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Abstract

Hidden properties of social media users, such
as their ethnicity, gender, and location, are of-
ten reflected in their observed attributes, such
as their first and last names. Furthermore,
users who communicate with each other of-
ten have similar hidden properties. We pro-
pose an algorithm that exploits these insights
to cluster the observed attributes of hundreds
of millions of Twitter users. Attributes such
as user names are grouped together if users
with those names communicate with other
similar users. We separately cluster millions
of unique first names, last names, and user-
provided locations. The efficacy of these clus-
ters is then evaluated on a diverse set of clas-
sification tasks that predict hidden users prop-
erties such as ethnicity, geographic location,
gender, language, and race, using only pro-
file names and locations when appropriate.
Our readily-replicable approach and publicly-
released clusters are shown to be remarkably
effective and versatile, substantially outper-
forming state-of-the-art approaches and hu-
man accuracy on each of the tasks studied.

1 Introduction

There is growing interest in automatically classify-
ing users in social media by various hidden prop-
erties, such as their gender, location, and language
(e.g. Rao et al. (2010), Cheng et al. (2010), Bergsma
et al. (2012)). Predicting these and other proper-
ties for users can enable better advertising and per-
sonalization, as well as a finer-grained analysis of
user opinions (O’Connor et al., 2010), health (Paul

and Dredze, 2011), and sociolinguistic phenomena
(Eisenstein et al., 2011). Classifiers for user prop-
erties often rely on information from a user’s social
network (Jernigan and Mistree, 2009; Sadilek et al.,
2012) or the textual content they generate (Pennac-
chiotti and Popescu, 2011; Burger et al., 2011).

Here, we propose and evaluate classifiers that bet-
ter exploit the attributes that users explicitly provide
in their user profiles, such as names (e.g., first names
like Mary, last names like Smith) and locations (e.g.,
Brasil). Such attributes have previously been used as
“profile features” in supervised user classifiers (Pen-
nacchiotti and Popescu, 2011; Burger et al., 2011;
Bergsma et al., 2012). There are several motivations
for exploiting these data. Often the only informa-
tion available for a user is a name or location (e.g.
for a new user account). Profiles also provide an
orthogonal or complementary source of information
to a user’s social network and textual content; gains
based on profiles alone should therefore add to gains
based on other data. The decisions of profile-based
classifiers could also be used to bootstrap training
data for other classifiers that use complementary fea-
tures.

Prior work has encoded profile attributes via lex-
ical or character-based features (e.g. Pennacchiotti
and Popescu (2011), Burger et al. (2011), Bergsma
et al. (2012)). Unfortunately, due to the long-tailed
distribution of user attributes, a profile-based classi-
fier will encounter many examples at test time that
were not observed during training. For example,
suppose a user wassim hassan gives their location as
tanger. If the attribute tokens wassim, hassan, and
tanger do not occur in training (nor indicative sub-
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strings), then a classifier can only guess at the user’s
ethnicity and location. In social media, the preva-
lence of fake names and large variations in spelling,
slang, and language make matters worse.

Our innovation is to enhance attribute-based clas-
sifiers with new data, derived from the communica-
tions of Twitter users with those attributes. Users
with the name tokens wassim and hassan often talk
to users with Arab names like abdul and hussein.
Users listing their location as tanger often talk to
users from morocco. Since users who communicate
often share properties such as ethnicity and location
(§8), the user wassim hassan might be an Arab who
uses the French spelling of the city Tangier.

Our challenge is to encode these data in a form
readily usable by a classifier. Our approach is to
represent each unique profile attribute (e.g. tanger
or hassan) as a vector that encodes the communi-
cation pattern of users with that attribute (e.g. how
often they talk to users from morocco, etc.); we then
cluster the vectors to discover latent groupings of
similar attributes. Based on transitive (third party)
connections, tanger and tangier can appear in the
same cluster, even if no two users from these loca-
tions talk directly. To use the clusters in an attribute-
based classifier, we add new features that indicate
the cluster memberships of the attributes. Clustering
thus lets us convert a high-dimensional space of all
attribute pairs to a low-dimensional space of cluster
memberships. This makes it easier to share our data,
yields fewer parameters for learning, and creates at-
tribute groups that are interpretable to humans.

