
Proceedings of NAACL-HLT 2013, pages 1082–1091,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Open Dialogue Management for Relational Databases

Ben Hixon Rebecca J. Passonneau

Computer Science & Engineering Center for Computational Learning Systems
University of Washington Columbia University
Seattle, WA 98195, USA New York, New York, USA

bhixon@cs.washington.edu becky@ccls.columbia.edu

Abstract

We present open dialogue management and its
application to relational databases. An open
dialogue manager generates dialogue states, ac-
tions, and default strategies from the semantics
of its application domain. We define three open
dialogue management tasks. First, vocabulary
selection finds the intelligible attributes in each
database table. Second, focus discovery selects
candidate dialogue foci, tables that have the
most potential to address basic user goals.
Third, a focus agent is instantiated for each dia-
logue focus with a default dialogue strategy
governed by efficiency. We demonstrate the
portability of open dialogue management on
three very different databases. Evaluation of
our system with simulated users shows that us-
ers with realistically limited domain knowledge
have dialogues nearly as efficient as those of
users with complete domain knowledge.

1 Introduction

This paper presents open dialogue management.
An open dialogue manager (ODM) generates dia-
logue states, actions, and strategies from
knowledge it computes about the semantics of its
domain. A dialogue strategy is the procedure by
which a system chooses its next action given the
current state of the dialogue. The system's dialogue
policy completely specifies which strategy to use
in any dialogue state. Strategies can be handcrafted
or learned. Reinforcement learning, the leading
method for dialogue strategy learning, can yield
powerful results but relies on small sets of states
and actions predefined by the researcher. This
reliance on domain expertise limits machine

learned dialogue managers to the domains for
which they were specifically designed, and
contributes to the prevalence of handcrafted
strategies over machine learning approaches for
dialogue management in commercial applications
(Paek & Pieraccini, 2008). We argue that open dia-
logue management, which exploits the semantics
and contents of its database to generate actions,
states and default strategies, is a step towards a
dialogue manager that operates across domains.

As a first step to open dialogue management we
present ODDMER (OPEN-DOMAIN DIALOGUE
MANAGER), the first dialogue system to generate
its own dialogue strategy from relational databases.
ODDMER’s vocabulary selection module uses
supervised learning to determine each table’s intel-
ligible attributes, those most likely to be in the us-
er’s vocabulary. Its focus discovery module finds
candidate dialogue foci, tables that have the most
potential to address basic user goals. Foci are iden-
tified with schema summarization through a ran-
dom walk over the database schema that ranks ta-
bles by size, linguistic information, and connectivi-
ty. For each candidate focus, ODDMER instanti-
ates a focus agent that prompts users for values of
intelligible attributes ordered by efficiency.

Figure 1. ODDMER uses focus discovery and vocabu-
lary selection to choose its states, actions, and strategy.

1082

This paper addresses a particular type of infor-
mation-seeking dialogue in which the user’s goal is
to select a tuple from a table. Tuples are identified
by constraints, attribute-value pairs elicited from a
user during the dialogue. A typical user, however,
cannot supply all values with equal readiness. For
example, attributes such as primary or foreign keys
are irrelevant or unintelligible to users. This results
in a vocabulary problem, a mismatch between sys-
tem and user vocabulary (Furnas et al., 1987). Fur-
thermore, tables differ in their relevance to users.
Tables that contain little semantic information have
less potential to address user goals. Dialogue sys-
tems for relational databases often rely on manual
pre-processing to select the attributes a typical user
can most readily supply and identify the tables
with the most relevance to basic user goals. An
open dialogue system obviates this manual step by
exploiting the database semantics.

For example, Heiskell is a library database that
includes a table for books (BOOK) and a table for
book subject headings (HEADING). A typical pa-
tron wants a book, not a heading. Due to BOOK's
larger size, its greater number of intelligible attrib-
utes, and its higher connectivity to other tables,
ODDMER recognizes that a BOOK tuple satisfies a
more basic user goal. BOOK has 32 attributes, most
of which are numeric fields familiar to a librarian
but arcane to the user. ODDMER selects the ta-
ble’s intelligible attributes as its vocabulary. It rec-
ognizes that a book’s author and title are intelligi-
ble, but the book’s ISBN is not. Consequently,
ODDMER will not ask the user for the ISBN.

ODDMER assumes a user of the Heiskell data-
base will be likely to know one or more intelligible
attributes of books. ODDMER ranks intelligible
attribute-value pairs by their semantic specificity,
the degree to which they uniquely identify a tuple.
To demonstrate the benefit of pre-computing this
semantic information, we test ODDMER on three
databases with simulated users of two knowledge
levels. Complete-knowledge users know all attrib-
ute values. They have no vocabulary problem, will
always be able to supply a requested constraint,
and require no vocabulary selection to achieve
maximum dialogue efficiency. Incomplete-
knowledge users have a more realistic vocabulary.
They know values for different attributes with dif-
ferent probabilities. Without vocabulary selection,
these users have long, inefficient dialogues. Given
ODDMER’s vocabulary selection and efficient

dialogue strategy, these users achieve their goals
nearly as efficiently as complete-knowledge users.

