour:red size:(454,454) type:desk loc:(3,2) ori:back
obj4 colour:green size:(254,254) type:desk loc:(4,1) ori:left
obj5 colour:blue size:(454,454) type:fan loc:(1,1) ori:front
obj6 colour:red size:(454,454) type:fan loc:(5,1) ori:back
obj7 colour:green size:(254,254) type:fan loc:(2,2) ori:left

Figure 6: Example input scene: TUNA corpus. For IA
And GB, gold-standard size values are provided rather
than measurements (small, large).

As such, although 〈color:grey, type:desk〉 would
sufficiently distinguish the intended referent, we
instead produce a variety of sets, overspecify-
ing in some instances (e.g., 〈color:grey, ori:front,
type:desk〉), and with a small chance of underspec-
ifying in others (e.g., 〈size:large, type:desk〉).

5 Evaluation Algorithms & Corpora
5.1 Corpora
We evaluate on two well-known REG corpora, the
GRE3D3 corpus (Viethen and Dale, 2008) and the
singular furniture section of the TUNA corpus (van
Deemter et al., 2006). Both corpora contain expres-
sions elicited to computer-generated objects, and so
provide a reasonable starting point for evaluating
reference to visible objects. For all algorithms, we
evaluate on the selection of referent attributes. Lex-
ical choice and word order are not taken into ac-
count. Example images from GRE3D3 and TUNA
are shown in Figure 4, and example algorithm input
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from these corpora are shown in Figures 5 and 6.
In GRE3D3, we evaluate on the selection of type,

color, size, and location, but leave aside proper-
ties of relatum objects, which are not currently ad-
dressed by this algorithm or the IA. In TUNA, we
evaluate on the selection of type, color, size and
orientation.5

5.2 Algorithms

5.2.1 The Incremental Algorithm
The Incremental Algorithm requires a preference

order list (PO) specifying the order to iterate through
scene attributes. We determine the preference or-
der from corpus frequencies using cross-validation
to hold out a test scene and list attributes from the
training scenes in descending order. We find that
color precedes size in the preference orders, in line
with recent research showing that this allows the al-
gorithm to perform optimally on the TUNA corpus
(van Deemter et al., 2012a). In development, we find
that IA performs best with type as the last attribute
in the PO, and report on numbers with this approach.

5.2.2 The Graph-Based Algorithm
The version of the Graph-Based Algorithm that

we use is available from Viethen et al. (2008). This
algorithm requires (1) a set of cost functions for each
edge, and (2) a PO for deciding between properties
in the case of a tie. For (1), we use the method from
Theune et al. (2011) to assign two costs (0, 1) to
the edges. We first determine the relative frequency
with which each property is mentioned for a target
object, and then create costs for each property using
k-means clustering (k=2) in the Weka toolkit (Hall
et al., 2009). We refer interested readers to the The-
une et al. paper for further details. For (2), we follow
the same method as for the Incremental Algorithm.

5.2.3 The Visual Objects Algorithm
The proposed algorithm requires αatt, which we

estimate as the relative frequency of each attribute
att in the training data. The ordered attribute lists for
the algorithm (AP, RP and P) are built in the same
way as the preference order list for the IA and GB,
listing attributes from the training data in order of

5We remove location from evaluation in this corpus. Lo-
cation is not annotated directly, but split such that only x-
dimension or y-dimension may be marked for a reference.

descending frequency. For these corpora, there are
not absolute properties beyond color, so AP is empty.

6 Evaluation

Previous evaluation of REG algorithms have used
measurements such as Uniqueness, Minimality,
Dice (Belz and Gatt, 2008), and Accuracy (Gatt et
al., 2009; Reiter and Belz, 2009). Uniqueness is
the proportion of outputs that identify the referent
uniquely, and Minimality is the proportion of out-
puts that are both minimal and unique. As our goal
is to mimic human reference, these metrics are not
as useful for the evaluations as the others.

The Dice metric provides a value for the similar-
ity between a generated description and a human-
produced description, and therefore serves as a rea-
sonable objective measure for how human-like the
produced sets are. Given the generated property set
(DS) and the human-produced property set (DH ),
Dice is calculated as:

2× |DS ∩DH |
|DS |+ |DH |

For each input domain, we evaluate over boolean
values (included or excluded) for the attributes D
(see Table 1). Note that this means the specific val-
ues for the attributes are not compared. In this for-
mulation based on boolean values, |DS |=|DH |=|D|
and Dice reduces to:

|DS ∩DH |
|D|

Calculating Dice over the same number of at-
tributes for both the observed and generated data
has the nice mathematical property of making Dice
equal to other common metrics for evaluating a
model, including Accuracy, Precision, and Recall.6

Since the proposed algorithm is stochastic, this in-
troduces a problem in using a metric that compares
single expressions. We therefore seek to find the
best alignment between the set of expressions pro-
duced by the algorithm and the set of expressions
produced by people. We formulate this alignment as
an assignment problem weighted by Dice. For the
corpus of observed property sets H and the corpus
of generated property sets S, we find the best align-

6A false positive is a false negative, and there are no true
negatives, so all four metrics are equivalent.
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Example Corresponding Evaluated
Expression Property Set Property Set
the red ball 〈color:red, type:ball〉 type:1 color:1

size:0 loc:0

Table 1: Example human expression and corresponding
boolean-valued property set for evaluation in GRE3D3,
with D={type, color, size, and location}.

ment x out of all possible alignmentsX between the
corpora:

arg maxx∈X
∑

(S,H)∈x

Dice(DS , DH )

This may be solved in polynomial time using the
Hungarian method (Kuhn, 1955; Munkres, 1957).
Note that because IA and GB are deterministic, find-
ing an optimal alignment is trivial. We call this
method ALIGNED DICE.