We cluster names and locations in a very large
corpus of 168 million Twitter users (§2) and use a
distributed clustering algorithm to separately clus-
ter millions of first names, last names, and user-
provided locations (§3). We evaluate the use of our
cluster data as a novel feature in supervised classi-
fiers, and compare our result to standard classifiers
using character and token-level features (§4). The
cluster data enables significantly improved perfor-
mance in predicting the gender, location, and lan-
guage of social media users, exceeding both ex-
isting state-of-the-art machine and human perfor-
mance (§6). Our cluster data can likewise im-
prove performance in other domains, on both es-
tablished and new NLP tasks as further evaluated
in this paper (§6). We also propose a way to

First names: maria, david, ana, daniel, michael, john,
alex, jessica, carlos, jose, chris, sarah, laura, juan
Last names: silva, santos, smith, garcia, oliveira, ro-
driguez, jones, williams, johnson, brown, gonzalez
Locations: brasil, indonesia, philippines, london,
jakarta, são paulo, rio de janeiro, venezuela, brazil

Table 1: Most frequent profile attributes for our collection
of 168 million Twitter users, in descending order

enhance a geolocation system by using commu-
nication patterns, and show strong improvements
over a hand-engineered baseline (§7). We share
our clusters with the community to use with other
tasks. The clusters, and other experimental data, are
available for download from www.clsp.jhu.edu/

~sbergsma/TwitterClusters/.

2 Attribute Associations on Twitter

Data and Processing Our raw Twitter data com-
prises the union of 2.2 billion tweets from 05/2009
to 10/2010 (O’Connor et al., 2010), 1.8 billion
tweets collected from 07/2011 to 08/2012, and 80
million tweets collected from followers of 10 thou-
sand location and language-specific Twitter feeds.

We implemented each stage of processing using
MapReduce (Dean and Ghemawat, 2008). The total
computation (from extracting profiles to clustering
attributes) was 1300 days of wall-clock CPU time.

Attribute Extraction Tweets provide the name
and self-reported location of the tweeter. We find
126M unique users with these attributes in our data.
When tweets mention other users via an @user con-
struction, Twitter also includes the profile name of
the mentioned user; we obtain a further 42M users
from these cases. We then normalize the extracted
attributes by converting to lower-case, deleting sym-
bols, numbers, and punctuation, and removing com-
mon honorifics and suffixes like mr/mrs and jr/sr.
Common prefixes like van and de la are joined to
the last-name token.1 This processing yields 8.3M

1www.clsp.jhu.edu/~sbergsma/TwitterClusters/

also provides our scripts for normalizing attributes. The scripts
can be used to ensure consistency/compatibility between
arbitrary datasets and our shared cluster data. Note we use no
special processing for the companies, organizations, and spam-
mers among our users, nor for names arising from different
conventions (e.g. 1-word names, reversed first/last names).
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henrik: fredrik 5.87, henrik 5.82, anders 5.73, johan
5.69, andreas 5.59, martin 5.54, magnus 5.41
courtney: taylor 8.03, ashley 7.92, courtney 7.92,
emily 7.91, lauren 7.82, katie 7.72, brittany 7.69
ilya: sergey 5.85, alexey 5.62, alexander 5.59, dmitry
5.51, Àëåêñàíäð 5.46, anton 5.44, andrey 5.40

Table 2: Top associates and PMIs for three first names.

unique locations, 7.4M unique last names, and 5.5M
unique first names. These three sets provide the tar-
get attributes that we cluster in §3. Table 1 shows
the most frequent names in each of these three sets.

User-User Links We extract each user mention as
an undirected communication link between the user
tweeting and the mentioned user (including self-
mentions but not retweets). We consider each user-
user link as a single event; we count it once no mat-
ter how often two specific users interact. We extract
436M user-user links in total.

