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Abstract

Sentence Similarity [SS] computes a similar-
ity score between two sentences. The SS task
differs from document level semantics tasks
in that it features the sparsity of words in a
data unit, i.e. a sentence. Accordingly it is
crucial to robustly model each word in a sen-
tence to capture the complete semantic picture
of the sentence. In this paper, we hypoth-
esize that by better modeling lexical seman-
tics we can obtain better sentential semantics.
We incorporate both corpus-based (selectional
preference information) and knowledge-based
(similar words extracted in a dictionary) lex-
ical semantics into a latent variable model.
The experiments show state-of-the-art perfor-
mance among unsupervised systems on two
SS datasets.

1 Introduction

Sentence Similarity [SS] is emerging as a crucial
step in many NLP tasks that focus on sentence level
semantics such as word sense disambiguation (Guo
and Diab, 2010; Guo and Diab, 2012a), summariza-
tion (Zhou et al., 2006), text coherence (Lapata and
Barzilay, 2005), tweet clustering (Sankaranarayanan
et al., 2009; Jin et al., 2011), etc. SS operates in a
very small context, on average 11 words per sen-
tence in Semeval-2012 dataset (Agirre et al., 2012),
resulting in inadequate evidence to generalize to ro-
bust sentential semantics.

Weighted Textual Matrix Factorization [WTMF]
(Guo and Diab, 2012b) is a latent variable model that
outperforms Latent Semantic Analysis [LSA] (Deer-
wester et al., 1990) and Latent Dirichelet Allocation
[LDA] (Blei et al., 2003) models by a large margin in

the SS task, yielding state-of-the-art performance on
the LI06 (Li et al., 2006) SS dataset. However, all of
these models make harsh simplifying assumptions
on how a token is generated: (1) in LSA/WTMF, a
token is generated by the inner product of the word
latent vector and the document latent vector; (2) in
LDA, all the tokens in a document are sampled from
the same document level topic distribution. Under
this framework, they ignore rich linguistic phenom-
ena such as inter-word dependency, semantic scope
of words, etc. This is a result of simply using docu-
ment IDs as features to represent a word.

Modeling quality lexical semantics in latent vari-
able models does not draw enough attention in the
community, since people usually apply dimension
reduction techniques for documents, which have
abundant words for extracting the document level
semantics. However, in the SS setting, it is crucial to
make good use of each word, given the limited num-
ber of words in a sentence. We believe a reasonable
word generation story will avoid introducing noise
in sentential semantics, encouraging robust lexical
semantics which can further boost the sentential se-
mantics. In this paper, we explicitly encode lexical
semantics, both corpus-based and knowledge-based
information, in the WTMF model, by which we are
able to achieve even better results in SS task.

The additional corpus-based information we ex-
ploit is selectional preference semantics (Resnik,
1997), a feature already existing in the data yet ig-
nored by most latent variable models. Selectional
preference focuses on the admissible arguments for
a word, thus capturing more nuanced semantics than
the sentence IDs (when applied to a corpus of sen-
tences as opposed to documents). Consider the fol-
lowing example:
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Figure 1: matrix factorization

Many analysts say the global Brent crude oil bench-
mark price, currently around $111 a barrel ...

In WTMF/LSA/LDA, a word will receive semantics
from all the other words in a sentence, hence, the
word oil, in the above example, will be assigned the
incorrect finance topic that reflects the sentence level
semantics. Moreover, the problem worsens for ad-
jectives, adverbs and verbs, which have a much nar-
rower semantic scope than the whole sentence. For
example, the verb say should only be associated with
analyst (only receiving semantics from analyst), as
it is not related to other words in the sentence. In
contrast, oil, according to its selectional preference,
should be associated with crude indicating the re-
source topic. We believe modeling selectional pref-
erence capturing local evidence completes the se-
mantic picture for words, hence further rendering
better sentential semantics. To our best knowledge,
this is the first work to model selectional preference
for sentence/document semantics.