2 Related Work

ODDMER is the first dialogue system to examine
a database and choose which tables and attributes
to use in dialogue. We envision open dialogue
management as a suite of domain-independent pro-
cedures through which a dialogue manager can
exploit its knowledge base. Hastie, Liu, and Lemon
(2009) also generate policies from databases. They
do not consider multiple tables, and they depend
on handcrafted Business Process Models that ex-
plicitly specify the dialogue flow for the domain.
This limits their method to domains with available
models. Polifroni, Chung, and Seneff (2003) also
argue for the importance of generic, domain-
independent dialogue managers. Their portable
information presentation strategies cluster attribute
values to summarize database contents for users.
Neither of these works considers how to choose
attributes or find which domain entities are likely
objects of dialogue goals. Chotimongkol and
Rudnicky (2008) use unsupervised learning to au-
tomatically acquire task-specific information from
a corpus of in-domain human-human dialogue
transcripts. They require a large corpus whereas we
need only the underlying database.

The vocabulary problem has received relatively
little attention in dialogue research, and no method
to automatically identify intelligible constraints has
been previously demonstrated. Demberg and
Moore (2006) choose constraints with a user model
that records user importance, such as ‘price’ for a
student in a restaurant domain. They require a
manually crafted user model and must match mod-
el to user. Polifroni and Walker (2006) use attrib-
ute entropy to order system initiative prompts, but
assume that both the table and the relevant attrib-
utes are known a priori. Varges, Weng, and Pon-
Barry (2006) develop a WOZ system in which a
wizard recommends to real users what constraint to
provide that will best narrow down results. Each of
these works assumes all constraints are intelligible.

Two recent works concentrate more closely on
the vocabulary problem. Janarthanam and Lemon
(2010) build a system that determines a user’s level
of referring expression expertise, but manually de-
termine the set of possible expressions. Selfridge
and Heeman (2010) simulate users with different

1083

levels of domain knowledge. A novice has a 10%
chance to know any constraint, and an expert a
90% chance. They do not consider users who know
different constraints with different probabilities as
we do, and do not consider databases that contain
attributes likely to be unintelligible to most users.

Reinforcement learning, the leading approach
for learning a dialogue strategy, demonstrates
powerful results. For example, Rieser and Lemon
(2009) find the optimal size of a list of tuples that
match a user’s constraints and when to display it in
different user environments. A dialogue strategy is
treated as a policy, a function that maps states to
actions. Policy optimization is a Markov decision
process. Paek and Pieraccini (2008) argue that re-
inforcement learning is limited by its reliance upon
small sets of manually defined states and actions,
with no standard method to determine these.
ODDMER identifies dialogue states and actions
automatically. Its default strategy could be opti-
mized with reinforcement learning.

Portability is an important research area in natu-
ral-language interfaces to databases (NLIDBs). An
NLIDB parses a user utterance into a logical form,
which is transformed into a database query. Users
typically know the database structure and contents.
TEAM (Grosz, 1983), the first portable NLIDB,
questions a domain expert to acquire linguistic
knowledge for new databases. More recently, the
ORAKEL interface (Cimiano et al., 2008) partially
derives a domain-specific lexicon from a generic
ontology. Here we do not focus on parsing of user
questions, but on the acquisition of dialogue states,
actions, and strategies from a database.

3 The ODDMER Dialogue System

ODDMER’s vocabulary selection module finds
each table’s intelligible attributes. Its focus discov-
ery module identifies candidate foci. A focus agent
module instantiates dialogue agents for each focus.
Their default strategy elicits attribute values from
users in order of semantic specificity.

3.1 Vocabulary Selection

A vocabulary is the set of words and expressions
used to discuss a domain. Domain entities can be
identified by their descriptions, or sets of attribute-
value pairs. In order for a system and a user to
profitably engage in a natural language dialogue
about database items, descriptions should consist

of attributes and values understood by both system
and user. We define the vocabulary selection task
as the automatic selection of attribute-value pairs
that the system expects its users will use to de-
scribe domain entities.

Successful vocabulary selection solves the vo-
cabulary problem. The vocabulary problem is a
bottleneck to portability because the attributes a
user is likely to know must be predetermined for
existing systems. ODDMER learns a classifier to
determine a table’s intelligible attributes. An at-
tribute is intelligible if its values are in a user’s
vocabulary. A user interested in a particular item
but unfamiliar with the structure of a database is
more likely to recognize an intelligible attribute,
and to know all or part of the relevant value.

To determine intelligible attributes, ODDMER
currently relies on a binary classifier that takes as
input the values of each attribute found in a partic-
ular instantiation of a relational database. To train
the classifier, we labeled a set of 84 attributes be-
longing to tables taken from the Microsoft Adven-
tureWorks Cycle Company database, a benchmark
database packaged with Microsoft SQL Server. An
attribute was labeled as intelligible if its values
were likely to be known to a user. Four annotators
worked independently to label the attributes. Pair-
wise agreement was 69%, and Krippendorff’s al-
pha (Krippendorff, 1980) was 0.42. The low
agreement can be attributed in part to the many
ways to interpret the question annotators were to
answer. The instructions indicated that the goal
was to identify attributes corresponding to com-
mon-sense knowledge, but for a given table, anno-
tators were shown all the attributes and asked
whether they would know a value. For an employ-
ee table, annotators disagreed on attributes such as
birthdate, hire date, and organization level. If they
had instead been asked whether anyone without
access to the table might know a value, there may
have been more agreement.

