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Abstract 

We present open dialogue management and its 
application to relational databases. An open 
dialogue manager generates dialogue states, ac-
tions, and default strategies from the semantics 
of its application domain. We define three open 
dialogue management tasks. First, vocabulary 
selection finds the intelligible attributes in each 
database table. Second, focus discovery selects 
candidate dialogue foci, tables that have the 
most potential to address basic user goals. 
Third, a focus agent is instantiated for each dia-
logue focus with a default dialogue strategy 
governed by efficiency. We demonstrate the 
portability of open dialogue management on 
three very different databases. Evaluation of 
our system with simulated users shows that us-
ers with realistically limited domain knowledge 
have dialogues nearly as efficient as those of 
users with complete domain knowledge.  

1 Introduction 

This paper presents open dialogue management. 
An open dialogue manager (ODM) generates dia-
logue states, actions, and strategies from 
knowledge it computes about the semantics of its 
domain. A dialogue strategy is the procedure by 
which a system chooses its next action given the 
current state of the dialogue. The system's dialogue 
policy completely specifies which strategy to use 
in any dialogue state. Strategies can be handcrafted 
or learned. Reinforcement learning, the leading 
method for dialogue strategy learning, can yield 
powerful results but relies on small sets of states 
and actions predefined by the researcher. This 
reliance on domain expertise limits machine 

learned dialogue managers to the domains for 
which they were specifically designed, and 
contributes to the prevalence of handcrafted 
strategies over machine learning approaches for 
dialogue management in commercial applications 
(Paek & Pieraccini, 2008). We argue that open dia-
logue management, which exploits the semantics 
and contents of its database to generate actions, 
states and default strategies, is a step towards a 
dialogue manager that operates across domains.  

As a first step to open dialogue management we 
present ODDMER (OPEN-DOMAIN DIALOGUE 
MANAGER), the first dialogue system to generate 
its own dialogue strategy from relational databases. 
ODDMER’s vocabulary selection module uses 
supervised learning to determine each table’s intel-
ligible attributes, those most likely to be in the us-
er’s vocabulary. Its focus discovery module finds 
candidate dialogue foci, tables that have the most 
potential to address basic user goals. Foci are iden-
tified with schema summarization through a ran-
dom walk over the database schema that ranks ta-
bles by size, linguistic information, and connectivi-
ty. For each candidate focus, ODDMER instanti-
ates a focus agent that prompts users for values of 
intelligible attributes ordered by efficiency.  

 
Figure 1. ODDMER uses focus discovery and vocabu-
lary selection to choose its states, actions, and strategy. 
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This paper addresses a particular type of infor-
mation-seeking dialogue in which the user’s goal is 
to select a tuple from a table. Tuples are identified 
by constraints, attribute-value pairs elicited from a 
user during the dialogue. A typical user, however, 
cannot supply all values with equal readiness. For 
example, attributes such as primary or foreign keys 
are irrelevant or unintelligible to users. This results 
in a vocabulary problem, a mismatch between sys-
tem and user vocabulary (Furnas et al., 1987). Fur-
thermore, tables differ in their relevance to users. 
Tables that contain little semantic information have 
less potential to address user goals. Dialogue sys-
tems for relational databases often rely on manual 
pre-processing to select the attributes a typical user 
can most readily supply and identify the tables 
with the most relevance to basic user goals. An 
open dialogue system obviates this manual step by 
exploiting the database semantics.  

For example, Heiskell is a library database that 
includes a table for books (BOOK) and a table for 
book subject headings (HEADING). A typical pa-
tron wants a book, not a heading. Due to BOOK's 
larger size, its greater number of intelligible attrib-
utes, and its higher connectivity to other tables, 
ODDMER recognizes that a BOOK tuple satisfies a 
more basic user goal. BOOK has 32 attributes, most 
of which are numeric fields familiar to a librarian 
but arcane to the user. ODDMER selects the ta-
ble’s intelligible attributes as its vocabulary. It rec-
ognizes that a book’s author and title are intelligi-
ble, but the book’s ISBN is not. Consequently, 
ODDMER will not ask the user for the ISBN. 

