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Abstract

Distant supervision, heuristically labeling a

corpus using a knowledge base, has emerged

as a popular choice for training relation ex-

tractors. In this paper, we show that a sig-

nificant number of “negative“ examples gen-

erated by the labeling process are false neg-

atives because the knowledge base is incom-

plete. Therefore the heuristic for generating

negative examples has a serious flaw. Building

on a state-of-the-art distantly-supervised ex-

traction algorithm, we proposed an algorithm

that learns from only positive and unlabeled

labels at the pair-of-entity level. Experimental

results demonstrate its advantage over existing

algorithms.

1 Introduction

Relation Extraction is a well-studied problem

(Miller et al., 2000; Zhou et al., 2005; Kambhatla,

2004; Min et al., 2012a). Recently, Distant Super-

vision (DS) (Craven and Kumlien, 1999; Mintz et

al., 2009) has emerged to be a popular choice for

training relation extractors without using manually

labeled data. It automatically generates training ex-

amples by labeling relation mentions1 in the source

corpus according to whether the argument pair is

listed in the target relational tables in a knowledge

base (KB). This method significantly reduces human

efforts for relation extraction.

The labeling heuristic has a serious flaw. Knowl-

edge bases are usually highly incomplete. For exam-

1An occurrence of a pair of entities with the source sentence.

ple, 93.8% of persons from Freebase2 have no place

of birth, and 78.5% have no nationality (section 3).

Previous work typically assumes that if the argument

entity pair is not listed in the KB as having a re-

lation, all the corresponding relation mentions are

considered negative examples.3 This crude assump-

tion labeled many entity pairs as negative when in

fact some of their mentions express a relation. The

number of such false negative matches even exceeds

the number of positive pairs, by 3 to 10 times, lead-

ing to a significant problem for training. Previous

approaches (Riedel et al., 2010; Hoffmann et al.,

2011; Surdeanu et al., 2012) bypassed this problem

by heavily under-sampling the “negative“ class.

We instead deal with a learning scenario where we

only have entity-pair level labels that are either posi-

tive or unlabeled. We proposed an extension to Sur-

deanu et al. (2012) that can train on this dataset. Our

contribution also includes an analysis on the incom-

pleteness of Freebase and the false negative match

rate in two datasets of labeled examples generated

by DS. Experimental results on a realistic and chal-

lenging dataset demonstrate the advantage of the al-

gorithm over existing solutions.

2 Related Work

Distant supervision was first proposed by Craven

and Kumlien (1999) in the biomedical domain.

2Freebase is a large collaboratively-edited KB. It is available

at http://www.freebase.com.
3There are variants of labeling heuristics. For example, Sur-

deanu et al. (2011) and Sun et al. (2011) use a pair < e, v >

as a negative example, when it is not listed in Freebase, but e is

listed with a different v′. These assumptions are also problem-

atic in cases where the relation is not functional.
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Since then, it has gain popularity (Mintz et al., 2009;

Bunescu and Mooney, 2007; Wu and Weld, 2007;

Riedel et al., 2010; Hoffmann et al., 2011; Sur-

deanu et al., 2012; Nguyen and Moschitti, 2011).

To tolerate noisy labels in positive examples, Riedel

et al. (2010) use Multiple Instance Learning (MIL),

which assumes only at-least-one of the relation men-

tions in each “bag“ of mentions sharing a pair of ar-

gument entities which bears a relation, indeed ex-

presses the target relation. MultiR (Hoffmann et

al., 2011) and Multi-Instance Multi-Label (MIML)

learning (Surdeanu et al., 2012) further improve it

to support multiple relations expressed by different

sentences in a bag. Takamatsu et al. (2012) mod-

els the probabilities of a pattern showing relations,

estimated from the heuristically labeled dataset.

Their algorithm removes mentions that match low-

probability patterns. Sun et al. (2011) and Min et

al. (2012b) also estimate the probablities of patterns

showing relations, but instead use them to relabel ex-

amples to their most likely classes. Their approach

can correct highly-confident false negative matches.

3 Problem Definition

Distant Supervision: Given a KB D (a collection

of relational tables r(e1, e2), in which rǫR (R is the

set of relation labels), and < e1, e2 > is a pair of

entities that is known to have relation r) and a cor-

pus C, the key idea of distant supervision is that we

align D to C, label each bag4 of relation mentions

that share argument pair < e1, e2 > with r, other-

wise OTHER. This generates a dataset that has labels

on entity-pair (bag) level. Then a relation extractor

is trained with single-instance learning (by assum-

ing all mentions have the same label as the bag), or

Multiple-Instance Learning (by assuming at-least-

one of the mentions expresses the bag-level label),

or Multi-Instance Multi-Label learning (further as-

suming a bag can have multiple labels) algorithms.