Ratio of unique to total characters in all values
Mean ratio of unique to total characters per value
Ratio of numeric to total characters in all values
Ratio of unique to total values
Ratio of unique to total words in all values
Total number of characters in all values

Table 1. Representative features for attribute classifica-
tion used in the best-performing intelligibility classifier.

1084

The training data for the classifier consisted of
67 attributes that at least three annotators agreed on
(22 intelligible, 45 not intelligible); pairwise
agreement was 0.81 and Krippendorff’s alpha was
0.61. They represented 8 tables and contained a
total of 393,520 values, 123,901 of which were
unique. For each attribute we extracted 17 features
to represent the linguistic expressiveness of the
attributes’ values. An attribute whose values are
more like natural language is more intelligible.
Table 1 lists the features of the best classifier.

We tested several binary classifiers in Weka
(Hall et al., 2009). ADTree (Freund & Mason,
1999) with ten boosting iterations performed best,
with 91% recall and 91% precision under 10-fold
cross-validation. However, the ADTree models
were overfitted to the AdventureWorks domain.
The RIPPER rule-learning algorithm (Cohen,
1995) achieved 77% precision and 78% recall. Be-
cause its learned model of three simple rules gen-
eralizes better to our domains, ODDMER uses the
RIPPER intelligibility classifier.

Given a table, the vocabulary selection module
returns which of its attributes should be in the sys-
tem’s vocabulary. For the Heiskell Library domain,
the 32 attributes of the BOOK table include many
internal codes understood by librarians but not by
users. Only the seven attributes shown in Table 2
are classified as intelligible. Dialogues with only
intelligible attributes should be more efficient for
users with incomplete domain knowledge, because
they will be more likely to know their values.

ODDMER’s vocabulary selection module also
computes the semantic specificity score of each
attribute (Hixon, Passonneau, & Epstein, 2012).
Semantic specificity rates an attribute on a scale
from 0 to 1 according to how unambiguously its
values map to rows in the database. More specific
attributes are expected to be more efficient
prompts. Table 2 lists the specificity values of the
intelligible attributes for BOOK.

Intelligible Attributes Specificity

ANNOTATION
TITLE
SORTTITLE
AUTHOR
NARRATOR
PUBLISHER
SERIES

0.958	

0.878	

0.878	

0.300	

0.018	

0.016	

0.003	

Table 2. Intelligible attributes for BOOK sorted by speci-
ficity. (SORTTITLE is a duplicate of TITLE.)

3.2 Candidate Dialogue Focus Discovery

Information-seeking dialogues address diverse dia-
logue goals. For example, users may want to iden-
tify a tuple in a table (“I want a certain book by
Stephen King.”), retrieve the value of an attribute
for a given tuple (“Is my plane on time?” “Who
wrote Moby Dick?”), aggregate over a set of tuples
(“How many Italian restaurants are in this neigh-
borhood?”), or compare values of different tuples
(“Which restaurant is more expensive?”). Each of
these dialogue goals represents a distinct infor-
mation need. However, not all possible information
needs in a domain are equally likely. For example,
a user is unlikely to ask for the value of a primary
key attribute, or to select a tuple from a table that
contains only primary and foreign keys. A dialogue
system should place less priority on addressing
these peripheral dialogue goals.

Given a particular domain, we assume that some
goals are more basic than others. For example, the
basic function of a library is to provide books to
borrowers. Some libraries will also provide other
material, or perform reference functions, but these
are less basic. This notion of a basic goal is related
to the basic categories proposed by Rosch (1978),
who claimed that not all categories are equally use-
ful for cognition. Basic categories are more differ-
entiated from other categories, and have attributes
that are common to all or most members of the
category, thus provide us with more information
(the principle of cognitive economy). Basic catego-
ries also mirror the structure of the perceptual and
functional attributes of the natural world, thus
serve us better in our daily activities. Typically a
domain expert will identify the basic dialogue
goals in a domain, but we suggest that the basic
dialogue goals are discoverable in the underlying
database. While a difficult problem, we are moti-
vated by work in the database literature to identify
and rank the most likely queries for an arbitrary
database (Jayapandian & Jagadish, 2008).

We approach the problem of recovering dia-
logue goals from a database by restricting our at-
tention to the tuple selection task, a commonly
studied type of information-seeking dialogue in
which the user’s goal is to select a tuple from a
table. A relational database typically consists of
multiple tables, and each table can satisfy different
user goals. Given a database composed of multiple
tables, an open dialogue system calculates which

1085

tables are larger, have more natural language con-
tent, and greater connectivity to other tables. We
refer to these tables as candidate dialogue foci.
This notion of candidate focus for a dialogue is
similar to focus of attention (Grosz & Sidner,
1986) in that information-seeking dialogues can be
segmented to reflect the table both participants fo-
cus their attention on at a given time. We denote
the task of identifying candidate foci in a relational
database as focus discovery.