ODDMER assumes a user of the Heiskell data-
base will be likely to know one or more intelligible 
attributes of books. ODDMER ranks intelligible 
attribute-value pairs by their semantic specificity, 
the degree to which they uniquely identify a tuple. 
To demonstrate the benefit of pre-computing this 
semantic information, we test ODDMER on three 
databases with simulated users of two knowledge 
levels. Complete-knowledge users know all attrib-
ute values. They have no vocabulary problem, will 
always be able to supply a requested constraint, 
and require no vocabulary selection to achieve 
maximum dialogue efficiency. Incomplete-
knowledge users have a more realistic vocabulary. 
They know values for different attributes with dif-
ferent probabilities. Without vocabulary selection, 
these users have long, inefficient dialogues. Given 
ODDMER’s vocabulary selection and efficient 

dialogue strategy, these users achieve their goals 
nearly as efficiently as complete-knowledge users.  

2 Related Work 

ODDMER is the first dialogue system to examine 
a database and choose which tables and attributes 
to use in dialogue. We envision open dialogue 
management as a suite of domain-independent pro-
cedures through which a dialogue manager can 
exploit its knowledge base. Hastie, Liu, and Lemon 
(2009) also generate policies from databases. They 
do not consider multiple tables, and they depend 
on handcrafted Business Process Models that ex-
plicitly specify the dialogue flow for the domain. 
This limits their method to domains with available 
models. Polifroni, Chung, and Seneff (2003) also 
argue for the importance of generic, domain-
independent dialogue managers. Their portable 
information presentation strategies cluster attribute 
values to summarize database contents for users. 
Neither of these works considers how to choose 
attributes or find which domain entities are likely 
objects of dialogue goals. Chotimongkol and 
Rudnicky (2008) use unsupervised learning to au-
tomatically acquire task-specific information from 
a corpus of in-domain human-human dialogue 
transcripts. They require a large corpus whereas we 
need only the underlying database.  

The vocabulary problem has received relatively 
little attention in dialogue research, and no method 
to automatically identify intelligible constraints has 
been previously demonstrated. Demberg and 
Moore (2006) choose constraints with a user model 
that records user importance, such as ‘price’ for a 
student in a restaurant domain. They require a 
manually crafted user model and must match mod-
el to user. Polifroni and Walker (2006) use attrib-
ute entropy to order system initiative prompts, but 
assume that both the table and the relevant attrib-
utes are known a priori. Varges, Weng, and Pon-
Barry (2006) develop a WOZ system in which a 
wizard recommends to real users what constraint to 
provide that will best narrow down results. Each of 
these works assumes all constraints are intelligible.  

Two recent works concentrate more closely on 
the vocabulary problem. Janarthanam and Lemon 
(2010) build a system that determines a user’s level 
of referring expression expertise, but manually de-
termine the set of possible expressions. Selfridge 
and Heeman (2010) simulate users with different 
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levels of domain knowledge. A novice has a 10% 
chance to know any constraint, and an expert a 
90% chance. They do not consider users who know 
different constraints with different probabilities as 
we do, and do not consider databases that contain 
attributes likely to be unintelligible to most users.  

Reinforcement learning, the leading approach 
for learning a dialogue strategy, demonstrates 
powerful results. For example, Rieser and Lemon 
(2009) find the optimal size of a list of tuples that 
match a user’s constraints and when to display it in 
different user environments. A dialogue strategy is 
treated as a policy, a function that maps states to 
actions. Policy optimization is a Markov decision 
process. Paek and Pieraccini (2008) argue that re-
inforcement learning is limited by its reliance upon 
small sets of manually defined states and actions, 
with no standard method to determine these. 
ODDMER identifies dialogue states and actions 
automatically. Its default strategy could be opti-
mized with reinforcement learning. 

Portability is an important research area in natu-
ral-language interfaces to databases (NLIDBs). An 
NLIDB parses a user utterance into a logical form, 
which is transformed into a database query. Users 
typically know the database structure and contents. 
TEAM (Grosz, 1983), the first portable NLIDB, 
questions a domain expert to acquire linguistic 
knowledge for new databases. More recently, the 
ORAKEL interface (Cimiano et al., 2008) partially 
derives a domain-specific lexicon from a generic 
ontology. Here we do not focus on parsing of user 
questions, but on the acquisition of dialogue states, 
actions, and strategies from a database. 

3 The ODDMER Dialogue System 

ODDMER’s vocabulary selection module finds 
each table’s intelligible attributes. Its focus discov-
ery module identifies candidate foci. A focus agent 
module instantiates dialogue agents for each focus. 
Their default strategy elicits attribute values from 
users in order of semantic specificity.  

3.1 Vocabulary Selection 

A vocabulary is the set of words and expressions 
used to discuss a domain. Domain entities can be 
identified by their descriptions, or sets of attribute-
value pairs. In order for a system and a user to 
profitably engage in a natural language dialogue 
about database items, descriptions should consist 

of attributes and values understood by both system 
and user. We define the vocabulary selection task 
as the automatic selection of attribute-value pairs 
that the system expects its users will use to de-
scribe domain entities. 

