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Abstract

We examine the task of temporal relation clas-
sification. Unlike existing approaches to this
task, we (1) classify an event-event or event-
time pair as one of the 14 temporal relations
defined in the TimeBank corpus, rather than
as one of the six relations collapsed from the
original 14; (2) employ sophisticated linguis-
tic knowledge derived from a variety of se-
mantic and discourse relations, rather than fo-
cusing on morpho-syntactic knowledge; and
(3) leverage a novel combination of rule-based
and learning-based approaches, rather than re-
lying solely on one or the other. Experiments
with the TimeBank corpus demonstrate that
our knowledge-rich, hybrid approach yields
a 15-16% relative reduction in error over a
state-of-the-art learning-based baseline sys-
tem.

}@hlt.utdallas.edu

complexityof the task we are addressing and épe
proachwe adopt. Regarding task complexity, rather
than focus on six temporal relations as is typically
done in previous work (see Section 2 for more infor-
mation), we address an arguably more challenging
version of the task where we consider all the 14 re-
lations originally defined in the TimeBank corpus.

Our approach to temporal relation classification
can be distinguished from existing approaches in
two respects. The first involves a large-scale ex-
pansion of the linguistic features made available
to the classification system. Recall that exist-
ing approaches have relied primarily on morpho-
syntactic features as well as a few semantic fea-
tures extracted from WordNet synsets and VerbO-
cean’s (Chklovski and Pantel, 2004) semantic rela-
tions. On the other hand, we propose not only novel

lexical and grammatical features, but also sophis-
ticated features involving semantics and discourse.
Most notably, we propose (1) semantic features en-

Recent years have seen a surge of interest in te@ding a variety of semantic relations, including
poral information extraction (IE). Temporal relationPropBank-style predicate-argument relations as well
classification, one of the most important tempora®s those extracted from the Merriam-Webster dictio-
IE tasks, involves classifying a given event-evenfary, and (2) discourse features encoding automat-
pair or event-time pair as one of a set of predefine§ally computed Penn Discourse TreeBank (PDTB)
temporal relations. The creation of the TimeBaniétyle (Prasad et al., 2008) discourse relations.
corpus (Pustejovsky et al., 2003) and the organiza- Second, while the vast majority of existing ap-
tion of the TempEval-1 (Verhagen et al., 2007) angiroaches to temporal relation classification are
TempEval-2 (Verhagen et al., 2010) evaluation eXearning-based, we propose a system architecture in
ercises have facilitated the development and evaluatich we combine a learning-based approach and a
tion of temporal relation classification systems.  rule-based approach. Our motivation behind adopt-
Our goal in this paper is to advance the state dhg a hybrid approach stems from two hypotheses.
the art in temporal relation classification. Our workFirst, a rule-based method could better handle the
differs from existing work with respect to both theskewed class distribution underlying the dataset for

1 Introduction
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our 14-class classification problem. Second, betteach article, theventstimes and theitemporal re-
decision rules could be formed by leveraging hulations are marked up. An event, which can be a
man insights to combine the available linguistic featensed verb, adjective, or nominal, contains various
tures than by using fully automatic machine learnattributes, including thelassof eventtense aspect
ing methods. Note that while rule-based approachgmlarity, andmodality. A time expression hasa@ass
have been shown to underperform learning-baseattribute, which specifies whether it is a date, time,
approaches on this task (Mani et al., 2006), to owturation, or set, and its value is normalized based on
knowledge they have not been used in combinatioRIMEX3. A temporal relation can be aorder rela-
with learning-based approaches. Moreover, whildgon, which orders two events (as in sentence (1)), or
the rules employed in previous work are creatednanchorrelation, which anchors an event to a time
based on intuition (e.g., Mani et al. (2006), Puscasexpression (as in sentence (2)).
(2007)), our rules are created irdata-drivenman- (1) A steeprise in world oil prices fol-
ner via a manual inspection of the annotated tempo- lowed the Kuwaiinvasion
ral relations in the TimeBank corpus.