ODDMER’s focus discovery module returns an
ordered list of candidate foci, the focal summary.
The highest ranked focus is the most relevant to
basic user goals, those goals that pertain to the
most information-rich and intelligible table. For
our tuple-selection task, the highest-ranked focus is
the table from which the system predicts a user
will most likely want to select a tuple. A system
that begins a dialogue by first mentioning the most
relevant tables communicates the structure of the
database better than does a system that lists all ta-
bles in a random order. Users with more special-
ized goals may be interested in more peripheral
tables. For these users, more effort will be required
to establish a dialogue focus: several tables may be
proposed by the system and rejected before the
user agrees to consider a given table. In tests with
real users, we would expect them to find it ac-
ceptable for a specialized goal to take more effort
than a basic goal.

We use schema summarization to find candidate
focus tables. According to Yu and Jagadish (2006),
a schema summary should convey a concise under-
standing of the underlying database schema. They
identify table importance and coverage as criteria
for good schema summaries. Their summaries for
XML databases rank entities with higher cardinali-
ty (number of rows) and connectivity (number of
joins) as more important. Yang, Procopiuc, and
Srivastava (2009) extend schema summarization to
relational databases. We closely follow the Yang
algorithm but make modifications for dialogue to
account for attribute intelligibility.

A database schema is an undirected graph
G = <R,E> where each node r R corresponds to
a table in a database and each edge e E denotes
a join between two tables. A schema summary is a
set of the most important nodes in the schema.
Yang and colleagues compute the importance of a
table as a function of its size, total entropy of its
attributes, and connectivity to other tables. To in-

corporate connectivity, they employ a random
walk over the schema graph. The most important
tables maintain the highest information content in
the steady state of a random walk over the schema.

A significant feature of their algorithm is that a
table’s high-entropy attributes largely determine its
importance. It is possible to artificially inflate a
table’s importance under the Yang algorithm by
introducing a new column of distinct integer val-
ues; numeric and linguistic values contribute
equally to importance. For dialogue applications,
this is undesirable. A table with more intelligible
attributes is a more likely candidate focus because
it can more readily be discussed. We therefore
modify the Yang algorithm to compute table ver-
bality. Verbality is similar to importance except
that where Yang and colleagues use all attributes,
we use intelligible attributes identified by vocabu-
lary selection.

A table’s verbality score is a function of its car-
dinality, the entropy of its intelligible attributes,
and its connectivity to other tables. We apply vo-
cabulary selection to find natural language attrib-
utes. To calculate the verbality of a table T, let A
be the attributes of T and let Aʹ′ A be those attrib-
utes of T whose values are intelligible, found by
the classifier described previously. For BOOK, Aʹ′
consists of the attributes shown in Table 2. Define
V, the verbal information content of a table, as

where |T| is the cardinality of the table and H(a) is
the entropy of the attribute a in Aʹ′. The entropy of
a is given by 𝐻 𝑎 = − 𝑝! log 𝑝!!∈! where K is
the set of distinct values of a and pk is the fraction
of rows in T for which a=k. If table T has no joins,
V(T) is the final verbality score of T. Table 3
shows V(T) for each T in Heiskell.

To incorporate connectivity into verbality, we
create a matrix of transition probabilities between
every pair of nodes in the schema and determine
which table maintains the highest information. Let
J A be the attributes of T that join to other tables.
The information transfer (IT) over the join j J is

𝐼𝑇 𝑗 =
𝐻 𝑗

𝑉 𝑇 + 𝑞!𝐻 𝑎!∈!

where qa is the number of joins in which attribute a
participates. Let P(T,R) be the transition probabil-
ity from table T to table R. For T≠R, P(T,R) is the
sum of IT(j) for all joins j between T and R. These

∈
∈

⊆

V (T) = log(|T |)+ H (a)
a∈A '
∑

⊆
∈

1086

probabilities represent the flow of information be-
tween tables over their joins. The diagonal entries
of the transition matrix are given by

P(T,T) = ,
the information that stays within table T. We then
define the verbality of table Ti to be the ith element
in the stable distribution of a random walk over the
NxN matrix whose elements are P(Ti,Tj) for i,j
N. We follow Yang and colleagues and use power
iteration to find the stable distribution.

T V(T) Verbality(T)
Book 88.2 45.4
Heading 31.7 22.4
BibHeadingLink 19.2 23.6
CirculationHistory 17.9 24.9
Holding Stats 15.2 24.0
Patron Properties 12.7 21.9
Reserve 12.2 25.5
Patron 9.0 18.6

Table 3. Verbalities of Heiskell. V(T) is the verbal in-
formation of T. Verbality(T) incorporates connectivity.

Table 3 illustrates the verbalities of Heiskell be-
fore and after information transfer. BOOK clearly
dominates. Before information transfer there is
more verbal information V in BOOK than in the
next four tables combined. After information trans-
fer reaches a steady state, its connectivity with oth-
er tables increases their verbality, but BOOK re-
mains the leading candidate by a large margin.
HEADING’s verbality decreases sharply after in-
formation transfer because of its low connectivity.