Successful vocabulary selection solves the vo-
cabulary problem. The vocabulary problem is a 
bottleneck to portability because the attributes a 
user is likely to know must be predetermined for 
existing systems. ODDMER learns a classifier to 
determine a table’s intelligible attributes. An at-
tribute is intelligible if its values are in a user’s 
vocabulary. A user interested in a particular item 
but unfamiliar with the structure of a database is 
more likely to recognize an intelligible attribute, 
and to know all or part of the relevant value.  

To determine intelligible attributes, ODDMER 
currently relies on a binary classifier that takes as 
input the values of each attribute found in a partic-
ular instantiation of a relational database. To train 
the classifier, we labeled a set of 84 attributes be-
longing to tables taken from the Microsoft Adven-
tureWorks Cycle Company database, a benchmark 
database packaged with Microsoft SQL Server. An 
attribute was labeled as intelligible if its values 
were likely to be known to a user. Four annotators 
worked independently to label the attributes. Pair-
wise agreement was 69%, and Krippendorff’s al-
pha (Krippendorff, 1980) was 0.42.  The low 
agreement can be attributed in part to the many 
ways to interpret the question annotators were to 
answer. The instructions indicated that the goal 
was to identify attributes corresponding to com-
mon-sense knowledge, but for a given table, anno-
tators were shown all the attributes and asked 
whether they would know a value. For an employ-
ee table, annotators disagreed on attributes such as 
birthdate, hire date, and organization level. If they 
had instead been asked whether anyone without 
access to the table might know a value, there may 
have been more agreement. 

 
Ratio of unique to total characters in all values 
Mean ratio of unique to total characters per value 
Ratio of numeric to total characters in all values 
Ratio of unique to total values 
Ratio of unique to total words in all values 
Total number of characters in all values 

Table 1. Representative features for attribute classifica-
tion used in the best-performing intelligibility classifier. 
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The training data for the classifier consisted of 
67 attributes that at least three annotators agreed on 
(22 intelligible, 45 not intelligible); pairwise 
agreement was 0.81 and Krippendorff’s alpha was 
0.61. They represented 8 tables and contained a 
total of 393,520 values, 123,901 of which were 
unique. For each attribute we extracted 17 features 
to represent the linguistic expressiveness of the 
attributes’ values. An attribute whose values are 
more like natural language is more intelligible. 
Table 1 lists the features of the best classifier. 

We tested several binary classifiers in Weka 
(Hall et al., 2009). ADTree (Freund & Mason, 
1999) with ten boosting iterations performed best, 
with 91% recall and 91% precision under 10-fold 
cross-validation. However, the ADTree models 
were overfitted to the AdventureWorks domain. 
The RIPPER rule-learning algorithm (Cohen, 
1995) achieved 77% precision and 78% recall. Be-
cause its learned model of three simple rules gen-
eralizes better to our domains, ODDMER uses the 
RIPPER intelligibility classifier. 

Given a table, the vocabulary selection module 
returns which of its attributes should be in the sys-
tem’s vocabulary. For the Heiskell Library domain, 
the 32 attributes of the BOOK table include many 
internal codes understood by librarians but not by 
users. Only the seven attributes shown in Table 2 
are classified as intelligible. Dialogues with only 
intelligible attributes should be more efficient for 
users with incomplete domain knowledge, because 
they will be more likely to know their values.  

ODDMER’s vocabulary selection module also 
computes the semantic specificity score of each 
attribute (Hixon, Passonneau, & Epstein, 2012). 
Semantic specificity rates an attribute on a scale 
from 0 to 1 according to how unambiguously its 
values map to rows in the database. More specific 
attributes are expected to be more efficient 
prompts. Table 2 lists the specificity values of the 
intelligible attributes for BOOK.  

 
Intelligible Attributes Specificity 

ANNOTATION 
TITLE 
SORTTITLE 
AUTHOR 
NARRATOR 
PUBLISHER 
SERIES 

0.958	
  
0.878	
  
0.878	
  
0.300	
  
0.018	
  
0.016	
  
0.003	
  

Table 2. Intelligible attributes for BOOK sorted by speci-
ficity. (SORTTITLE is a duplicate of TITLE.) 