Attribute-Attribute Pairs We use our profile data
to map each user-user link to an attribute-attribute
pair; we separately count each pair of first names,
last names, and locations. For example, the first-
name pair (henrik, fredrik) occurs 181 times. Rather
than using the raw count, we calculate the associa-
tion between attributes a1 and a2 via their pointwise
mutual information (PMI), following prior work in
distributional clustering (Lin and Wu, 2009):

PMI(a1, a2) = log
P(a1, a2)

P(a1)P(a2)

PMI essentially normalizes the co-occurrence by
what we would expect if the attributes were indepen-
dently distributed. We smooth the PMI by adding a
count of 0.5 to all co-occurrence events.

The most highly-associated name attributes re-
flect similarities in ethnicity and gender (Table 2).
The most highly-ranked associates for locations are
often nicknames and alternate/misspellings of those
locations. For example, the locations charm city,
bmore, balto, westbaltimore, b a l t i m o r e, bal-
timoreee, and balitmore each have the U.S. city of
baltimore as their highest-PMI associate. We show
how this can be used to help geolocate users (§7).

3 Attribute Clustering

Representation We first represent each target at-
tribute as a feature vector, where each feature corre-
sponds to another attribute of the same type as the
target and each value gives the PMI between this at-
tribute and the target (as in Table 2).2 To help cluster
the long-tail of infrequent attributes, we also include
orthographic features. For first and last names, we
have binary features for the last 2 characters in the
string. For locations, we have binary features for
(a) any ideographic characters in the string and (b)
each token (with diacritics removed) in the string.
We normalize the feature vectors to unit length.

Distributed K-Means Clustering Our approach
to clustering follows Lin and Wu (2009) who used k-
means to cluster tens of millions of phrases. We also
use cosine similarity to compute the closest centroid
(i.e., we use the spherical k-means clustering algo-
rithm (Dhillon and Modha, 2001)). We keep track
of the average cosine similarity between each vector
and its nearest centroid; this average is guaranteed
to increase at each iteration.

Like Lin and Wu (2009), we parallelize the al-
gorithm using MapReduce. Each mapper finds the
nearest centroids for a portion of the vectors, while
also computing the partial sums of the vectors as-
signed to each centroid. The mappers emit the cen-
troid IDs as keys and the partial sums as values.
The Reducer aggregates the partial sums from each
partition and re-normalizes each sum vector to unit
length to obtain the new centroids. We also use an
inverted index at each iteration that, for each input
feature, lists which centroids each feature belongs
to. Using this index greatly speeds up the centroid
similarity computations.

Clustering Details We cluster with nine separate
configurations: over first names, last names, and lo-
cations, and each with 50, 200, and 1000 cluster
centroids (denoted C50, C200, and C1000). Since k-

2We decided to restrict the features for a target to be at-
tributes of the same type (e.g., we did not use last name as-
sociations for a first name target) because each attribute type
conveys distinct information. For example, first names convey
gender and age more than last names. By separately cluster-
ing representations using first names, last names, and locations,
each clustering can capture its own distinct latent-class associa-
tions.
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Cluster 463 (Serbian): pavlović, jovanovic, jo-
vanović, stanković, srbija, marković, petrović,
radovic, nenad, milenkovic, nikolic, sekulic, todor-
ovic, stojanovic, petrovic, aleksic, ilic, markovic
Cluster 544 (Black South African): ngcobo, nkosi,
dlamini, ndlovu, mkhize, mtshali, sithole, mathebula,
mthembu, khumalo, ngwenya, shabangu, nxumalo,
buthelezi, radebe, mabena, zwane, mbatha, sibiya
Cluster 449 (Turkish): şahin, çelik, öztürk, koç, çakır,
karataş, aktaş, güngör, özkan, balcı, gümüş, akkaya,
genç, sarı, yüksel, güneş, yiğit, yalçın, orhan, sağlam,
güler, demirci, küçük, yavuz, bayrak, özcan, altun
Cluster 656 (Indonesian): utari, oktaviana, apriani,
mustika, septiana, febrianti, kurniawati, indriani, nur-
janah, septian, cahya, anggara, yuliani, purnamasari,
sukma, wijayanti, pramesti, ningrum, yanti, wulansari

