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Abstract

Continuous space language models have re-
cently demonstrated outstanding results across
a variety of tasks. In this paper, we ex-
amine the vector-space word representations
that are implicitly learned by the input-layer
weights. We find that these representations
are surprisingly good at capturing syntactic
and semantic regularities in language, and
that each relationship is characterized by a
relation-specific vector offset. This allows
vector-oriented reasoning based on the offsets
between words. For example, the male/female
relationship is automatically learned, and with
the induced vector representations, “King -
Man + Woman” results in a vector very close
to “Queen.” We demonstrate that the word
vectors capture syntactic regularities by means
of syntactic analogy questions (provided with
this paper), and are able to correctly answer
almost 40% of the questions. We demonstrate
that the word vectors capture semantic regu-
larities by using the vector offset method to
answer SemEval-2012 Task 2 questions. Re-
markably, this method outperforms the best
previous systems.

1 Introduction

A defining feature of neural network language mod-
els is their representation of words as high dimen-
sional real valued vectors. In these models (Ben-
gio et al., 2003; Schwenk, 2007; Mikolov et al.,
2010), words are converted via a learned lookup-
table into real valued vectors which are used as the
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inputs to a neural network. As pointed out by the
original proposers, one of the main advantages of
these models is that the distributed representation
achieves a level of generalization that is not possi-
ble with classical n-gram language models; whereas
a n-gram model works in terms of discrete units that
have no inherent relationship to one another, a con-
tinuous space model works in terms of word vectors
where similar words are likely to have similar vec-
tors. Thus, when the model parameters are adjusted
in response to a particular word or word-sequence,
the improvements will carry over to occurrences of
similar words and sequences.

By training a neural network language model, one
obtains not just the model itself, but also the learned
word representations, which may be used for other,
potentially unrelated, tasks. This has been used to
good effect, for example in (Collobert and Weston,
2008; Turian et al., 2010) where induced word rep-
resentations are used with sophisticated classifiers to
improve performance in many NLP tasks.

In this work, we find that the learned word repre-
sentations in fact capture meaningful syntactic and
semantic regularities in a very simple way. Specif-
ically, the regularities are observed as constant vec-
tor offsets between pairs of words sharing a par-
ticular relationship. For example, if we denote the
vector for word i as xi, and focus on the singu-
lar/plural relation, we observe that xapple−xapples ≈
xcar−xcars, xfamily−xfamilies ≈ xcar−xcars, and
so on. Perhaps more surprisingly, we find that this
is also the case for a variety of semantic relations, as
measured by the SemEval 2012 task of measuring
relation similarity.
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The remainder of this paper is organized as fol-
lows. In Section 2, we discuss related work; Section
3 describes the recurrent neural network language
model we used to obtain word vectors; Section 4 dis-
cusses the test sets; Section 5 describes our proposed
vector offset method; Section 6 summarizes our ex-
periments, and we conclude in Section 7.

2 Related Work

Distributed word representations have a long his-
tory, with early proposals including (Hinton, 1986;
Pollack, 1990; Elman, 1991; Deerwester et al.,
1990). More recently, neural network language
models have been proposed for the classical lan-
guage modeling task of predicting a probability dis-
tribution over the “next” word, given some preced-
ing words. These models were first studied in the
context of feed-forward networks (Bengio et al.,
2003; Bengio et al., 2006), and later in the con-
text of recurrent neural network models (Mikolov et
al., 2010; Mikolov et al., 2011b). This early work
demonstrated outstanding performance in terms of
word-prediction, but also the need for more compu-
tationally efficient models. This has been addressed
by subsequent work using hierarchical prediction
(Morin and Bengio, 2005; Mnih and Hinton, 2009;
Le et al., 2011; Mikolov et al., 2011b; Mikolov et
al., 2011a). Also of note, the use of distributed
topic representations has been studied in (Hinton
and Salakhutdinov, 2006; Hinton and Salakhutdi-
nov, 2010), and (Bordes et al., 2012) presents a se-
mantically driven method for obtaining word repre-
sentations.

3 Recurrent Neural Network Model

The word representations we study are learned by a
recurrent neural network language model (Mikolov
et al., 2010), as illustrated in Figure 1. This architec-
ture consists of an input layer, a hidden layer with re-
current connections, plus the corresponding weight
matrices. The input vector w(t) represents input
word at time t encoded using 1-of-N coding, and the
output layer y(t) produces a probability distribution
over words. The hidden layer s(t) maintains a rep-
resentation of the sentence history. The input vector
w(t) and the output vector y(t) have dimensional-
ity of the vocabulary. The values in the hidden and

Figure 1: Recurrent Neural Network Language Model.

output layers are computed as follows:

s(t) = f (Uw(t) + Ws(t−1)) (1)

y(t) = g (Vs(t)) , (2)

where

f(z) =
1

1 + e−z
, g(zm) =

ezm∑
k ezk

. (3)

In this framework, the word representations are
found in the columns of U, with each column rep-
resenting a word. The RNN is trained with back-
propagation to maximize the data log-likelihood un-
der the model. The model itself has no knowledge
of syntax or morphology or semantics. Remark-
ably, training such a purely lexical model to max-
imize likelihood will induce word representations
with striking syntactic and semantic properties.