3.2 Candidate Dialogue Focus Discovery 

Information-seeking dialogues address diverse dia-
logue goals. For example, users may want to iden-
tify a tuple in a table (“I want a certain book by 
Stephen King.”), retrieve the value of an attribute 
for a given tuple (“Is my plane on time?” “Who 
wrote Moby Dick?”), aggregate over a set of tuples 
(“How many Italian restaurants are in this neigh-
borhood?”), or compare values of different tuples 
(“Which restaurant is more expensive?”). Each of 
these dialogue goals represents a distinct infor-
mation need. However, not all possible information 
needs in a domain are equally likely. For example, 
a user is unlikely to ask for the value of a primary 
key attribute, or to select a tuple from a table that 
contains only primary and foreign keys. A dialogue 
system should place less priority on addressing 
these peripheral dialogue goals.  

Given a particular domain, we assume that some 
goals are more basic than others. For example, the 
basic function of a library is to provide books to 
borrowers. Some libraries will also provide other 
material, or perform reference functions, but these 
are less basic. This notion of a basic goal is related 
to the basic categories proposed by Rosch (1978), 
who claimed that not all categories are equally use-
ful for cognition. Basic categories are more differ-
entiated from other categories, and have attributes 
that are common to all or most members of the 
category, thus provide us with more information 
(the principle of cognitive economy). Basic catego-
ries also mirror the structure of the perceptual and 
functional attributes of the natural world, thus 
serve us better in our daily activities. Typically a 
domain expert will identify the basic dialogue 
goals in a domain, but we suggest that the basic 
dialogue goals are discoverable in the underlying 
database. While a difficult problem, we are moti-
vated by work in the database literature to identify 
and rank the most likely queries for an arbitrary 
database (Jayapandian & Jagadish, 2008).  

We approach the problem of recovering dia-
logue goals from a database by restricting our at-
tention to the tuple selection task, a commonly 
studied type of information-seeking dialogue in 
which the user’s goal is to select a tuple from a 
table. A relational database typically consists of 
multiple tables, and each table can satisfy different 
user goals. Given a database composed of multiple 
tables, an open dialogue system calculates which 
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tables are larger, have more natural language con-
tent, and greater connectivity to other tables. We 
refer to these tables as candidate dialogue foci. 
This notion of candidate focus for a dialogue is 
similar to focus of attention (Grosz & Sidner, 
1986) in that information-seeking dialogues can be 
segmented to reflect the table both participants fo-
cus their attention on at a given time. We denote 
the task of identifying candidate foci in a relational 
database as focus discovery. 

ODDMER’s focus discovery module returns an 
ordered list of candidate foci, the focal summary. 
The highest ranked focus is the most relevant to 
basic user goals, those goals that pertain to the 
most information-rich and intelligible table. For 
our tuple-selection task, the highest-ranked focus is 
the table from which the system predicts a user 
will most likely want to select a tuple. A system 
that begins a dialogue by first mentioning the most 
relevant tables communicates the structure of the 
database better than does a system that lists all ta-
bles in a random order. Users with more special-
ized goals may be interested in more peripheral 
tables. For these users, more effort will be required 
to establish a dialogue focus: several tables may be 
proposed by the system and rejected before the 
user agrees to consider a given table.  In tests with 
real users, we would expect them to find it ac-
ceptable for a specialized goal to take more effort 
than a basic goal.  

We use schema summarization to find candidate 
focus tables. According to Yu and Jagadish (2006), 
a schema summary should convey a concise under-
standing of the underlying database schema. They 
identify table importance and coverage as criteria 
for good schema summaries. Their summaries for 
XML databases rank entities with higher cardinali-
ty (number of rows) and connectivity (number of 
joins) as more important. Yang, Procopiuc, and 
Srivastava (2009) extend schema summarization to 
relational databases. We closely follow the Yang 
algorithm but make modifications for dialogue to 
account for attribute intelligibility. 

A database schema is an undirected graph  
G = <R,E> where each node r  R corresponds to 
a table in a database and each edge e  E denotes 
a join between two tables. A schema summary is a 
set of the most important nodes in the schema. 
Yang and colleagues compute the importance of a 
table as a function of its size, total entropy of its 
attributes, and connectivity to other tables. To in-

corporate connectivity, they employ a random 
walk over the schema graph. The most important 
tables maintain the highest information content in 
the steady state of a random walk over the schema. 

A significant feature of their algorithm is that a 
table’s high-entropy attributes largely determine its 
importance. It is possible to artificially inflate a 
table’s importance under the Yang algorithm by 
introducing a new column of distinct integer val-
ues; numeric and linguistic values contribute 
equally to importance. For dialogue applications, 
this is undesirable. A table with more intelligible 
attributes is a more likely candidate focus because 
it can more readily be discussed. We therefore 
modify the Yang algorithm to compute table ver-
bality. Verbality is similar to importance except 
that where Yang and colleagues use all attributes, 
we use intelligible attributes identified by vocabu-
lary selection. 