It is an open question whether an alignment-based
evaluation is fair: the proposed algorithm has more
than one chance to match the human descriptions.
In the second evaluation method (MAJORITY) we
address this issue, comparing how often the most
frequent generated set compares with the most fre-
quent observed set. We run the proposed algorithm
1,000 times, and the generated property sets are or-
dered by frequency. The most frequent generated
set is compared against the most frequent human-
produced set. The majority score is the percentage
of folds where these two sets match. For IA and FB,
the most frequent generated set is the only gener-
ated set. This is a simple way to fairly compare the
output of deterministic and non-deterministic algo-
rithms. There are no ties in the generated sets, but
in the case of a tie in the observed data, we count a
match if any match the most frequent generated set.

6.1 GRE3D3

We randomly select two scenes (7, 9) from Set 1
and their mirrored counterparts in Set 2 (17, 19) for
development. We empirically determine λ=5 for the
length-based penalty γ in the proposed algorithm.

We use the eight remaining scenes in each Set
for eight-fold cross-validation, estimating parame-
ters for the algorithms on the seven training scenes
in each fold, as discussed in Section 5.2.

For ALIGNED DICE, we run the proposed algo-
rithm five times in each fold and report the average

Algorithm ALIGNED DICE MAJORITY
Set 1 Set 2 Set 1 Set 2

Proposed Alg. 88.23 90.06 62.50 50.00
IA 87.71 85.13 62.50 25.00
GB 87.71 88.73 62.50 50.00

Table 2: GRE3D3: Results (in %).

Algorithm ALIGNED DICE MAJORITY
+LOC -LOC +LOC -LOC

Proposed Alg. 88.75 86.07 40.00 40.00
IA 81.79 81.55 0.00 100.00
GB 75.36 66.04 20.00 20.00

Table 3: TUNA: Results (in %).

score. Results are shown in Table 2.7

The proposed Visible Objects Algorithm achieves
higher accuracy than either version of the Incremen-
tal Algorithm or the Graph-Based Algorithm using
ALIGNED DICE. In MAJORITY, the Graph-Based
and the Visible Objects Algorithm both predict the
majority property set in this evaluation at least 50%
of the time. The algorithm is competitive with the
state of the art on this corpus.

6.2 TUNA

TUNA is split into two conditions: subjects discour-
aged to use location (-LOC) or not (+LOC). We ran-
domly hold out two scenes from both conditions (1
and 2), and find a value of λ=5 again works well on
the development data.

As in the GRE3D3 corpus, we use the TUNA
scenes in five-fold cross-validation, estimating pa-
rameters on the four training scenes in each fold. For
ALIGNED DICE, we average over five runs of the al-
gorithm, and for MAJORITY, we run the proposed
algorithm 1,000 times for each test scene.

Results are shown in Table 3. Again we see that
the proposed Visible Objects Algorithm is compet-
itive with the IA and GB for both ALIGNED DICE

and MAJORITY. GB performs poorly here, and this
may be due to the data sparsity issue that arises when
requiring the algorithm to train on properties.8 In

7We do not report statistical significance; the proposed algo-
rithm produces several possible outputs for one input, while the
IA and GB produce only one.

8The original property-based weighting approach (Theune
et al., 2011; Koolen et al., 2012, see Section 5.2) trained on ob-
ject collections that were identical to their test data in all proper-
ties except x- and y-dimension, and so this was less of an issue.
We hope to explore whether basing weights on attributes alone
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MAJORITY, the Visible Objects Algorithm is rela-
tively stable across conditions, generating the ma-
jority property set in 40% of the test scenes. It does
not outperform the IA in the -LOC condition, but the
IA has a large range across the two conditions (0%
and 100%).

7 Conclusions and Future Work

We have introduced a new algorithm for generating
referring expressions, inspired by human and com-
puter vision and aiming to refer in a human-like way
to visible objects. The algorithm successfully gener-
ates the most common attributes that people choose
for different objects, and offers a varied output to
capture speaker variation. In contrast to most algo-
rithms for the generation of referring expressions,
which have aimed to produce distinguishing descrip-
tions when these exist (Krahmer and van Deemter,
2012), the core idea behind this algorithm is to gen-
erate what is likely for a speaker in a visual domain.
Since the driving mechanism behind the algorithm
is not to uniquely identify the object, but rather to
pipeline the analysis of properties in a way similar
to human visual processing, the generated expres-
sion may be overspecified or underspecified.

We are limited by available REG corpora to re-
liably assess methods for generating more com-
plex absolute properties like shape and material, but
adding such properties would help advance the gen-
eration of human-like reference in visual scenes and
offers further points of connection between the gen-
eration process and computer vision property detec-
tion. Models for generating more complex spatial
relations are currently available, and are a natural
extension to this framework (e.g., those of Kelleher
and Costello (2009)) as object detection becomes
more robust.

We may also be able to build more sophisticated
graphical models as larger corpora become avail-
able. For example, modeling the conditional proba-
bility of generating reference for a property vn given
the previously generated context p(vn|v1 . . . vn−1)
may bring us closer to human-like output.

There are several additional issues that do not
arise in this evaluation, but we expect must be ac-
counted for when referring to naturalistic objects in

improves performance.

visual domains. These include:

• The interconnected nature of properties, where
some properties entail others; for example, a
wooden object is likely to be called wooden, re-
ferring to its material, rather than tan or brown.
• The role of typicality, where properties are se-

lected because they are atypical for the object.
• Referring to more complex properties, e.g., ma-

terial, texture, etc., and object parts.
• Better methods for determining the length

penalty and attribute likelihoods.

We hope to discuss extensions to this algorithm
covering these aspects of reference in future work.
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