Table 3: Example C1000 last-name clusters

Cluster 56 [sim=0.497]: gregg, bryn, bret, stewart,
lyndsay, howie, elyse, jacqui, becki, rhett, meaghan,
kirstie, russ, jaclyn, zak, katey, seamus, brennan,
fraser, kristie, stu, jaimie, kerri, heath, carley, griffin
Cluster 104 [sim=0.442]: stephon, devonte, deion,
demarcus, janae, tyree, jarvis, donte, dewayne, javon,
destinee, tray, janay, tyrell, jamar, iesha, chyna,
jaylen, darion, lamont, marquise, domonique, alexus
Cluster 132 [sim=0.292]: moustafa, omnya, menna-
tallah, ÐC�@



, shorouk, ragab, ø






ñË, radwa, moemen,

mohab, hazem, yehia, �
é K
Q k, Z @Qå� @, mennah, ø



Qå� Ó,

abdelrahman, ù



	
®¢�Ó, H.

	Qk, QÓA
�
K, nermeen, hebatallah

...

Table 4: C200 soft clustering for first name yasmeen

means is not guaranteed to reach a global optimum,
we use ten different random initializations for each
configuration, and select the one with the highest av-
erage similarity after 20 iterations. We run this one
for an additional 30 iterations and take the output as
our final set of centroids for that configuration.

The resulting clusters provide data that could help
classify hidden properties of social media users. For
example, Table 3 shows that last names often clus-
ter by ethnicity, even at the sub-national level (e.g.
Zulu tribe surnames nkosi, dlamini, mathebula, etc.).
Note the Serbian names include two entries that are
not last names: srbija, the Serbian word for Serbia,
and nenad, a common Serbian first name.

Soft Clustering Rather than assigning each at-
tribute to its single highest-similarity cluster, we can
assign each vector to its N most similar clusters.
These soft-cluster assignments often reflect different
social groups where a name or location is used. For
example, the name yasmeen is similar to both com-
mon American names (Cluster 56), African Ameri-
can names (Cluster 104), and Arabic names (Clus-
ter 132) (Table 4). As another example, the C1000

assignments for the location trujillo comprise sep-
arate clusters containing towns and cities in Peru,
Venezuela, Colombia, etc., reflecting the various
places in the Latin world with this name. In general,
the soft cluster assignment is a low-dimensional rep-
resentation of each of our attributes. Although it can
be interpretable to humans, it need not be in order to
be useful to a classifier.

4 Classification with Cluster Features

Our motivating problem is to classify users for hid-
den properties such as their gender, location, race,
ethnicity, and language. We adopt a discriminative
solution. We encode the relevant data for each in-
stance in a feature vector and train a (linear) support
vector machine classifier (Cortes and Vapnik, 1995).
SVMs represent the state-of-the-art on many NLP
classification tasks, but other classifiers could also
be used. For multi-class classification, we use a one-
versus-all strategy, a competitive approach on most
multi-class problems (Rifkin and Klautau, 2004).

The input to our system is one or more observed
user attributes (e.g. name and location fields from
a user profile). We now describe how features are
created from these attributes in both state-of-the-art
systems and via our new cluster data.

Token Features (Tok) are binary features that in-
dicate the presence of a specific attribute (e.g., first-
name=bob). Burger et al. (2011) and Bergsma et al.
(2012) used Tok features to encode user profile fea-
tures. For multi-token fields (e.g. location), our Tok
features also indicate the specific position of each
token (e.g., loc1=são, loc2=paulo, locN =brasil).

Character N-gram Features (Ngm) give the
count of all character n-grams of length 1-to-4 in the
input. Ngm features have been used in user classifi-
cation (Burger et al., 2011) and represent the state-
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of-the-art in detecting name ethnicity (Bhargava and
Kondrak, 2010). We add special begin/end charac-
ters to the attributes to mark the prefix and suffix po-
sitions. We also use a smoothed log-count; we found
this to be most effective in preliminary work.