Experiments on the TimeBank corpus demon-

) ) Each temporal relation hastgpe For example,
strate the effectiveness of our knowledge-rich, h)./fhe relation zefined orise and ixr?\)/asionin (1) r:oas

brid approach to temporal relation classification: i . )
) . o A h he rel f
yields a 15-16% relative reduction in error over aype fter, whereas the relation defined stayand

state-of-the-art learning-based baseline system. periodin (2) has typeDuring. Note that a temporal
T K led he fi 1 relation is defined on anrdered pair. For exam-
|tO ?urthnolv:elge, \t/ve are! |e llrs;'Fto ( I) regprttre- le, in (1), the pairifse, invasior) has typeAfter,

sults for the 14-class temporal relation classificatiof) , . .co< the oalirfvasion rise) has typeBefore).

task on the TimeBank (v1.2) corpus; (2) success- 14 relation t defined and dt tat
fully employ automatically computed PDTB-style relation fypes are defined and used fo annotate
@e temporal relations in the TimeBank corpus. Ta-

discourse relations to improve performance on thi ) . - .
task; and (3) show that a hybrid approach to thigle 1 provides a brief des_crl_ptlon of these relation
task can yield better results than either a rule-basdgPes and the rglevant statistics.
or learning-based approach. Note that hybrid ap- [N Our experiments, we assume that our tempo-
proaches in this spirit were popular in the naturaidl relation classlflcathn syst_em is given an event-
language processing community back in the mid-gg&vent or event-time pair that is known to belong to
(Klavans and Resnik, 1994). We believe that the§n€ Of the 14 relation types defined in TimeBank and
are among the most competitive approaches to laglms o determine its relation type. Following pre-
guage processing tasks that require complex reasofious evaluations 'of the temporal relation cla§3|f|ca-
ing and should be given more attention in the comiOn task on the TimeBank corpus (e.g., Mani et al.
munity. We release the complete set of rules that w&006), Chambers et al. (2007)) and in TempEval-
mined from the TimeBank corpus and used in ou#/2, We assume as input gold events and time ex-
rule-based approach in hopes that our insights inff €SSIONS.
how features can be combined as decision rules canUnlike Mani et al. (2006) and Chambers et al.
benefit researchers interested in this task. (2007), who focus on six relation typeSiul-
The rest of the paper is organized as follows. Se¢aneous Before, IBefore, Begins Ends, and In-
tion 2 provides an overview of the TimeBank cor-cludes, we report results on 14 relation types. Note
pus. Sections 3 and 4 describe the baseline systdhft the aforementioned six relation types are cho-
and our approach, respectively. We present evalug€n by (1) discardingDuring, During_Inv, and

tion results in Section 5 and conclude in Section 6./dentity, and (2) combining the two relation types
in each of the five pairs, namelBéfore, After),

2 Corpus (IBefore, IAfter), (Includes, Is_Included), (Be-
gins, BegunBy), and Ends, Ended. BYy), into a sin-

For evaluation, we use the TimeBank (v1.2) corgle type because they are inverses of each other. In

pus, which consists of 183 newswire articles. lrother words, if a relation instance;( e3) is anno-

(2) We are there tstayfor a longperiod
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[ 1d | Relation | Description [ Total % | E-EJET]
1 | Simultaneous | e; andes happen at the same time or are temporally distinguishablé60 (13.3) | 599 61
2 | Identity e1 ande, are coreferent 702 (14.1)| 696 6
3 | Before e1 happens before; in time 689 (13.9)| 639 | 50
4 | After e1 happens aftet, in time 744 (15)| 681 63
5 | IBefore e1 happens immediately befoeg in time 39 (0.8)| 38 1
6 | IAfter e1 happens immediately afteg in time 28 (0.6)| 25 3
7 | Includes As in Ed arrived in Seoul last Sunddy; =last Sundayes=arrived) 758 (15.3)| 318 | 440
8 | Is_Included As in Ed arrived in Seoul last Sunddy, =arrived; eo=last Sunday | 762 (15.3)| 201 | 561
9 | During e1 persists throughout duratian 102 (2.1)| 19 83

10 | During_Inv e persists throughout duratien 124 (2.5)| 44 80
11 | Begins e1 marks the beginning of> 66 (1.3)| 44 22
12 | BegunBy e2 marks the beginning aof; 61 (1.2)| 32 29
13 | Ends e1 marks the end o#, 66 (1.3)| 21 45
14 | EndedBy e marks the end of; 170 (3.42)| 93 77

Table 1: The 14 temporal relations and their frequency oficences in TimeBank (v1.2). Each relation is defined

on an ordered event-event or event-time paitd). The “Total” and “%” columns show the number and percentage
of instances annotated with the corresponding relatiohencbrpus, respectively, and the “E-E” and “E-T” columns

show the breakdown by the number of event-event pairs and-¢vee pairs.