All of these works treat the OTHER class as exam-

ples that are labeled as negative.

The incomplete KB problem: KBs are usually

incomplete because they are manually constructed,

and it is not possible to cover all human knowledge

4A bag is defined as a set of relation mentions sharing the

same entity pair as relation arguments. We will use the terms

bag and entity pair interchangeably in this paper.

nor stay current. We took frequent relations, which

involve an entity of type PERSON, from Freebase

for analysis. We define the incompleteness ∂(r) of a

relation r as follows:

∂(r) = |{e}|−|{e|∃e′,s.t.r(e,e′)ǫD}|
|{e}|

∂(r) is the percentage of all persons {e} that do

not have an attribute e′ (with which r(e, e′) holds).

Table 1 shows that 93.8% of persons have no place

of birth, and 78.5% of them have no nationality.

These are must-have attributes for a person. This

shows that Freebase is highly incomplete.
Freebase relation types Incompleteness

/people/person/education 0.792

/people/person/employment history 0.923

/people/person/nationality* 0.785

/people/person/parents* 0.988

/people/person/place of birth* 0.938

/people/person/places lived* 0.966

Table 1: The incompleteness of Freebase (* are must-

have attributes for a person).

We further investigate the rate of false negative

matches, as the percentage of entity-pairs that are

not listed in Freebase but one of its mentions gen-

erated by DS does express a relation in the tar-

get set of types. We randomly picked 200 unla-

beled bags5 from each of the two datasets (Riedel

et al., 2010; Surdeanu et al., 2012) generated by DS,

and we manually annotate all relation mentions in

these bags. The result is shown in Table 2, along

with a few examples that indicate a relation holds in

the set of false negative matches (bag-level). Both

datasets have around 10% false negative matches in

the unlabeled set of bags. Taking into considera-

tion that the number of positive bags and unlabeled

bags are highly imbalanced (1:134 and 1:37 in the

Riedel and KBP dataset respectively, before under-

sampling the unlabeled class), the number of false

negative matches are 11 and 4 times the number

of positive bags in Reidel and KBP dataset, respec-

tively. Such a large ratio shows false negatives do

have a significant impact on the learning process.

4 A semi-supervised MIML algorithm

Our goal is to model the bag-level label noise,

caused by the incomplete KB problem, in addition

585% and 95.7% of the bags in the Riedel and KBP datasets

have only one relation mention.

778



Dataset

(train-

ing)

# pos-

itive

bags

# positive :

# unlabeled

% are

false

negatives

# positive

: # false

negative

has human

assessment

Examples of false negative mentions

Riedel 4,700 1:134(BD*) 8.5% 1:11.4 no
(/location/location/contains)... in Brooklyn ’s Williamsburg.

(/people/person/place lived) Cheryl Rogowski , a farmer from

Orange County ...

KBP 183,062 1:37(BD*) 11.5% 1:4 yes
(per:city of birth) Juan Martn Maldacena (born September

10, 1968) is a theoretical physicist born in Buenos Aires

(per:employee of)Dave Matthews, from the ABC News, ...

Table 2: False negative matches on the Riedel (Riedel et al., 2010) and KBP dataset (Surdeanu et al., 2012). All

numbers are on bag (pairs of entities) level. BD* are the numbers before downsampling the negative set to 10% and

5% in Riedel and KBP dataset, respectively.

to modeling the instance-level noise using a 3-layer

MIL or MIML model (e.g., Surdeanu et al. (2012)).

We propose a 4-layer model as shown in Figure 1.

The input to the model is a list of n bags with a

vector of binary labels, either Positive (P), or Un-

labled (U) for each relation r. Our model can be

viewed as a semi-supervised6 framework that ex-

tends a state-of-the-art Multi-Instance Multi-Label

(MIML) model (Surdeanu et al., 2012). Since the

input to previous MIML models are bags with per-

relation binary labels of either Positive (P) or Neg-

ative (N), we add a set of latent variables ℓ which

models the true bag-level labels, to bridge the ob-

served bag labels y and the MIML layers. We con-

sider this as our main contribution to the model. Our

hierarchical model is shown in Figure 1.

Figure 1: Plate diagram of our model.

Let i, j be the index in the bag and mention level,

respectively. Following Surdeanu et al. (2012), we

model mention-level extraction p(zr
ij |xij ;wz) and

multi-instance multi-label aggregation p(ℓr
i |zi;w

r
ℓ)

in the bottom 3 layers. We define:

• r is a relation label. rǫR ∪ {OTHER}, in

which OTHER denotes no relation expressed.

• yr
i ǫ{P, U}: r holds for ith bag or the bag is

unlabeled.