A table’s verbality score is a function of its car-
dinality, the entropy of its intelligible attributes, 
and its connectivity to other tables. We apply vo-
cabulary selection to find natural language attrib-
utes. To calculate the verbality of a table T, let A 
be the attributes of T and let Aʹ′ A be those attrib-
utes of T whose values are intelligible, found by 
the classifier described previously. For BOOK, Aʹ′ 
consists of the attributes shown in Table 2. Define 
V, the verbal information content of a table, as 

 

where |T| is the cardinality of the table and H(a) is 
the entropy of the attribute a in Aʹ′. The entropy of 
a is given by 𝐻 𝑎 = − 𝑝! log 𝑝!!∈!  where K is 
the set of distinct values of a and pk is the fraction 
of rows in T for which a=k. If table T has no joins, 
V(T) is the final verbality score of T. Table 3 
shows V(T) for each T in Heiskell. 

To incorporate connectivity into verbality, we 
create a matrix of transition probabilities between 
every pair of nodes in the schema and determine 
which table maintains the highest information. Let 
J A be the attributes of T that join to other tables. 
The information transfer (IT) over the join j J is 

𝐼𝑇 𝑗 =
𝐻 𝑗

𝑉 𝑇 + 𝑞!𝐻 𝑎!∈!
 

where qa is the number of joins in which attribute a 
participates. Let P(T,R) be the transition probabil-
ity from table T to table R. For T≠R, P(T,R) is the 
sum of IT(j) for all joins j between T and R. These 

∈
∈

⊆

V (T ) = log(|T |)+ H (a)
a∈A '
∑

⊆
∈
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probabilities represent the flow of information be-
tween tables over their joins. The diagonal entries 
of the transition matrix are given by 

P(T,T) = , 
the information that stays within table T. We then 
define the verbality of table Ti to be the ith element 
in the stable distribution of a random walk over the 
NxN matrix whose elements are P(Ti,Tj) for i,j 
N. We follow Yang and colleagues and use power 
iteration to find the stable distribution. 
 

T V(T) Verbality(T) 
Book 88.2 45.4 
Heading 31.7 22.4 
BibHeadingLink 19.2 23.6 
CirculationHistory 17.9 24.9 
Holding Stats 15.2 24.0 
Patron Properties 12.7 21.9 
Reserve 12.2 25.5 
Patron 9.0 18.6 

Table 3. Verbalities of Heiskell. V(T) is the verbal in-
formation of T. Verbality(T) incorporates connectivity. 

Table 3 illustrates the verbalities of Heiskell be-
fore and after information transfer. BOOK clearly 
dominates. Before information transfer there is 
more verbal information V in BOOK than in the 
next four tables combined. After information trans-
fer reaches a steady state, its connectivity with oth-
er tables increases their verbality, but BOOK re-
mains the leading candidate by a large margin. 
HEADING’s verbality decreases sharply after in-
formation transfer because of its low connectivity.  

The focus discovery module returns a focal 
summary, a list of the top k tables with the highest 
verbalities. The focal summary is similar to the 
intensional summary described by Polifroni and 
Walker (2008), which communicates the contents 
of a single table to a user. A key difference is that 
the focal summary pertains to the entire database. 

ODDMER is currently limited to the table and 
attribute labels assigned by the database designer. 
For example, the Heiskell ‘BOOK’ table was la-
beled ‘BIBREC’ by the database designers, for Bib-
liographic Record. We renamed this table prior to 
its use as a backend for the dialogue system. But 
ODDMER has no way to determine if labels are 
meaningful. In many cases there is a disincentive 
towards meaningful table names to avoid conflicts 
with SQL keywords. Future work will explore how 
to infer more meaningful table and attribute labels 

from a database instantiation, for example by con-
sulting external knowledge bases to predict the 
entity a table represents. 

3.3 Focus agent generation 

Focus discovery fits naturally into an agent-based 
or agenda-based approach to dialogue management 
(Bohus & Rudnicky, 2009; Nguyen & Wobcke, 
2005). At the onset of a dialogue, ODDMER’s root 
agent announces the focal summary and prompts 
the user for her goal. Upon receipt of a user reply, 
it launches the appropriate focus agent, a finite 
state machine based on Information State Update 
(Traum & Larsson, 2003), whose parameters are a 
table, its list of intelligible attributes, and their 
computed specificity scores. The agent elicits con-
straints from the user until the current goal is satis-
fied or the user abandons the focus. Control over 
the dialogue then returns to the root, which queries 
the user for a new focus or ends the dialogue. Fig-
ure 2 shows a sample dialogue. 
 