tated asAfter, it is replaced with the instancey, Ghassem-Sani (20113).These features can be di-
e1) with classBefore, and subsequently a relationvided into six categories, as described below.
classifier is presented witled, e1) but not €1, e3). . .
On the other hand, our 1l4-class task is arguabg%ex'caI (5). The strings qfel and e, the 'hea}d
more challenging since our system has to further di vords ofe, ande,, and a binary fea_lture indicating
tinguish a relation type from its inverse given an inWhethere, ande, have the same string.
stance in which the two elements are in arbitrary orgrammatical (33). The POS tags of the head
der. words of e; and e;, the POS tags of the five to-
kens preceding and following; ande,, the POS
bigram formed from the head word ef and its pre-
ceding token, the POS bigram formed from the head
Since the currently best-performing systems foorg of e, and its preceding token, the POS tag pair
temporal relation classification are learning-baseqgrmed from the head words of andes, the prepo-
we will employ a learning-based system as our basgjtional lexeme of the prepositional phrase (PR) if
line. Below we describe how we train this baseline.is neaded by a PP (Chambers et al., 2007), the prepo-
Without loss of generality, assume thaf,e2) is  sitional lexeme of the PP if, is headed by a PP, the
an event-event/event-time pair such thatdilpre- prepositional lexeme of the PPdf is governed by
cedese; in the associated text and (2):(e2) be- a PP (Mirroshandel and Ghassem-Sani, 2011), the
longs to one of the 14 TimeBank temporal relaprepositional lexeme of the PPd is governed by
tion types. We create one training instance for each PP, the POS of the head of the verb phrase (VP) if
event-event/event-time pair in a training document, is governed by a VP, the POS of the head of the
that satisfies the two conditions above, labeling ®/p if ¢, is governed by a VP, whethe syntacti-
with the relation type that exists betweenandes.  cally dominates, (Chambers et al., 2007), and the
To build a strong baseline, we represent eackhortest path from; to e in the associated syntac-
instance using 68 linguistic features modeled aftic parse tree. We obtain parse trees and POS tags
ter the top-performing temporal relation classificausing the Stanford CoreNLP tobl.
tion systems on TimeBank (e.g., Mani et al. (2006); N _
Chambers et al. (2007)) and in the TempEval sharegd_\ote: however, that these features were designed for the
. arguably simpler 6-class temporal relation classificatamks.
tasks (e.g., Min et al. (2007), Puscasu (2007), Ha et 2hyp.//nip.stanford.edu/software/
al. (2010), Llorens et al. (2010), Mirroshandel andorenlp.shtml

3 Baseline Temporal Relation Classifier
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Entity attributes (13). The tense, aspect, modal-4.1 Six Types of New Features

ity, polarlty, and event _type.osfl ande, if _they are 411 Ppairwise Features

events (if one of them is a time expression, then the ) )

class attribute will be set to its class and the rest ggeC@ll that some of the features in the baseline fea-
them will have the valuewuLL), pairwise features [U'€ S€t are computed based on eitagor e; but

formed by pairing up the tense values, the aspeEPt both. Since our task |s'to predl_ct ﬂmatlon be-
values, and the class valuesegfande, tween them, we hypothesize thadirwise features,

. o which are computed based on both elements, could
Semantic (7). The subordinating temporal role t0- payer capture the relationship between them.
ken of e; if it appears within a temporal semantic Specifically

we introduce pairwise versions of the
role argument (Llorens et al.

: | role token of f 2010), the Su_bt?,rdmahead word feature and the two prepositional lexeme-
Ing temporal role token of; If it appears within a based features in the baseline. In addition, we create

temporal semantic role argumgnt, the first WordNe&NO quadruple-wise features, one by pairing up the
synset to whicle; belongs, the first WordNet SYNSelianse and class attribute valuesepfwith those of

tho whlche%bfelo;gs, and w?etheﬁdahd(_elg arelln_the eo, and the other by pairing up their tense and as-
appens-beforenappens-afterandsimilar relation pect values. Next, we create twrace features, one

according to VerbOceah. based on prepositions and the other on verbs, since
Distance (1). Aree; andes in the same sentence?prepositions and verb tenses have been shown to