4 Measuring Linguistic Regularity

4.1 A Syntactic Test Set
To understand better the syntactic regularities which
are inherent in the learned representation, we created
a test set of analogy questions of the form “a is to b
as c is to ” testing base/comparative/superlative
forms of adjectives; singular/plural forms of com-
mon nouns; possessive/non-possessive forms of
common nouns; and base, past and 3rd person
present tense forms of verbs. More precisely, we
tagged 267M words of newspaper text with Penn
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Category Relation Patterns Tested # Questions Example
Adjectives Base/Comparative JJ/JJR, JJR/JJ 1000 good:better rough:
Adjectives Base/Superlative JJ/JJS, JJS/JJ 1000 good:best rough:
Adjectives Comparative/

Superlative
JJS/JJR, JJR/JJS 1000 better:best rougher:

Nouns Singular/Plural NN/NNS,
NNS/NN

1000 year:years law:

Nouns Non-possessive/
Possessive

NN/NN POS,
NN POS/NN

1000 city:city’s bank:

Verbs Base/Past VB/VBD,
VBD/VB

1000 see:saw return:

Verbs Base/3rd Person
Singular Present

VB/VBZ, VBZ/VB 1000 see:sees return:

Verbs Past/3rd Person
Singular Present

VBD/VBZ,
VBZ/VBD

1000 saw:sees returned:

Table 1: Test set patterns. For a given pattern and word-pair, both orderings occur in the test set. For example, if
“see:saw return: ” occurs, so will “saw:see returned: ”.

Treebank POS tags (Marcus et al., 1993). We then
selected 100 of the most frequent comparative adjec-
tives (words labeled JJR); 100 of the most frequent
plural nouns (NNS); 100 of the most frequent pos-
sessive nouns (NN POS); and 100 of the most fre-
quent base form verbs (VB). We then systematically
generated analogy questions by randomly matching
each of the 100 words with 5 other words from the
same category, and creating variants as indicated in
Table 1. The total test set size is 8000. The test set
is available online. 1

4.2 A Semantic Test Set

In addition to syntactic analogy questions, we used
the SemEval-2012 Task 2, Measuring Relation Sim-
ilarity (Jurgens et al., 2012), to estimate the extent
to which RNNLM word vectors contain semantic
information. The dataset contains 79 fine-grained
word relations, where 10 are used for training and
69 testing. Each relation is exemplified by 3 or
4 gold word pairs. Given a group of word pairs
that supposedly have the same relation, the task is
to order the target pairs according to the degree to
which this relation holds. This can be viewed as an-
other analogy problem. For example, take the Class-
Inclusion:Singular Collective relation with the pro-

1http://research.microsoft.com/en-
us/projects/rnn/default.aspx

totypical word pair clothing:shirt. To measure the
degree that a target word pair dish:bowl has the same
relation, we form the analogy “clothing is to shirt as
dish is to bowl,” and ask how valid it is.

5 The Vector Offset Method

As we have seen, both the syntactic and semantic
tasks have been formulated as analogy questions.
We have found that a simple vector offset method
based on cosine distance is remarkably effective in
solving these questions. In this method, we assume
relationships are present as vector offsets, so that in
the embedding space, all pairs of words sharing a
particular relation are related by the same constant
offset. This is illustrated in Figure 2.

In this model, to answer the analogy question a:b
c:d where d is unknown, we find the embedding
vectors xa, xb, xc (all normalized to unit norm), and
compute y = xb − xa + xc. y is the continuous
space representation of the word we expect to be the
best answer. Of course, no word might exist at that
exact position, so we then search for the word whose
embedding vector has the greatest cosine similarity
to y and output it:

w∗ = argmaxw
xwy

‖xw‖‖y‖
When d is given, as in our semantic test set, we
simply use cos(xb − xa + xc, xd) for the words
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Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
ρ and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-
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Method Spearman’s ρ MaxDiff Acc.
LSA-640 0.149 0.364
RNN-80 0.211 0.389
RNN-320 0.259 0.408
RNN-640 0.270 0.416
RNN-1600 0.275 0.418
CW-50 0.159 0.363
CW-100 0.154 0.363
HLBL-50 0.149 0.363
HLBL-100 0.146 0.362
UTD-NB 0.230 0.395

Table 4: Results in measuring relation similarity

tors are not trained or tuned specifically for this task,
the model achieves better results (RNN-320, RNN-
640 & RNN-1600) than the previously best perform-
ing system, UTD-NB (Rink and Harabagiu, 2012).

7 Conclusion

We have presented a generally applicable vector off-
set method for identifying linguistic regularities in
continuous space word representations. We have
shown that the word representations learned by a
RNNLM do an especially good job in capturing
these regularities. We present a new dataset for mea-
suring syntactic performance, and achieve almost
40% correct. We also evaluate semantic general-
ization on the SemEval 2012 task, and outperform
the previous state-of-the-art. Surprisingly, both re-
sults are the byproducts of an unsupervised maxi-
mum likelihood training criterion that simply oper-
ates on a large amount of text data.
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