Cluster Features (Clus) indicate the soft-cluster
memberships of the attributes. We have features for
the top-2, 5, and 20 most similar clusters in the C50,
C200, and C1000 clusterings, respectively. Like Lin
and Wu (2009), we “side-step the matter of choos-
ing the optimal value k in k-means” by using fea-
tures from clusterings at different granularities. Our
feature dimensions correspond to cluster IDs; fea-
ture values give the similarity to the cluster centroid.
Other strategies (e.g. hard clustering, binary fea-
tures) were less effective in preliminary work.

5 Classification Experiments

5.1 Methodology

Our main objective is to assess the value of us-
ing cluster features (Clus). We add these features
to classifiers using Tok+Ngm features, which repre-
sents the current state-of-the-art. We compare these
feature settings on both Twitter tasks (§5.2) and
tasks not related to social-media (§5.3). For each
task, we randomly divide the gold standard data into
50% train, 25% development and 25% test, unless
otherwise noted. As noted above, the gold-standard
datasets for all of our experiments are available for
download. We train our SVM classifiers using the
LIBLINEAR package (Fan et al., 2008). We optimize
the classifier’s regularization parameter on develop-
ment data, and report our final results on the held-
out test examples. We report accuracy: the propor-
tion of test examples classified correctly. For com-
parison, we report the accuracy of a majority-class
baseline on each task (Base).

Classifying hidden properties of social media
users is challenging (Table 5). Pennacchiotti and
Popescu (2011) even conclude that “profile fields do
not contain enough good-quality information to be
directly used for user classification.” To provide in-
sight into the difficulty of the tasks, we had two hu-
mans annotate 120 examples from each of the test
sets, and we average their results to give a “Human”
performance number. The two humans are experts in

Country: 53 possible countries
United States courtland dante cali baby
United States tinas twin on the court
Brazil thamires gomez macapá ap
Denmark marte clason NONE
Lang. ID: 9 confusable languages
Bulgarian valentina getova NONE
Russian borisenko yana edinburgh
Bulgarian NONE blagoevgrad
Ukrainian andriy kupyna ternopil
Farsi kambiz barahouei NONE
Urdu musadiq sanwal jammu
Ethnicity: 13 European ethnicities
German dennis hustadt
Dutch bernhard hofstede
French david coste
Swedish mattias bjarsmyr
Portuguese helder costa
Race: black or white
black kerry swain
black darrell foskey
white ty j larocca
black james n jones
white sean p farrell

Table 5: Examples of class (left) and input (names, loca-
tions) for some of our evaluation tasks.

this domain and have very wide knowledge of global
names and locations.

5.2 Twitter Applications
Country A number of recent papers have consid-
ered the task of predicting the geolocation of users,
using both user content (Cheng et al., 2010; Eisen-
stein et al., 2010; Hecht et al., 2011; Wing and
Baldridge, 2011; Roller et al., 2012) and social net-
work (Backstrom et al., 2010; Sadilek et al., 2012).

Here, we first predict user location at the level of
the user’s location country. To our knowledge, we
are the first to exploit user locations and names for
this prediction. For this task, we obtain gold data
from the portion of Twitter users who have GPS en-
abled (geocoded tweets). We were able to obtain a
very large number of gold instances for this task, so
selected only 10K for testing, 10K for development,
and retained the remaining 782K for training.

Language ID Identifying the language of users
is an important prerequisite for building language-
specific social media resources (Tromp and Pech-
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enizkiy, 2011; Carter et al., 2013). Bergsma et al.
(2012) recently released a corpus of tweets marked
for one of nine languages grouped into three confus-
able character sets: Arabic, Farsi, and Urdu tweets
written in Arabic characters; Hindi, Nepali, and
Marathi written in Devanagari, and Russian, Bulgar-
ian, and Ukrainian written in Cyrillic. The tweets
were marked for language by native speakers via
Amazon Mechanical Turk. We again discard the
tweet content and extract each user’s first name, last
name, and user location as our input data, while tak-
ing the annotated language as the class label.

Gender We predict whether a Twitter user is male
or female using data from Burger et al. (2011). This
data was created by linking Twitter users to struc-
tured profile pages on other websites where users
must select their gender. Unlike prior systems using
this data (Burger et al., 2011; Van Durme, 2012), we
make the predictions using only user names.