DCT related (3). The temporal relation type be- Play an important role in temporal relation classifi-
tweene; and the document creation time (DCT) [itscation Thepreposition tracefeature is computed by

value can be one of the 14 relation typesnare (1) collecting the list of prepositions along the path
if no relation exists], the temporal relation type befromei/e; to the root of its syntactic parse trees, and

tweene, and the DCT, and whethes ande, have (2) concatenating the resulting lists computed from
different relation types with the DCT. e; andes. Theverb tracefeature is computed in a

After creating the training instances, we trainS|m|lar manner, except that we collect the POS tags

a 14-class classifier on them using SYNticlass of the verbs appearing in the corresponding paths.
(Tsochantaridis et al., 2004). We then use it to 41 2 Dependency Relations
make predictions on the test instances, which A

generated in the same way as the training instances. introduce  features com_puted.based on de-
péndency parse trees obtained via the Stanford

4 Our Hybrid Approach CoreNLP tool, motivateq by our observation that
some dependency relation types are more closely

In this section, we describe our hybrid learning-associated with certain temporal relation types than

based and rule-based approach to temporal relatigvith others. Let us illustrate with an example:

classification. Section 4.1 describes our novel fea- (3) Edchangedhis plans as the moddok

tures, which will be used to augment the baseline him.

feature set (see Section 3) to train a temporal relgs (3), there is a adverbial clause modifier depen-
tion classifier. Section 4.2 outlines our manual "Ul%iency betweerhangedandtook becausdook ap-

creation process. Section 4.3 discusses how we COMksars in an adverbial clause (headedaBymodify-
bine our hand-crafted rules and the learned classifiﬁ{g changed Intuitively, if the two events partici-

to make predictions in our hybrid approach. pate in this type of dependency relation and the ad-

*happens-afteis not a relation in VerbOcean: we create thisVerblal (_:Iause is headed lagand there IS a tempo-_
relation s|mp|y by inverting theappens_beforwmtion. I‘a| re|a'[I0n between them, then ItIs I|ke|y that '[hIS

“For all the experiments involving SV cless \we setC, temporal relation iSimultaneous While the tem-
the_VEQU'ar_'ZSF'O” pifametefrf to 10,000, onee pfe"%’j"* poral relation type is dependent on the connective
periments indicate that preferring generalization 10 819 1,05 4ing the adverbial clause, in general an adverbial
(by setting C to a small value) tends to yield poorer classific . .
tion performance. The remaining learning parameters ate se clause modifier dependency between two events im-
their default values. plies that their temporal relation is likely to K-
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multaneous Before, or After. namely hypernyms, hyponyms, troponyms, and sim-
Given the potential usefulness of dependency rdfar, to create eight binary features for temporal rela-
lations for temporal relation classification, we cretion classification. These eight features are created
ate dependency-based features as follows. For edthm the four WordNet relations in the same way as
of the 25 dependency relation types produced bipe eight features were created from the four Web-
the Stanford parser, we create four binary featurester relations in the previous subsection.
whethere, /e, is the governing entity in the relation,

and whethee,/e; is the dependent in the relation. 4.1.5  Predicate-Argument Relations

So far we have exploited lexical and dependency
4.1.3 Webster Relations relations for temporal relation classification. We

Some events are not connected by a dependency Fy.pothesize that semantic relations, in particular
lation but by alexical relation. We hypothesize that predicate-argument relations, could be useful for the
some of these lexical relations could be useful fotdsk. Consider the following example.

temporal relation classification. Consider the fol- (5) “What sector isstepping forwardto

lowing example. pick up the slack?” he asked.
(4) The phony war hafinishedand the real Using SENNA (Collobert et al., 2011), a PropBank-
referendum campaign haggun style semantic role labeler, we know tHatward is

In this sentence, the two evenfsjishedandbe- N the directional argument of the predicatepping
gun, are connected by an antonym relation. Statistil NiS enables us to infer that &mcludesrelation ex-
cally speaking, if (1) two events are in two clausedSts betweersteppingandforward since intuitively
connected by a coordinating conjunction (eamg), &N action includes a direction.