6We use the term semi-supervised because the algorithm

uses unlabeled bags but existing solutions requires bags to be

labeled either positive or negative.

• ℓr
i ǫ{P, N}: a hidden variable that denotes

whether r holds for the ith bag.

• θ is an observed constant controlling the total

number of bags whose latent label is positive.

We define the following conditional probabilities:

• p(yr
i |ℓ

r
i ) =















1/2 if yr
i = P ∧ ℓr

i = P ;
1/2 if yr

i = U ∧ ℓr
i = P ;

1 if yr
i = U ∧ ℓr

i = N ;
0 otherwise ;

It encodes the constraints between true bag-

level labels and the entity pair labels in the KB.

• p(θ|ℓ) ∼ N (
∑n

i=1

∑
rǫR δ(ℓr

i ,P )
n

, 1
k
) where

δ(x, y) = 1 if x = y, 0 otherwise. k is a large

number. θ is the fraction of the bags that are

positive. It is an observed parameter that de-

pends on both the source corpus and the KB

used.

Similar to Surdeanu et al. (2012), we also define

the following parameters and conditional probabili-

ties (details are in Surdeanu et al. (2012)):

• zijǫR ∪ {OTHER}: a latent variable that de-

notes the relation type of the jth mention in the

ith bag.

• xij is the feature representation of the jth rela-

tion mention in the ith bag. We use the set of

features in Surdeanu et al. (2012).

• wz is the weight vector for the multi-class rela-

tion mention-level classifier.

• w
r
ℓ is the weight vector for the rth binary top-

level aggregation classifier (from mention la-

bels to bag-level prediction). We use wℓ to rep-

resent w1
ℓ ,w

2
ℓ , ...w

|R|
ℓ .

• p(ℓr
i |zi;w

r
ℓ) ∼ Bern(fℓ(w

r
ℓ , zi)) where fℓ is

probability produced by the rth top-level clas-

sifier, from the mention-label level to the bag-

label level.

• p(zr
ij |xij ;wz) ∼ Multi(fz(wz,xij)) where fz
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is probability produced by the mention-level

classifier, from the mentions to the mention-

label level.7

4.1 Training

We use hard Expectation-Maximization (EM) algo-

rithm for training the model. Our objective function

is to maximize log-likelihood:

L(wz,wℓ) = logp(y, θ|x;wz,wℓ)

= log
∑

ℓ

p(y, θ, ℓ|x;wz,wℓ)

Since solving it exactly involves exploring an expo-

nential assignment space for ℓ, we approximate and

iteratively set ℓ∗ = argℓ max p(ℓ|y, θ,x;wz,wℓ)
p(ℓ|y, θ,x;wz,wℓ) ∝ p(y, θ, ℓ|x;wz,wℓ)

= p(y, θ|ℓ,x)p(ℓ|x;wz,wℓ)

= p(y|ℓ)p(θ|ℓ)p(ℓ|x;wz,wℓ)
Rewriting in log form:

logp(ℓ|y, θ,x;wz,wℓ)

= logp(y|ℓ) + logp(θ|ℓ) + logp(ℓ|x;wz,wℓ)

=
n

∑

i=1

∑

rǫR

logp(yr
i |ℓ

r
i )− k(

n
∑

i=1

∑

rǫR

δ(ℓr
i , P )

n
− θ)2

+
n

∑

i=1

∑

rǫR

logp(ℓr
i |xi;wz,wℓ) + const

Algorithm 1 Training (E-step:2-11; M-step:12-15)

1: for i = 1, 2 to T do

2: ℓr
i ← N for all yr

i = U and rǫR
3: ℓr

i ← P for all yr
i = P and rǫR

4: I = {< i, r > |ℓr
i = N}; I ′ = {< i, r > |ℓr

i = P}

5: for k = 0, 1 to θn− |I ′| do

6: < i′, r′ >= argmax<i,r>ǫI p(ℓr
i |xi;wz,wℓ)

7: ℓr′

i′ ← P ; I = I\{< i′, r′ >}

8: end for

9: for i = 1, 2 to n do

10: z
∗
i = argmaxzi

p(zi|ℓi,xi;wz,wℓ)
11: end for

12: w
∗
z = argmaxwz

∑n
i=1

∑|xi|
j=1 logp(zij |xij ,wz)

13: for all rǫR do

14: w
r(∗)
ℓ = argmaxwr

ℓ

∑n
i=1 p(ℓr

i |zi,w
r
ℓ)

15: end for

16: end for

17: return wz,wℓ

7All classifiers are implemented with L2-regularized logistic

regression with Stanford CoreNLP package.

In the E-step, we do a greedy search (steps 5-8

in algorithm 1) in all p(ℓr
i |xi;wz,wℓ) and update ℓr

i

until the second term is maximized. wz , wℓ are the

model weights learned from the previous iteration.