5.3 Other Applications

Origin Knowing the origin of a name can improve
its automatic pronunciation (Llitjos and Black,
2001) and transliteration (Bhargava and Kondrak,
2010). We evaluate our cluster data on name-origin
prediction using a corpus of names marked as ei-
ther Indian or non-Indian by Bhargava and Kondrak
(2010). Since names in this corpus are not marked
for entity type, we include separate cluster features
from both our first and last name clusters.

Ethnicity We also evaluate on name-origin data
from Konstantopoulos (2007). This data derives
from lists of football players on European national
teams; it marks each name (with diacritics removed)
as arising from one of 13 European languages. Fol-
lowing prior work, we test in two settings: (1) using
last names only, and (2) using first and last names.

Race We also evaluate our ability to identify eth-
nic groups at a sub-national level. To obtain data
for this task, we mined the publicly-available arrest
records on mugshots.com for the U.S. state of New
Jersey (a small but diverse and densely-populated
area). Over 99% of users were listed as either black
or white, and we structure the task as a binary clas-
sification problem between these two classes. We
predict the race of each person based purely on their

name; this contrasts with prior work in social media
which looked at identifying African Americans on
the basis of their Twitter content (Eisenstein et al.,
2011; Pennacchiotti and Popescu, 2011).

6 Classification Results

Table 6 gives the results on each task. The system in-
corporating our novel Clus features consistently im-
proves over the Ngm+Tok system; all differences be-
tween All and Ngm+Tok are significant (McNemar’s,
p<0.01). The relative reduction in error from adding
Clus features ranges between 7% and 51%. The All
system including Clus features also exceeds human
performance on all studied tasks.

On Country, the U.S. is the majority class, oc-
curring in 42.5% of cases.3 It is impressive that
All so significantly exceeds Tok+Ngm (86.7% vs.
84.8%); with 782K training examples, we did not
expect such room for improvement. Both names and
locations play an important role: All achieves 66%
using names alone and 70% with only location. On
the subset of data where all three attributes are non-
empty, the full system achieves 93% accuracy.

Both feature classes are likewise important for
Lang. ID; All achieves 67% with only first+last
names, 72% with just locations, but 83% with both.

Our smallest improvement is on Gender. This
task is easier (with higher human/system accuracy)
and has plenty of training data (more data per class
than any other task); there is thus less room to im-
prove. Looking at the feature weights, the strongest-
weighted female cluster apparently captures a sub-
community of Justin Bieber fans (showing loyalty
with “first names” jbieber, belieb, biebz, beliebing,
jbiebs, etc.). Just because a first name like madison
has a high similarity to this cluster does not imply
girls named Madison are Justin Bieber fans; it sim-
ply means that Madisons have similar names to the
friends of Justin Bieber fans (who tend to be girls).
Also, note that while the majority of the 34K users in
our training data are assigned this cluster somewhere
in their soft clustering, only 6 would be assigned this

3We tried other baselines: e.g., we predict countries if they
are substrings of the location (otherwise predicting U.S.); and
we predict countries if they often occur as a string following
the given location in our profile data (e.g., we predict Spain for
Madrid since Madrid, Spain is common). Variations on these
approaches consistently performed between 48% and 56%.
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Task Input Num. Num.
Base Human Tok Ngm Clus

Tok+
All ∆Train Class Ngm

Country first+last+loc 781920 53 42.5 71.7 83.0 84.5 80.2 84.8 86.7 12.5
Lang. ID first+last+loc 2492 9 27.0 74.2 74.6 80.6 71.1 80.4 82.7 11.7
Gender first+last 33805 2 52.4 88.3 85.3 88.6 79.5 89.5 90.2 6.7
Origin entity name 500 2 52.4 80.4 - 75.6 81.2 75.6 88.0 50.8
Ethnicity last 6026 13 20.8 47.9 - 54.6 48.5 54.6 62.4 17.2
Ethnicity first+last 7457 13 21.2 53.3 67.6 77.5 73.6 78.4 81.3 13.4
Race first+last 7977 2 54.7 71.4 80.4 81.6 84.6 82.4 84.6 12.5

Table 6: Task details and accuracy (%) for attribute-based classification tasks. ∆ = relative error reduction (%) of All
(Tok+Ngm+Clus) over Ngm+Tok. All always exceeds both Tok+Ngm and the human performance.

cluster in a hard clustering. This clearly illustrates
the value of the soft clustering representation.