(2) one is an antonym of the other, and (3) there is AS another example, consider another PropBank-

a temporal relation between them, then the temporéy!e predicate-argument relatiorause Assuming
relation is likely to beSimultaneous thatey is in e;’s cause argument, we can infer that

Given the potential usefulness of lexical rela2 c_JccursBefore eq since intuitively the cause of an
tions for temporal relation classification, we cre-2ction precedes the action.
ate features based on four types of lexical re- Consequently, we create features for tempo-
lations present in Webster's online thesafirus ral relation classification based on four types
namely synonyms, related-words, near-antonym@,f PropBank-style predicate-argument relations,
and antonyms. Specifically, for each evermippear- namely directional, manner, temporal, and cause.
ing in TimeBank, we first use the head wordeofo Specifically, using SENNA's output, we create four
retrieve four lists, which are the lists correspondinginary features that encode whether argumerns
to the synonyms, related words, near-antonyms, ahglated to predicate; through the four types of rela-
antonyms ofe. Then, given a training/test instancelions, and we create another four binary features that
involving e; ande», we create eight binary features:encode whether argumeat is related to predicate
whethere; appears ires’s list of synonyms/related €2 through the four types of relations.
words/near-antonyms/antonyms, and whetheap-
pears ine;’s list of synonyms/related words/near-
antonyms/antonyms.

4.1.6 Discourse Relations

Rhetorical relations such as causation, elaboration
and enablement could aid in tracking the temporal
4.1.4 WordNet Relations progression of the discourse (Hitzeman et al., 1995).

Previous uses of WordNet for temporal relation cIasHence’ unlike gyntactlc depende_znues and predlcgte-
rgument relations through which we can identify

sification are limited to synsets (e.g., Llorens et af ) _ _
(2010)). We hypothesize that other WordNet Iexicallptra-sententlalte_mporal relatlgns, dlsgourse rela-
relations could also be useful for the task. Spech‘t-Ions can potentially be exploited to discover both
ically, we employ four types of WordNet relations inter-sententialand intra-sententialtemporal rela-

ions. However, no recent work has attempted to
*http:/iwww.merriam-webster.com/ use discourse relations for temporal relation clas-

922



(6) {-Argl Hewlett-Packard Cosaidit raised its stake in Octel Communications Corp. to 8.5%hef t
common shares outstandingArgl} {_Arg2_RESTATEMENT In a Securities and Exchange Commis-
sionfiling, Hewlett-Packard said it now holds 1,384,119 Octel comniames_Arg2}.

(7) {-Argl Reportssaid that Saudi Arabia told U.S. oil companies of a 15-20 percatiiack in its oil
supply in SeptemberArgl} {_Conn S'NCHRONY Meanwhile_Conn} {_Arg2 Egypt’s Middle East
Agency saidThursdaythat Saddam was the target of an assassination atteAmg2}

Table 2: Examples illustrating the usefulness of discotekions for temporal relation classification.

sification. In this subsection, we examine whethebetween the reporting evesaidand the dat& hurs-
we can improve a temporal relation identifier viaday. The parser determines that asN&HRONY
explicit andimplicit PDTB-style discourse relations explicit relation triggered byMeanwhileexists be-
automatically extracted by Lin et al.'s (2013) end-totween the two sentences. Intuitively, if a temporally
end discourse parser. related reporting event and date occur within differ-
Let us first review PDTB-style discourse rela-€nt discourse units connected by theNE HRONY
tions. Each relation is represented by a trighegl, ~ relation, then it is likely that the evets_Included
sense Arg2), whereArgl and Arg2 are the two ar- in the date. Note that without this discourse relation,
guments of the relation arngknses the sense/type it could be difficult for a machine to confidently as-
of the relation. A discourse relation can be expliciSociate a reporting event with a date occurring in a
or implicit. An explicit relation is triggered by a dis- different discourse segment.
course connective. On the other hand, an implicit Given the potential usefulness of discourse rela-
relation is not triggered by a discourse connectivgjons for temporal relation classification, we create
and may exist only between two consecutive serfour features based on discourse relations. In the
tences. Generally, implicit relations are much harddirst feature, ife; is in Argl, es isin Arg2, and Argl
to identify than their explicit counterparts. and Arg2 possess an explicit relation with semse
Next, to motivate why discourse relations can b&hen its feature value is; otherwise its value is
useful for temporal relation classification, we uséVULL. Inthe second feature, df isin Argl,e; isin
two examples (see Table 2), one involving an imArg2, and Argl and Arg2 possess a explicit relation
plicit relation (Example (6)) and the other an explicitVith senses, then its feature value is; otherwise
relation (Example (7)). For convenience, both serits value isNULL. The third and fourth features are
tences are also annotated using Lin et al.’s (2013pmputed in the same way as the first two features,
discourse parser, which marks up the two argumeng@xcept that they are computed over implicit rather
with the _Arg1 and_Arg2 tags and outputs the rela-than explicit relations.
tion sense next to the beginning of Arg2.
4.2 Manual Rule Creation