1. S: Hello, I can help you find a Book. Would you 
like to find a Book?  
2. U: I’d like a Book. 
3. S: Do you know the annotation? 
4: U: No. 
5: S: Do you know the title? 
6. U: It’s Gone with the Wind 

Figure 2. ODDMER’s root agent gives the focal sum-
mary (k=1) in line 1. The BOOK focus agent launches in 
line 3 and prompts for the value of the most specific 
intelligible attribute. 
 

The default strategy of the focus agent is to elicit 
the most specific, intelligible constraints first. 
While intelligible attributes are more likely to be 
known by users, they are not equally valuable as 
item descriptions. As shown in Table 2, the speci-
ficities of NARRATOR, PUBLISHER, and SERIES are 
so low that a strategy involving them will likely 
lead to inefficient dialogues and unsatisfied users. 
The focus agent therefore orders its prompts for 
constraints by their specificity, and requests the 
most specific attributes first. Because specificity is 
a function of the database instantiation and not user 
knowledge, we expect that this strategy will lead to 
shorter, more efficient dialogues for all users. 

The dialogue starts with the root agent in con-
trol of the dialogue. The root agent announces the 
focal summary, the k tables with highest verbality. 

1 ( , )
T R
P T R

≠
−∑

∈
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Here we let k=1. The root agent parses the user’s 
reply to determine the focus of interest and launch-
es the appropriate agent. The agent interacts with 
the user to find a tuple from the table. Its default 
strategy elicits constraints from the user in order of 
semantic specificity. Because semantic specificity 
can apply to combinations of attributes, future 
work will investigate tradeoffs between efficiency 
and user effort in prompts for multiple attributes. 

The focus agent queries the database upon re-
ceipt of each new constraint. If the return size is 
small enough (here, a single tuple) it announces the 
result. Otherwise it continues to elicit constraints 
until all intelligible attributes have elicited values, 
at which point it announces all matching results. 
  ODDMER deals with three goal setbacks: (1) dis-
ambiguation, in which a query is under-constrained 
and matches multiple tuples; (2) over-constrained 
queries that have no matching tuple; and (3) attrib-
utes whose values are unknown to the user. The 
third setback is particularly prevalent in real-world 
databases. Our system addresses these setbacks 
with specific, intelligible vocabulary.  

4 Evaluation 

ODDMER finds foci and vocabulary for any rela-
tional database. We evaluate it on three very dif-
ferent domains. These databases were chosen for 
their variety, and are not equally suitable for dia-
logue. Our primary domain of consideration is 
Heiskell, the database of the Heiskell Library. 
Heiskell has eight tables. The largest table is CIR-
CULATION HISTORY, which contains 16 attributes 
with 244,072 rows. However, focus discovery 
identifies BOOK as the top candidate focus, which 
matches our intuition. Though BOOK is smaller at 
only 71,166 rows, it has 32 attributes of which 
seven are classified as intelligible. The classifier 
finds none of CIRCULATION HISTORY’s attributes 
intelligible. Manual inspection revealed CIRCULA-
TION HISTORY to consist primarily of alphanumeric 
codes relevant to the library rather than to users. 

The second domain we consider is Grocery, a 
small supermarket database used as a teaching tool 
in an undergraduate class at Hunter College. Gro-
cery has 20 tables. Their cardinalities range from 7 
to 197 rows. The top focus in Grocery represents 
the products sold in the store. It was the largest 
table with the greatest connectivity, and makes 

intuitive sense; it is the table a supermarket cus-
tomer would most likely want to talk about.  

To challenge our system we consider Eve, a 
freely available database for the virtual game Eve 
Online, a massively multiplayer online role-
playing game with over 400,000 subscribers. Eve 
has 78 tables and the game’s active community 
regularly accesses it to determine in-game goals 
and objects of interest. Eve is a challenge for 
ODDMER because it primarily contains numeric 
data for objects in the game world. These numeric 
attributes are of great interest to players but con-
found our assumption that dialogue goals correlate 
with high verbality. Moreover, connectivity plays 
no role in table verbality because Eve contains no 
joins. Focus discovery on Eve identifies INVTYPES, 
a table that represents in-game inventory items, as 
the best focus, even though vocabulary selection 
identifies only three of its 15 attributes as intelligi-
ble. The 12 unintelligible attributes were all nu-
meric. In general, focus discovery and vocabulary 
selection proved less effective on Eve than on 
Heiskell. In Eve the verbality scores of the top ta-
bles were close together without one outstanding 
focus candidate. 