The focus discovery module returns a focal
summary, a list of the top k tables with the highest
verbalities. The focal summary is similar to the
intensional summary described by Polifroni and
Walker (2008), which communicates the contents
of a single table to a user. A key difference is that
the focal summary pertains to the entire database.

ODDMER is currently limited to the table and
attribute labels assigned by the database designer.
For example, the Heiskell ‘BOOK’ table was la-
beled ‘BIBREC’ by the database designers, for Bib-
liographic Record. We renamed this table prior to
its use as a backend for the dialogue system. But
ODDMER has no way to determine if labels are
meaningful. In many cases there is a disincentive
towards meaningful table names to avoid conflicts
with SQL keywords. Future work will explore how
to infer more meaningful table and attribute labels

from a database instantiation, for example by con-
sulting external knowledge bases to predict the
entity a table represents.

3.3 Focus agent generation

Focus discovery fits naturally into an agent-based
or agenda-based approach to dialogue management
(Bohus & Rudnicky, 2009; Nguyen & Wobcke,
2005). At the onset of a dialogue, ODDMER’s root
agent announces the focal summary and prompts
the user for her goal. Upon receipt of a user reply,
it launches the appropriate focus agent, a finite
state machine based on Information State Update
(Traum & Larsson, 2003), whose parameters are a
table, its list of intelligible attributes, and their
computed specificity scores. The agent elicits con-
straints from the user until the current goal is satis-
fied or the user abandons the focus. Control over
the dialogue then returns to the root, which queries
the user for a new focus or ends the dialogue. Fig-
ure 2 shows a sample dialogue.

1. S: Hello, I can help you find a Book. Would you
like to find a Book?
2. U: I’d like a Book.
3. S: Do you know the annotation?
4: U: No.
5: S: Do you know the title?
6. U: It’s Gone with the Wind

Figure 2. ODDMER’s root agent gives the focal sum-
mary (k=1) in line 1. The BOOK focus agent launches in
line 3 and prompts for the value of the most specific
intelligible attribute.

The default strategy of the focus agent is to elicit
the most specific, intelligible constraints first.
While intelligible attributes are more likely to be
known by users, they are not equally valuable as
item descriptions. As shown in Table 2, the speci-
ficities of NARRATOR, PUBLISHER, and SERIES are
so low that a strategy involving them will likely
lead to inefficient dialogues and unsatisfied users.
The focus agent therefore orders its prompts for
constraints by their specificity, and requests the
most specific attributes first. Because specificity is
a function of the database instantiation and not user
knowledge, we expect that this strategy will lead to
shorter, more efficient dialogues for all users.

The dialogue starts with the root agent in con-
trol of the dialogue. The root agent announces the
focal summary, the k tables with highest verbality.

1 (,)
T R
P T R

≠
−∑

∈

1087

Here we let k=1. The root agent parses the user’s
reply to determine the focus of interest and launch-
es the appropriate agent. The agent interacts with
the user to find a tuple from the table. Its default
strategy elicits constraints from the user in order of
semantic specificity. Because semantic specificity
can apply to combinations of attributes, future
work will investigate tradeoffs between efficiency
and user effort in prompts for multiple attributes.

The focus agent queries the database upon re-
ceipt of each new constraint. If the return size is
small enough (here, a single tuple) it announces the
result. Otherwise it continues to elicit constraints
until all intelligible attributes have elicited values,
at which point it announces all matching results.
 ODDMER deals with three goal setbacks: (1) dis-
ambiguation, in which a query is under-constrained
and matches multiple tuples; (2) over-constrained
queries that have no matching tuple; and (3) attrib-
utes whose values are unknown to the user. The
third setback is particularly prevalent in real-world
databases. Our system addresses these setbacks
with specific, intelligible vocabulary.

4 Evaluation

ODDMER finds foci and vocabulary for any rela-
tional database. We evaluate it on three very dif-
ferent domains. These databases were chosen for
their variety, and are not equally suitable for dia-
logue. Our primary domain of consideration is
Heiskell, the database of the Heiskell Library.
Heiskell has eight tables. The largest table is CIR-
CULATION HISTORY, which contains 16 attributes
with 244,072 rows. However, focus discovery
identifies BOOK as the top candidate focus, which
matches our intuition. Though BOOK is smaller at
only 71,166 rows, it has 32 attributes of which
seven are classified as intelligible. The classifier
finds none of CIRCULATION HISTORY’s attributes
intelligible. Manual inspection revealed CIRCULA-
TION HISTORY to consist primarily of alphanumeric
codes relevant to the library rather than to users.

The second domain we consider is Grocery, a
small supermarket database used as a teaching tool
in an undergraduate class at Hunter College. Gro-
cery has 20 tables. Their cardinalities range from 7
to 197 rows. The top focus in Grocery represents
the products sold in the store. It was the largest
table with the greatest connectivity, and makes

intuitive sense; it is the table a supermarket cus-
tomer would most likely want to talk about.