In (6), we aim to determine the order relation be-
tween the reporting everstaid and the occurrence As noted before, we adopt a hybrid learning-based
eventfiling. The parser determines that @RATE-  and rule-based approach to temporal relation clas-
MENT implicit relation exists between the two sen-sification. Hence, in addition to training a tempo-
tences. Intuitively, if no asynchronous relations caral relation classifier, we also manually design a set
be found among the events in two discourse unitsf rules in which each rule returns a temporal rela-
connected by the BSTATEMENT relation, then the tion type for a given test instance. We hypothesize
temporal relation between two temporally linkedthat a rule-based approach can complement a purely
events within these units is likely to be eitlden-  learning-based approach, since a human could com-
tity or Simultaneous In this case, we can rule out bine the available linguistic features into rules using
Identity : since said and filing belong to different commonsense knowledge that may not be accessible
event classes, they are not coreferent. to a learning algorithm.

In (7), we aim to determine the anchor relation The design of the rules is partly based on intu-
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ition and partly data-driven: we first use our intu-and using the remaining two folds (say Folds 4-5)
ition to come up with a rule and then manually refor testing. We perform two-fold cross-validation
fine it based on the observations we made on thexperiments using the two test folds. In the first fold
TimeBank data. For this purpose, we partition thexperiment, we train a temporal relation classifier on
TimeBank documents into five folds of roughly theFolds 1-4 and test on Fold 5; and in the second fold
same size, reserving three folds for developing owxperiment, we train the classifier on all but Fold 4
rules and using the remaining two folds for evaluatand test on Fold 4. The results reported in the rest of
ing final system performance. We order these ruldke paper are averaged over the two test folds.
in decreasing order of accuracy, where the accuragwaluation metrics. We employaccuracy (Acc)
of arule is defined as the number of times the ruland macro F-score(F™*). Accuracy is the per-
yields the correct temporal relation type divided bytentage of correctly classified test instances, and is
the number of times itis applied, as measured on thRe standard evaluation metric for temporal relation
three development folds. A new instance is classtlassification. Since each test instance belongs to
fied using the first applicable rule in the ruleset.  one of the 14 temporal relation types, accuracy is the
Some of these rules were shown in the previsame as micro F-score. On the other hand, macro F-
ous subsection when we motivated each feature tygeore is rarely used to evaluate this task. We chose it
with examples. The complete set of rules can be abecause it could provide insights into how well our
cessed via our websife. approach performs on the minority classes.

4.3 Combining Rules and Machine Learning 5.2 Results and Discussion

We in\/estigate three ways to combine the hand-[able 3 shows the two-fold cross-validation results
crafted rules and the machine-learned classifier. for our 14-class temporal relation classification task.

In the first method, we employ all of the rules asThe six columns of the table correspond to six dif-
additional features for training the classifier. Thderent system architectures. The “Feature” column
value of each such feature is the temporal relatioforresponds to a purely learning-based architecture
type predicted by the corresponding rule. where the results are obtained simply by training a

The second method can be viewed as an extensit#{nporal relation classifier using the available fea-
of the first one. Given a test instance, we first appljrés: The next two columns correspond to two
to it the ruleset composed only of rules that are dfurely rule-based architectures, dlfferl_ng by whether
least 80% accurate. If none of the rules is applicablé!l rules are used regardless of their accuracy or
first method’ at least 80% accurate) are used. The rightmost three

The third method is essentially the same as thePlumns correspond to the three ways of combining
second, except we do not employ the rules as felules and machine learning described in Section 4.3.

tures when training the classifier. On the other hand, the rows of the table differ in
terms of what features are available to a system. In

5 Evaluation row 1, only the baseline features are available. In the
subsequent rows, the six types of features discussed

5.1 Experimental Setup in Section 4 are added incrementally to the baseline

Dataset. As mentioned before, we partition thefeature set. This means that the last row corresponds

183 documents in the TimeBank (v1.2) corpus inté0 the case where all feature types are used.
five folds of roughly the same size, reserving three A point merits clarification. It may not be imme-

folds (say Folds 1-3) for manual rule developmenéliately clear how to interpret the results under, for
instance, the “All Rules” column. In other words,