4.1 Simulating the vocabulary problem 

A typical evaluation of a spoken dialogue system 
provides users with all the information needed to 
carry out a dialogue. Such a completely knowl-
edgeable user can unrealistically describe objects 
in the domain with the same vocabulary that the 
system uses. This means it does not experience the 
vocabulary problem. To test vocabulary selection, 
we simulate users with incomplete domain 
knowledge. In contrast with Selfridge and Heeman 
(2010), our limited-knowledge users are more like-
ly to know some attributes than others. 

User simulation is often used to stand in for real 
user dialogues, but it is a concern whether the dia-
logues are sufficiently realistic (Schatzmann, 
Georgila, & Young, 2005). Here, we use simula-
tion to exercise each dialogue system with a large 
number of cases in a highly controlled fashion. For 
simulated users, we can specify exactly what each 
user knows about the domain, thus simulation 
makes it possible to hold everything else the same 
while contrasting users with complete versus in-
complete domain knowledge.  We view this as a 
preliminary step towards evaluation with real us-
ers, which we hope to do in future work. 
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 Heiskell  Grocery Eve  
C/N/R 15.9 ± 0.4	
   11.1 ± 0.2 16.3 ± 0.4 
C/N/S 9.0 ± 0.0 9.0 ± 0.0 9.0 ± 0.0 
C/V/R 11.5 ± 0.2 11.1 ± 0.3 10.6 ± 0.1 
C/V/S 9.5 ± 0.1 9.0 ± 0.0 9.0 ± 0.0 
L/N/R 25.3 ± 0.8 13.1 ± 0.2 17.7 ± 0.5 
L/N/S 16.5 ± 0.6 9.3 ± 0.1	
   9.4 ± 0.1	
  
L/V/R 12.4 ± 0.2	
   12.2 ± 0.1	
   10.7 ± 0.1	
  
L/V/S 11.3 ± 0.2	
   9.7 ± 0.1	
   9.0 ± 0.0	
  

Table 4. Mean dialogue length across domains. C/*/*: 
complete-knowledge user; L/*/*: incomplete-
knowledge user; */N/*: no vocabulary selection; */V/*: 
with vocabulary selection; */*/R: random order; */*/S: 
order by specificity. Intervals are 95% confidence. 

 
Our simulated user knows each attribute’s value 

with a different probability. Ideally we might esti-
mate these probabilities from a language model of 
a corpus in the domain. Unfortunately our domains 
contain many obscure names and non-verbal val-
ues for which we need non-zero probabilities. In-
stead, we estimate a probability for attribute value 
knowledge by calculating the frequency of total 
value occurrences in a subset of the New York 
Times portion of the English Gigaword corpus 
(Parker et al., 2011), a 4 million word corpus of 
news articles. These frequency values could have 
been used during vocabulary selection but we 
chose to reserve them for evaluation. 

The probability that the limited-knowledge user 
knows a particular value is the normalized fre-
quency that the attribute’s values appear in Giga-
word. We tokenized attribute values in our data-
bases to remove punctuation and case. We ignored 
word order so that, for example, the author values 
“King, Stephen” and “Stephen King” are equiva-
lent. For each value, we counted the articles in 
which all the value’s tokens co-occurred. For each 
attribute, we took the sum of these counts over all 
its values, and took its log to represent the proba-
bility that the user knows that attribute. We then 
normalized by the log of the highest-frequency 
attribute to enforce our assumption that the user 
usually knows at least one piece of information 
about her goal. This method is robust to attributes 
with missing values. Probabilities for the BOOK 
attributes were 100% for TITLE, 78% for AUTHOR, 
75% for PLACE PUBLISHED, and 73% for PUB-
LISHER. ISBN has a 0% probability because none 
of its values occur in the corpus. ANNOTATIONS, 
whose values are brief plot descriptions of each 

book, has a low 37%. Although its values con-
tained many common words, the words in a single 
annotation rarely co-occurred in one article. 

4.2 Testing the impact of domain knowledge 

We evaluate dialogue efficiency with two simulat-
ed users as measured by number of turns. The first 
user, C, has complete domain knowledge and al-
ways knows every constraint. The second, L, has 
limited, incomplete domain knowledge. When con-
fronted with the focal summary, the simulated user 
always chooses the top suggested focus. The dia-
logue ends when either a single tuple matching the 
constraints is found, or all constraints have been 
requested, in which case all matching tuples are 
announced. We measure average dialogue length 
of 1000 simulated dialogues for each user with 
vocabulary selection (V) and without (N), and with 
prompts ordered randomly (R) or by specificity 
(S). Table 4 shows the results. ANOVAs of all 
pairs of comparisons were highly significant. 