Note the All system performed between 83% and
90% on each Twitter task. This level of performance
strongly refutes the prevailing notion that Twitter
profile information is useless in general (Pennac-
chiotti and Popescu, 2011) and especially for geolo-
cation (Cheng et al., 2010; Hecht et al., 2011).

We now move to applications beyond social me-
dia. Bhargava and Kondrak (2010) have the current
state-of-the-art on Origin and Ethnicity based on an
SVM using character-n-gram features; we reimple-
mented this as Ngm. We obtain a huge improvement
over their work using Clus, especially on Origin
where we reduce error by >50%.4 This improve-
ment can partly be attributed to the small amount of
training data; with fewer parameters to learn, Clus
learns more from limited data than Ngm. We like-
wise see large improvements over the state-of-the-
art on Ethnicity, on both last name and full name
settings.

Finally, Clus features also significantly improve
accuracy on the new Race task. Our cluster data can
therefore help to classify names into sub-national
groups, and could potentially be used to infer other
interesting communities such as castes in India and
religious divisions in many countries.

In general, the relative value of our cluster models
varies with the amount of training data; we see huge
gains on the smaller Origin data but smaller gains
on the large Gender set. Figure 1 shows how per-
formance of Clus and Ngm varies with training data
on Race. Again, Clus is especially helpful with less

4Note Tok is not used here because the input is a single token
and training and test splits have distinct instances.
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Figure 1: Learning curve on Race: Clus perform as well
with 30 training examples as Ngm features do with 1000.

data; thousands of training examples are needed for
Ngm to rival the performance of Clus using only a
handful. Since labeled data is generally expensive
to obtain or in short supply, our method for exploit-
ing unlabeled Twitter data can both save money and
improve top-end performance.

7 Geolocation by Association

There is a tradition in computational linguistics of
grouping words both by the similarity of their con-
text vectors (Hindle, 1990; Pereira et al., 1993; Lin,
1998) and directly by their statistical association in
text (Church and Hanks, 1990; Brown et al., 1992).
While the previous sections explored clusters built
by vector similarity, we now explore a direct appli-
cation of our attribute association data (§2).

We wish to use this data to improve an existing
Twitter geolocation system based on user profile lo-
cations. The system operates as follows: 1) normal-
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ize user-provided locations using a set of regular ex-
pressions (e.g. remove extra spacing, punctuation);
2) look up the normalized location in an alias list;
3) if found, map the alias to a unique string (target
location), corresponding to a structured location ob-
ject that includes geo-coordinates.

The alias list we are currently using is based on
extensive work in hand-writing aliases for the most
popular Twitter locations. For example, the current
aliases for Nashville, Tennessee include nashville,
nashville tn, music city, etc. Our objective is to im-
prove on this human-designed list by automatically
generating aliases using our association data.

Aliases by Association For each target, we pro-
pose new aliases from the target’s top-PMI asso-
ciates (§2). To become an alias, the PMI between
the alias and target must be above a threshold,
the alias must occur more than a fixed number of
times in our profile data, the alias must be within
the top-N1 associates of the target, and the target
must be within the top-N2 associates of the alias.
We merge our automatic aliases with the manually-
written aliases. The new aliases for Nashville, Ten-
nessee include east nashville, nashville tenn, music
city usa, nashvegas, cashville tn, etc.

Experiments To evaluate the geolocation system,
we use tweets from users with GPS enabled (§5.2).
For each tweet, we resolve the location using the
system and compare to the gold coordinates. The
system can skip a location if it does not match the
alias list; more than half of the locations are skipped,
which is consistent with prior work (Hecht et al.,
2011). We evaluate the alias lists using two mea-
sures: (1) its coverage: the percentage of locations it
resolves, and (2) its precision: of the ones resolved,
the percentage that are correct. We define a correct
resolution to be one where the resolved coordinates
are within 50 miles of the gold coordinates.