To challenge our system we consider Eve, a
freely available database for the virtual game Eve
Online, a massively multiplayer online role-
playing game with over 400,000 subscribers. Eve
has 78 tables and the game’s active community
regularly accesses it to determine in-game goals
and objects of interest. Eve is a challenge for
ODDMER because it primarily contains numeric
data for objects in the game world. These numeric
attributes are of great interest to players but con-
found our assumption that dialogue goals correlate
with high verbality. Moreover, connectivity plays
no role in table verbality because Eve contains no
joins. Focus discovery on Eve identifies INVTYPES,
a table that represents in-game inventory items, as
the best focus, even though vocabulary selection
identifies only three of its 15 attributes as intelligi-
ble. The 12 unintelligible attributes were all nu-
meric. In general, focus discovery and vocabulary
selection proved less effective on Eve than on
Heiskell. In Eve the verbality scores of the top ta-
bles were close together without one outstanding
focus candidate.

4.1 Simulating the vocabulary problem

A typical evaluation of a spoken dialogue system
provides users with all the information needed to
carry out a dialogue. Such a completely knowl-
edgeable user can unrealistically describe objects
in the domain with the same vocabulary that the
system uses. This means it does not experience the
vocabulary problem. To test vocabulary selection,
we simulate users with incomplete domain
knowledge. In contrast with Selfridge and Heeman
(2010), our limited-knowledge users are more like-
ly to know some attributes than others.

User simulation is often used to stand in for real
user dialogues, but it is a concern whether the dia-
logues are sufficiently realistic (Schatzmann,
Georgila, & Young, 2005). Here, we use simula-
tion to exercise each dialogue system with a large
number of cases in a highly controlled fashion. For
simulated users, we can specify exactly what each
user knows about the domain, thus simulation
makes it possible to hold everything else the same
while contrasting users with complete versus in-
complete domain knowledge. We view this as a
preliminary step towards evaluation with real us-
ers, which we hope to do in future work.

1088

 Heiskell Grocery Eve
C/N/R 15.9 ± 0.4	
 11.1 ± 0.2 16.3 ± 0.4
C/N/S 9.0 ± 0.0 9.0 ± 0.0 9.0 ± 0.0
C/V/R 11.5 ± 0.2 11.1 ± 0.3 10.6 ± 0.1
C/V/S 9.5 ± 0.1 9.0 ± 0.0 9.0 ± 0.0
L/N/R 25.3 ± 0.8 13.1 ± 0.2 17.7 ± 0.5
L/N/S 16.5 ± 0.6 9.3 ± 0.1	
 9.4 ± 0.1	

L/V/R 12.4 ± 0.2	
 12.2 ± 0.1	
 10.7 ± 0.1	

L/V/S 11.3 ± 0.2	
 9.7 ± 0.1	
 9.0 ± 0.0	

Table 4. Mean dialogue length across domains. C/*/*:
complete-knowledge user; L/*/*: incomplete-
knowledge user; */N/*: no vocabulary selection; */V/*:
with vocabulary selection; */*/R: random order; */*/S:
order by specificity. Intervals are 95% confidence.

Our simulated user knows each attribute’s value

with a different probability. Ideally we might esti-
mate these probabilities from a language model of
a corpus in the domain. Unfortunately our domains
contain many obscure names and non-verbal val-
ues for which we need non-zero probabilities. In-
stead, we estimate a probability for attribute value
knowledge by calculating the frequency of total
value occurrences in a subset of the New York
Times portion of the English Gigaword corpus
(Parker et al., 2011), a 4 million word corpus of
news articles. These frequency values could have
been used during vocabulary selection but we
chose to reserve them for evaluation.

The probability that the limited-knowledge user
knows a particular value is the normalized fre-
quency that the attribute’s values appear in Giga-
word. We tokenized attribute values in our data-
bases to remove punctuation and case. We ignored
word order so that, for example, the author values
“King, Stephen” and “Stephen King” are equiva-
lent. For each value, we counted the articles in
which all the value’s tokens co-occurred. For each
attribute, we took the sum of these counts over all
its values, and took its log to represent the proba-
bility that the user knows that attribute. We then
normalized by the log of the highest-frequency
attribute to enforce our assumption that the user
usually knows at least one piece of information
about her goal. This method is robust to attributes
with missing values. Probabilities for the BOOK
attributes were 100% for TITLE, 78% for AUTHOR,
75% for PLACE PUBLISHED, and 73% for PUB-
LISHER. ISBN has a 0% probability because none
of its values occur in the corpus. ANNOTATIONS,
whose values are brief plot descriptions of each

book, has a low 37%. Although its values con-
tained many common words, the words in a single
annotation rarely co-occurred in one article.

4.2 Testing the impact of domain knowledge

We evaluate dialogue efficiency with two simulat-
ed users as measured by number of turns. The first
user, C, has complete domain knowledge and al-
ways knows every constraint. The second, L, has
limited, incomplete domain knowledge. When con-
fronted with the focal summary, the simulated user
always chooses the top suggested focus. The dia-
logue ends when either a single tuple matching the
constraints is found, or all constraints have been
requested, in which case all matching tuples are
announced. We measure average dialogue length
of 1000 simulated dialogues for each user with
vocabulary selection (V) and without (N), and with
prompts ordered randomly (R) or by specificity
(S). Table 4 shows the results. ANOVAs of all
pairs of comparisons were highly significant.