“http:/fwww.hit.utdallas.edu/ ~]1d082000/ it may not be clear what it means to add the six

temporal-relations/ .
Although this classifier is applied to only those test in-types of features incrementally o a rule-based sys

stances that the rules cannot handle, we did not retrain it J§M. Recall that one of our goals is to compare
only those training instances that the rules cannot handle. ~ a purely learning-based system with a purely rule-
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Features All Rules All Rules with Features + Rules + Rules + Features 4
accuracy> 0.8 | Rules as Features Features Rules as Features
Feature Type Acc F™ | Acc F™ | Acc Fre Acc Fmae Acc F™ | Acc Fme

1 | Baseline 453 249 - — — — — — — — — —

2 + Pairwise 46,5 25.8| 37.6 26.5| 5.1 13.9 | 46.7 26.5 48.0 31.9| 48.2 32.1
3 + Dependencies| 47.0 25.9| 39.0 27.8| 6.9 15.7 | 47.2 26.7 49,2 32.3| 49.2 32.6
4 + WordNet 46.9 26.0| 435 30.4| 6.9 15.7 | 475 26.8 49.2 32.3| 495 32.8
5 + Webster 46,9 25.8| 43.3 29.9| 6.9 15.7 | 48.1 26.8 49,2 32.0| 50.1 33.1
6 + PropBank 472 26.0| 443 305| 8.1 16.6 | 48.0 26.8 495 32.2| 50.0 33.0
7 + Discourse 48.1 26.6| 47.5 35.1| 12.8 23.3 | 48.9 275 53.0 36.0| 534 36.6

Table 3: Two-fold cross-validation accuracies and macszéres as features are added incrementally to the baseline.

based system, since we hypothesized that humaletter than the remaining four architectures. This
may be better at combining the available featuresuggests that the best-performing approach for our
to form rules than a learning algorithm would bel4-class temporal relation classification task is the
To facilitate this comparison, all and only those feahybrid approach where high-accuracy rules are first
tures that are available to a learning-based systemapplied and then the learned classifier is used to clas-
a given row can be used in hand-crafting the rulesify those cases that cannot be handled by the rules.
of the rule-based system in the same row. The other Among the remaining four architectures, “All

columns involving the use of rules can be interpretegyles with accuracy 0.8”, the version of the rule-

in a similar manner. based architecture where only the high-accuracy
The highest accuracy and macro F-score afgles are used, performs significantly worse than the

achieved when all types of features are used igthers, presumably because the coverage of the rule-

combination with the “Rules + Features + Rulessetis low. The results of the two feature-based archi-

as Features” architecture. Specifically, this systeigctures, “Features” and “Features + Rules as Fea-

achieves an accuracy of 53.4% and a macro F-scotiges”, are statistically indistinguishable from each
of 36.6% on the 2000-instance test set. This trangther at thep < 0.01 level. At thep < 0.05

lates to a relative error reduction of 15-16% in comtevel, however, their results are mixed: “Features +
parison to the baseline result shown in row 1. ARules as Features” is better than “Features” accord-
closer examination of these results reveals that thgg to accuracy, whereas the reverse is true accord-
hand-crafted rules used by the system correctly clagg to macro F-score. Combining these results with
sify 239 of the 305 test instances to which they aréhose we discussed above concerning the “Rules +
applicable. In other words, the rules achieve a precfFeatures” and “Rules + Features + Rules as Fea-
sion of 78.3% and a recall of 15.3% on the test dataures” architectures, we can conclude that the fea-
Our results suggest that the rules are effective @res encoding the hand-crafted rules are (mildly)
improving performance when they are used to makgseful only when used in combination with a weak-
classification decisions prior to the application oberforming system. Finally, comparing the “Fea-
the classifier, as the performance of the “Rules tures” architecture and the “All Rules” architecture,
Features + Rules as Features” architecture is sigre also see mixed results: “Features” is better than
nificantly better than that of the “Features + Rulesa|l Rules” according to accuracy, whereas the re-
as Features” architectufe On the other hand, the verse is true according to macro F-score. These
“Rules + Features + Rules as Features” architecturgsults confirm our earlier hypothesis that the rule-
does not benefit from the use of rules as featureased system is indeed better at identifying instances
as its performance is statistically indistinguishablef minority relation types.
from that of the “Rules + Features” architecture. Next, to determine whether the addition of a par-
Nevertheless, both “Rules + Features + Rules agyjar type of features to the feature set is use-
Features” and “Rules + Features” are significantly| e apply the paired-test to each pair of ad-
~ SUnless otherwise stated, all statistical significancestest  jacent rows in Table 3. We found that adding
pairedt-tests, withp < 0.05. pairwise features, dependency relations, and most
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Event-Event| Event-Time Baseline Our System
Feature Type Acc F™ | Acc F™ Relation R P F R P F
1 | Baseline 36.7 156| 633 19.2 Simultaneous | 22.5 30.5 25.9] 295 39.5 33.8
2| + Pairwise 404 254|647 242 Identity 56.5 51.5 53.9 59.0 575 582
3| +Dependencies| 424 28.4| 64.9 254 Before 39.5 385 39.0 50.5 505 50.5
4 | + WordNet 426 28.1) 647 253 After 50.5 35.0 41.4/ 59.5 445 509
5| +Webster 43.0 29.7) 646 253 IBefore 0.0 0.0 0.0]325 855 471
6 + PropBank 43.2 28.6| 64.3 25.1 |After 0.0 0.0 00| 55 50.0 9.9
7 |+ Discourse 46.8 36.3| 654 26.4 Includes 545 505 524 61.0 555 58.1
Is_Included 715 645 67.8/ 745 650 69.4
Table 4: Event-event and event-time classification results24rng 110 31.0 162 190 345 245
uring _Inv 140 20.0 165 195 405 26.3
of our best system (Rules + Features+ Rules as featurgs egins 45 100 6.2|37.0 435 400
Begun.By 65 145 90| 350 44.0 39.0
. . . o .| Ends 65 100 79| 235 700 352
importantly, discourse relations significantly im- ended By 90 100 95| 290 265 27.7