We use 56K gold tweets to tune the parameters of
our automatic alias-generator, trading off coverage
and precision. We tune such that the system using
these aliases obtains the highest possible coverage,
while being at least as precise as the baseline system.
We then evaluate both the baseline set of aliases and
our new set on 56K held-out examples.

Results On held-out test data, the geolocation sys-
tem using baseline aliases has a coverage of 38.7%
and a precision of 59.5%. Meanwhile, the system
using the new aliases has a coverage of 44.6% and
a precision of 59.4%. With virtually the same pre-
cision, the new aliases are thus able to resolve 15%
more users. This provides an immediate benefit to
our existing Twitter research efforts.

Note that our alias lists can be viewed as clus-
ters of locations. In ongoing work, we are exploring
techniques based on discriminative learning to infer
alias lists using not only Clus information but also
Ngm and Tok features as in the previous sections.

8 Related Work

In both real-world and online social networks, “peo-
ple socialize with people who are like them in terms
of gender, sexual orientation, age, race, education,
and religion” (Jernigan and Mistree, 2009). So-
cial media research has exploited this for two main
purposes: (1) to predict friendships based on user
properties, and (2) to predict user properties based
on friendships. Friendship prediction systems (e.g.
Facebook’s friend suggestion tool) use features such
as whether both people are computer science ma-
jors (Taskar et al., 2003) or whether both are at the
same location (Crandall et al., 2010; Sadilek et al.,
2012). The inverse problem has been explored in the
prediction of a user’s location given the location of
their peers (Backstrom et al., 2010; Cho et al., 2011;
Sadilek et al., 2012). Jernigan and Mistree (2009)
predict a user’s sexuality based on the sexuality of
their Facebook friends, while Garera and Yarowsky
(2009) predict a user’s gender partly based on the
gender of their conversational partner. Jha and El-
hadad (2010) predict the cancer stage of users of
an online cancer discussion board; they derive com-
plementary information for prediction from both the
text a user generates and the cancer stage of the peo-
ple that a user interacts with.

The idea of clustering data in order to provide fea-
tures for supervised systems has been successfully
explored in a range of NLP tasks, including named-
entity-recognition (Miller et al., 2004; Lin and Wu,
2009; Ratinov and Roth, 2009), syntactic chunking
(Turian et al., 2010), and dependency parsing (Koo
et al., 2008; Täckström et al., 2012). In each case,
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the clusters are derived from the distribution of the
words or phrases in text, not from their communica-
tion pattern. It would be interesting to see whether
prior distributional clusters can be combined with
our communication-based clusters to achieve even
better performance. Indeed, there is evidence that
features derived from text can improve the predic-
tion of name ethnicity (Pervouchine et al., 2010).

There has been an explosion of work in recent
years in predicting user properties in social net-
works. Aside from the work mentioned above that
analyzes a user’s social network, a large amount
of work has focused on inferring user properties
based on the content they generate (e.g. Burger
and Henderson (2006), Schler et al. (2006), Rao
et al. (2010), Mukherjee and Liu (2010), Pennac-
chiotti and Popescu (2011), Burger et al. (2011), Van
Durme (2012)).

9 Conclusion and Future Work

We presented a highly effective and readily repli-
cable algorithm for generating language resources
from Twitter communication patterns. We clustered
user attributes based on both the communication of
users with those attributes as well as substring sim-
ilarity. Systems using our clusters significantly out-
perform state-of-the-art algorithms on each of the
tasks investigated, and exceed human performance
on each task as well. The power and versatility of
our clusters is exemplified by the fact we reduce er-
ror by a larger margin on each of the non-Twitter
tasks than on any Twitter task itself.

Twitter provides a remarkably large sample and
effectively a partial census of much of the world’s
population, with associated metadata, descriptive
content and sentiment information. Our ability to
accurately assign numerous often unspecified prop-
erties such as race, gender, language and ethnicity to
such a large user sample substantially increases the
sociological insights and correlations one can derive
from such data.
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