The longest dialogues for both users occur
without vocabulary selection and with prompts in
random order (*/N/R). The more attributes there
are, the longer it takes a random order to achieve a
constraint combination that forms a key, so C has
long dialogues even though it knows every con-
straint. L experiences much longer dialogues be-
cause it is prompted for inefficient constraints, and
is unlikely to know most of them. This difference
is particularly noticeable in Heiskell. On average,
L’s dialogues are ten turns longer.

Ordering prompts by specificity without vocabu-
lary selection (*/N/S) yields a sharp increase in
efficiency for both users. C’s dialogues achieve the
minimum number of turns because it is immediate-
ly asked for the most specific constraint, which it
always knows. In Heiskell, specificity decreases
L’s average length from 25.3 to 16.5, a large in-
crease in efficiency but still much worse than C.
For Eve, L performs better in the absence of vo-
cabulary selection. Specificity alone brings its av-
erage efficiency near optimum. This is because for
Eve’s INVTYPES table, the most specific intelligible
attribute is the item’s NAME, which our domain
knowledge model predicts L will always know.

Vocabulary selection is more effective than
specificity for L on Heiskell. L is much more likely
to know the selected attributes and its efficiency
increases even when prompted for intelligible at-
tributes in a random order. Vocabulary selection is

1089

less effective than specificity for C because C
knows every attribute, but in general the intelligi-
ble attributes are also more specific, so selection
increases C’s efficiency even with random
prompts. Vocabulary selection combined with
specificity (*/V/S) leads to a small decrease in ef-
ficiency for C on Heiskell over specificity alone.
This is because the most specific intelligible attrib-
ute is slightly ambiguous, and C must occasionally
supply extra constraints to disambiguate. However,
with both specificity and vocabulary selection, L
achieves a mean dialogue length of 11.3, requiring
only two turns more than C to order a book.

For Eve, vocabulary selection and order-by-
specificity are each effective individually, and
yield similar dialogues for both L and C. This is
because INVTYPES has only three intelligible at-
tributes, so the dialogue ends after at most three
prompts. Our domain knowledge model predicts
close to 100% knowledge for two of these.

A comparison of the order-by-specificity strate-
gy used here with the order-by-entropy strategy
described by Polifroni and Walker (2006) yielded
no significant difference in dialogue length. The
two strategies produce similar attribute orders.

5 Conclusion and Open Questions

We have demonstrated an open dialogue manage-
ment system, ODDMER, which formulates a dia-
logue strategy by computing metaknowledge about
its database: table verbality, attribute intelligibility,
and attribute specificity. Candidate dialogue foci
are the tables with high verbality. For each candi-
date focus, ODDMER chooses an intelligible do-
main vocabulary and generates a default strategy
that orders prompts by specificity. A simulated
user facing the vocabulary problem achieves more
efficient dialogues with vocabulary selection. Our
method works well on the Heiskell Library data-
base, which has a particularly prominent candidate
focus showing a clear separation between intelligi-
ble and unintelligible attributes. Focus discovery
and vocabulary selection are less effective for nu-
meric databases without clear dialogue goals. For
example, Eve’s top focus scored the highest verbal-
ity, even though the table contained only three in-
telligible attributes.

Questions that arise from this work include how
to extend focus discovery and vocabulary selection
to numerical databases, how to extract strategies

for goals other than tuple-selection from a data-
base, and how to automatically infer intelligible
table and attribute labels. We are also interested in
discovery of less rigid dialogue goals, for example,
a library patron who would be satisfied by an al-
ternative book, and goals involving information
aggregation where user utterances map to sophisti-
cated queries. We would like to investigate how
optimal policies learned through reinforcement
learning vary across domains. Future work will
also scale to mixed-initiative open dialogue man-
agement, explore more sophisticated models of
user domain knowledge, and evaluate portability
on more databases.

ODDMER uses the semantics of its domain rep-
resentation to discover what to talk about and how
to talk about it. We envision a rich toolkit that ena-
bles a system to explore its database for knowledge
to exploit in collaborative dialogues with its users.

Acknowledgements
The first author was supported in part by NSF
grant IIS-0803481, ONR grant N00014-11-1-0294,
and DARPA contract FA8750-09-C-0179. The
second author was supported by the NSF grant IIS-
0745369. This research was carried out at Colum-
bia University. We thank Susan Epstein, Oren
Etzioni, Wlodek Zadrozny, and the anonymous
reviewers for helpful comments. We thank Luis
Gravano for valuable literature suggestions, and
Susan Epstein for use of the Grocery database.

References
Bohus, D., & Rudnicky, A. (2009). The RavenClaw

Dialog Management Framework: Architecture and
systems. Computer Speech and Language 23(3),
332-361.

Chotimongkol, A., & Rudnicky, A. I. (2008). Acquiring
Domain-Specific Dialog Information from Task-
Oriented Human-Human Interaction through an
Unsupervised Learning. Paper presented at the
Conference on Empirical Methods in Natural
Language Processing (EMNLP '08).

Cimiano, P., Haase, P., Heizmann, J., Mantel, M., &
Studer, R. (2008). Towards Portable Natural
Language Interfaces to Knowledge Bases - The case
of the ORAKEL system. Data & Knowledge
Engineering, 65(2), 325-354.