The longest dialogues for both users occur 
without vocabulary selection and with prompts in 
random order (*/N/R). The more attributes there 
are, the longer it takes a random order to achieve a 
constraint combination that forms a key, so C has 
long dialogues even though it knows every con-
straint. L experiences much longer dialogues be-
cause it is prompted for inefficient constraints, and 
is unlikely to know most of them. This difference 
is particularly noticeable in Heiskell. On average, 
L’s dialogues are ten turns longer. 

Ordering prompts by specificity without vocabu-
lary selection (*/N/S) yields a sharp increase in 
efficiency for both users. C’s dialogues achieve the 
minimum number of turns because it is immediate-
ly asked for the most specific constraint, which it 
always knows. In Heiskell, specificity decreases 
L’s average length from 25.3 to 16.5, a large in-
crease in efficiency but still much worse than C. 
For Eve, L performs better in the absence of vo-
cabulary selection. Specificity alone brings its av-
erage efficiency near optimum. This is because for 
Eve’s INVTYPES table, the most specific intelligible 
attribute is the item’s NAME, which our domain 
knowledge model predicts L will always know. 

Vocabulary selection is more effective than 
specificity for L on Heiskell. L is much more likely 
to know the selected attributes and its efficiency 
increases even when prompted for intelligible at-
tributes in a random order. Vocabulary selection is 
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less effective than specificity for C because C 
knows every attribute, but in general the intelligi-
ble attributes are also more specific, so selection 
increases C’s efficiency even with random 
prompts. Vocabulary selection combined with 
specificity (*/V/S) leads to a small decrease in ef-
ficiency for C on Heiskell over specificity alone. 
This is because the most specific intelligible attrib-
ute is slightly ambiguous, and C must occasionally 
supply extra constraints to disambiguate. However, 
with both specificity and vocabulary selection, L 
achieves a mean dialogue length of 11.3, requiring 
only two turns more than C to order a book.  

For Eve, vocabulary selection and order-by-
specificity are each effective individually, and 
yield similar dialogues for both L and C. This is 
because INVTYPES has only three intelligible at-
tributes, so the dialogue ends after at most three 
prompts. Our domain knowledge model predicts 
close to 100% knowledge for two of these.  

A comparison of the order-by-specificity strate-
gy used here with the order-by-entropy strategy 
described by Polifroni and Walker (2006) yielded 
no significant difference in dialogue length. The 
two strategies produce similar attribute orders. 

5 Conclusion and Open Questions 

We have demonstrated an open dialogue manage-
ment system, ODDMER, which formulates a dia-
logue strategy by computing metaknowledge about 
its database: table verbality, attribute intelligibility, 
and attribute specificity. Candidate dialogue foci 
are the tables with high verbality. For each candi-
date focus, ODDMER chooses an intelligible do-
main vocabulary and generates a default strategy 
that orders prompts by specificity. A simulated 
user facing the vocabulary problem achieves more 
efficient dialogues with vocabulary selection. Our 
method works well on the Heiskell Library data-
base, which has a particularly prominent candidate 
focus showing a clear separation between intelligi-
ble and unintelligible attributes. Focus discovery 
and vocabulary selection are less effective for nu-
meric databases without clear dialogue goals. For 
example, Eve’s top focus scored the highest verbal-
ity, even though the table contained only three in-
telligible attributes.  

Questions that arise from this work include how 
to extend focus discovery and vocabulary selection 
to numerical databases, how to extract strategies 

for goals other than tuple-selection from a data-
base, and how to automatically infer intelligible 
table and attribute labels. We are also interested in 
discovery of less rigid dialogue goals, for example, 
a library patron who would be satisfied by an al-
ternative book, and goals involving information 
aggregation where user utterances map to sophisti-
cated queries. We would like to investigate how 
optimal policies learned through reinforcement 
learning vary across domains. Future work will 
also scale to mixed-initiative open dialogue man-
agement, explore more sophisticated models of 
user domain knowledge, and evaluate portability 
on more databases. 

ODDMER uses the semantics of its domain rep-
resentation to discover what to talk about and how 
to talk about it. We envision a rich toolkit that ena-
bles a system to explore its database for knowledge 
to exploit in collaborative dialogues with its users. 
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