proves both accuracy and macro F-scere(0.05).

Adding the Webster relations improves accuracy at®able 5: Per-class results of the baseline system and our
slightly lower significance level(< 0.07) but does best system (Rules + Features+ Rules as features).

not significantly improve macro F-score. Some-

what counter-intuitively, the WordNet and predicate-.

argument relations are not useful. We speculate tht'(t)n task. Results on the TimeBank corpus show

their failure to improve performance could be at-t at our approach achieves a relative error reduction

. : of 15—-16% over a learning-based baseline that em-
tributed to the fact that these relations are extracte ovs a state-of-the-art feature set. Our results sua-
by imperfect analyzers. Additional experiments inP'oY ' 9

volving the use of gold-standard quality features argeSt that (1). the palrW|se_features, dependency rela-
. . tions, and discourse relations are useful for temporal
needed to precisely determine the reason.

relation classification; and (2) hand-crafted rules can

Recall that the results shown in Table 3 were com- o
: "hetter handle the skewed class distribution underly-
puted over both the order (i.e., event-event) and an-

ing our dataset via improving minority class predic-

cho_r _(i.e., _evgnt-time) temporal relation_s. To gairEion To our knowledge, we are the first to (1) re-
additional insights into our best-performing System|bort results for the 14-c,lass temporal relation clas-

we show in Table 4 its performance on classify-

. . . ification task on TimeBank; (2) successfully em-
ing event-event and event-time relations separate . : ) :

) . oy PDTB-style discourse relations to improve this
In comparison to the baseline, both accuracy a

. o ask; and (3) show that a hybrid approach to this task
macro F-score increase significantly when our sys-

tem is used in combination with all feature tyloescan yield better results than either a rule-based or

. . . learning-based approach. To stimulate research on
In particular, our system yields a relative error re-

duction of 16—25% for event-event classification ang1 s task, _we make our complete set of hanq-craﬁed
rules available to other researchers. We believe that

6—9% for event-time classification over the base-" .
0 brid rule-based and learning-based approaches are

line. The pairwise features, as well as dependenc - :
. ) ) . . _.promising approaches to language processing tasks
relations and discourse relations, contribute signif-

icantly to the classification of both event-event anéh _at require complex reasoning and hope _that they
. . will be given more attention in the community.
event-time relations.

Finally, we show in Table 5 the per-class result%
of the baseline system and our best-performing sys-

tem. As we can see, our system performs signifiye thank the three anonymous reviewers for their
cantly better than the baseline on all relation typegjetajled and insightful comments on an earlier draft
owing to a simultaneous rise in recall and precisionas tne paper. This work was supported in part by
NSF Grants 11S-1147644 and 11S-1219142. Any
opinions, findings, or conclusions expressed in this
We have investigated a knowledge-rich, hybrid appaper are those of the authors and do not necessarily
proach to the 14-class temporal relation classificaeflect the views or official policies of NSF.
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