Cohen, W. W. (1995). Fast Effective Rule Induction.
Paper presented at the Twelfth International
Conference on Machine Learning.

1090

Demberg, V., & Moore, J. D. (2006). Information
Presentation in Spoken Dialogue Systems. Paper
presented at the 11th Conference of the European
Chapter of the Association of Computational
Linguistics (EACL 2006).

Freund, Y., & Mason, L. (1999). The Alternating
Decision Tree Learning Algorithm. Paper presented
at the Sixteenth International Conference on
Machine Learning (ICML).

Furnas, G. W., Landauer, T. K., Gomez, L. M., &
Dumais, S. T. (1987). The Vocabulary Problem in
Human-System Communication. Communications of
the ACM, 30(11), 964-971.

Grosz, B. J. (1983). TEAM: a Transportable Natural-
Language Interface System. Paper presented at the
First conference on Applied natural language
processing.

Grosz, B. J., & Sidner, C. L. (1986). Attention,
intentions, and the structure of discourse.
Computational Linguistics, 12(3), 175-204.

Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., & Witten, I. H. (2009). The WEKA
Data Mining Software: An Update. SIGKDD
Explorations, 11(1).

Hastie, H., Liu, X., & Lemon, O. (2009). Automatic
Generation of Information State Update Dialogue
Systems that Dynamically Create Voice XML, as
Demonstrated on the iPhone. Paper presented at the
10th Annual SIGdial Meeting on Discourse and
Dialogue (SIGdial 2009).

Hixon, B., Passonneau, R. J., & Epstein, S. L. (2012).
Semantic Specificity in Spoken Dialogue Requests.
Paper presented at the 13th Annual SIGdial Meeting
on Discourse and Dialogue (SIGdial 2012).

Janarthanam, S., & Lemon, O. (2010). Learning to
Adapt to Unknown Users: Referring Expression
Generation in Spoken Dialogue Systems. Paper
presented at the 48th Annual Meeting of the
Association for Computational Linguistics (ACL
2010), Uppsala, Sweden.

Jayapandian, M., & Jagadish, H. V. (2008). Automated
creation of a forms-based database query interface.
Paper presented at the 34th international conference
on Very large data bases (VLDB '08).

Krippendorff, K. (1980). Content Analysis: An
Introduction to its Methodology. Beverly Hills, CA:
Sage Publications.

Nguyen, A., & Wobcke, W. (2005). An Agent-based
Approach to Dialogue Management in Personal
Assistants. Paper presented at the 10th international
conference on Intelligent user interfaces (IUI '05),
New York.

Paek, T., & Pieraccini, R. (2008). Automating Spoken
Dialogue Management Design Using Machine
Learning: An Industry Perspective. Speech
Communication, 50, 716-729.

Parker, R., Graff, D., Kong, J., Chen, K., & Maeda, K.
(2011). English Gigaword Fifth Edition.
Philadelphia: Linguistic Data Consortium.

Polifroni, J., Chung, G., & Seneff, S. (2003). Towards
the Automatic Generation of Mixed-Initiative
Dialogue Systems from Web Content. Paper
presented at the Eurospeech 2003.

Polifroni, J., & Walker, M. (2006). Learning Database
Content for Spoken Dialogue System Design. Paper
presented at the 5th International Conference on
Language Resources and Evaluation (LREC).

Polifroni, J., & Walker, M. (2008). Intensional
Summaries as Cooperative Responses in Dialogue:
Automation and Evaluation. Paper presented at the
ACL-HLT.

Rieser, V., & Lemon, O. (2009). Does this list contain
what you were searching for? Learning Adaptive
Dialogue Strategies for Interactive Question
Answering. Natural Language Engineering, 15(1),
55-72.

Rosch, E. (1978). Principles of Categorization. In E.
Rosch & B. Lloyd (Eds.), Cognition and
Categorization (pp. 27-48). Hillsdale, NJ: Lawrence
Erlbaum.

Schatzmann, J., Georgila, K., & Young, S. (2005).
Quantitative Evaluation of User Simulation
Techniques for Spoken Dialogue Systems. Paper
presented at the 6th SIGdial Workshop on Discourse
and Dialogue.

Selfridge, E., & Heeman, P. (2010). Importance-Driven
Turn-Bidding for Spoken Dialogue Systems. Paper
presented at the 48th Annual Meeting of the
Association for Computational Linguistics (ACL
2010).

Traum, D., & Larsson, S. (2003). The Information State
Approach to Dialogue Management. In Jan van
Kuppevelt and Ronnie Smith (Eds.), Current and
new directions in discourse and dialogue. Kluwer:
325-353.

Varges, S., Weng, F., & Pon-Barry, H. (2006).
Interactive Question Answering and Constraint
Relaxation in Spoken Dialogue Systems. Paper
presented at the 7th Annual SIGdial Meeting on
Discourse and Dialogue (SIGdial 2006).

Yang, X., Procopiuc, C. M., & Srivastava, D. (2009).
Summarizing Relational Databases. Paper presented
at the 35th international conference on Very large
data bases (VLDB '09).

Yu, C., & Jagadish, H. V. (2006). Schema
Summarization. Paper presented at the 32nd
international conference on Very large data bases
(VLDB '06).

1091