After fixed ℓ, we seek to maximize:

logp(ℓ|xi;wz,wℓ) =
n

∑

i=1

logp(ℓi|xi;wz,wℓ)

=
n

∑

i=1

log
∑

zi

p(ℓi, zi|xi;wz,wℓ)

which can be solved with an approxi-

mate solution in Surdeanu et al. (2012)

(step 9-11): update zi independently with:

z
∗
i = argmaxzi

p(zi|ℓi,xi;wz,wℓ). More details

can be found in Surdeanu et al. (2012).

In the M-step, we retrain both of the mention-

level and the aggregation level classifiers.

The full EM algorithm is shown in algorithm 1.

4.2 Inference

Inference on a bag xi is trivial. For each mention:

z∗ij = argzijǫR∪{OTHER}max p(zij |xij ,wz)
Followed by the aggregation (directly with wℓ):

y
r(∗)
i = argyr

i ǫ{P,N}max p(yr
i |zi;w

r
ℓ)

4.3 Implementation details

We implement our model on top of the

MIML(Surdeanu et al., 2012) code base.8 We

use the same mention-level and aggregate-level

feature sets as Surdeanu et al. (2012). We adopt

the same idea of using cross validation for the E

and M steps to avoid overfitting. We initialize our

algorithm by sampling 5% unlabeled examples as

negative, in essence using 1 epoch of MIML to

initialize. Empirically it performs well.

5 Experiments

Data set: We use the KBP (Ji et al., 2011)

dataset9 prepared and publicly released by Surdeanu

et al. (2012) for our experiment since it is 1) large

and realistic, 2) publicly available, 3) most im-

portantly, it is the only dataset that has associated

human-labeled ground truth. Any KB held-out eval-

uation without manual assessment will be signif-

icantly affected by KB incompleteness. In KBP

8Available at http://nlp.stanford.edu/software/mimlre.shtml
9Available from Linguistic Data Consortium (LDC).

http://projects.ldc.upenn.edu/kbp/data/
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Figure 2: Performance on the KBP dataset. The figures on the left, middle and right show MIML, Hoffmann, and

Mintz++ compared to the same MIML-Semi curve, respectively. MIML-Semi is shown in red curves (lighter curves in

black and white) while other algorithms are shown in black curves (darker curves in black and white).

dataset, the training bags are generated by mapping

Wikipedia (http://en.wikipedia.org) infoboxes (after

merging similar types following the KBP 2011 task

definition) into a large unlabeled corpus (consisting

of 1.5M documents from the KBP source corpus and

a complete snapshot of Wikipedia). The KBP shared

task provided 200 query named entities with their as-

sociated slot values (in total several thousand pairs).

We use 40 queries as development dataset (dev), and

the rest (160 queries) as evaluation dataset. We set

θ = 0.25 by tuning on the dev set and use it in the

experiments. For a fair comparison, we follow Sur-

deanu et al. (2012) and begin by downsampling the

“negative“ class to 5%. We also set T=8 and use

the following noisy-or (for ith bag) of mention-level

probability to rank predicted types (r) of pairs and

plot the precision-recall curves for all experiments.

Probi(r) = 1−
∏

j

(1− p(zij = r|xij ;wz))

Evaluation: We compare our algorithm (MIML-

semi) to three algorithms: 1) MIML (Surdeanu et

al., 2012), the Multiple-Instance Multiple Label al-

gorithm which labels the bags directly with the KB

(y = ℓ). 2) MultiR (denoted as Hoffmann) (Hoff-

mann et al., 2011), a Multiple-Instance algorithm

that supports overlapping relations. It also imposes

y = ℓ. 3) Mintz++ (Surdeanu et al., 2012), a vari-

ant of the single-instance learning algorithm (section

3). The first two are stat-of-the-art Multi-Instance

Multi-Label algorithms. Mintz++ is a strong base-

line (Surdeanu et al., 2012) and an improved ver-

sion of Mintz et al. (2009). Figure 2 shows that

our algorithm consistently outperforms all three al-

gorithms at almost all recall levels (with the excep-

tion of a very small region in the PR-curve). This

demonstrates that by treating unla-beled data set dif-

ferently and leveraging the missing positive bags,

MIML-semi is able to learn a more accurate model

for extraction. Although the proposed solution is a

specific algorithm, we believe the idea of treating

unlabeled data differently can be incorporated into

any of these algorithms that only use unlabeled data

as negative examples.

6 Conclusion

We show that the distant-supervision labeling pro-

cess generates a significant number of false nega-

tives because the knowledge base is incomplete. We

proposed an algorithm that learns from only positive

and unlabeled bags. Experimental results demon-

strate its advantage over existing algorithms.
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