We also integrate knowledge-based semantics
in the WTMF framework. Knowledge-based se-
mantics, a human-annotated clean resource, is an
important complement to corpus-based noisy co-
occurrence information. We extract similar word
pairs from Wordnet (Fellbaum, 1998). Leveraging
these pairs, an infrequent word such as purchase
can exploit robust latent vectors from its synonyms
such as buy. Similar words pairs can be seamlessly
modeled in WTMF, since in the matrix factorization
framework a latent vector profile is explicitly created
for each word, while in LDA all the data structures
are designed for documents/sentences. We construct
a graph to connect words according to the extracted
similar word pairs, to encourage similar words to
share similar latent vector profiles. We will refer to
our proposed novel model as WTMF+PK.

2 Weighted Textual Matrix Factorization

Our previous work (Guo and Diab, 2012b) models
the sentences in the weighted matrix factorization

framework (Figure 1). The corpus is stored in an
M ×N matrix X , with each cell containing the TF-
IDF values of words. The rows of X are M distinct
words and columns are N sentences. As in Figure
1, X is approximated by the product of a K ×M
matrix P and a K×N matrix Q. Accordingly, each
sentence sj is represented by a K dimensional la-
tent vector Q·,j . Similarly a word wi is generalized
by P·,i. P and Q is optimized by minimize the ob-
jective function:∑

i

∑
j

Wij (P·,i ·Q·,j −Xij)
2 + λ||P ||22 + λ||Q||22

Wi,j =

{
1, if Xij 6= 0
wm, if Xij = 0

(1)

where λ is a regularization term. Missing tokens are
modeled by assigning a different weightwm for each
0 cell in the matrix X . We can see the inner product
of a word vector P·,i and a sentence vector Q·,j is
used to approximate the cell Xij .

The graphical model of WTMF is illustrated in
Figure 2a. A wi/sj node is a latent vector P·,i/Q·,j ,
corresponding to a word/sentence, respectively. A
shaded node is a non-zero cell in X , representing
an observed token in a sentence. For simplicity, the
missing tokens and weights are not shown in the
graph.

3 Corpus-based Semantics: Selectional
Preference

In this paper, we focus on selectional preference that
reflects the association of two words: if two words
form a bigram, then the two words should share
similar latent dimensions. In the previous example,
crude and oil form a bigram, and they share the re-
source topic. In our framework, this is implemented
by adding extra columns in X , so that each addi-
tional column corresponds to a bigram, treating each
bigram as a pseudo-sentence for the two words. The
graphical model is illustrated in Figure 2b. There-
fore, oil will receive more resource topic from crude
through the bigram crude oil, instead of only finance
topic from the sentence as a whole.

Each non-zero cell in the new columns of X , i.e.
an observed token in a bigram (pseudo-sentence), is
given a different weight:

Wi,j =

 1, if Xij 6= 0 and j is a sentence index
γ · freq(j), if Xij 6= 0 and j is a bigram index
wm, if Xij = 0
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Figure 2: WTMF+PK model (WTMF + corpus-based Selectional [P]references semantics + [K]nowledge-based
semantics): a w/s/b node represents a word/sentence/bigram, respectively

freq(j) denotes the frequency of bigram j appear-
ing in the corpus, hence the strength of association is
differentiated such that higher weights are assigned
on the more probable bigrams. The coefficient γ is
the importance of selectional preference. A larger
γ indicates that we trust the selectional preference
over the global sentential semantics.

4 Knowledge-based Semantics: Similar
Word Pairs

We first extract synonym pairs from WordNet, which
are words associated with the same sense, synset.
We further expand the set by exploiting the relations
defined in WordNet. For the extracted words, we
consider the first sense of each word, and if it is con-
nected to other senses by any of the WordNet defined
relations (hypernym, similar words, etc.), then we
treat the words associated with the other senses as
similar words. In total, we are able to discover 80K
pairs of similar words for the 46K distinct words in
our corpus.

Given a pair of similar words wi1/wi2 , we want
the two corresponding latent vectors P·,i1/P·,i2 to be
as close as possible, namely the cosine similarity to
be close to 1. Accordingly, a term is added in equa-
tion 1 for each similar word pair wi1/wi2 :

δ · (P·,i1 · P·,i2 − |P·,i1 ||P·,i2 |)
2 (2)

|P·,i| denotes the length of the vector P·,i. The co-
efficient δ, analogous to γ, denotes the importance
of the knowledge-based evidence. The Figure 2c
shows the final WTMF+PK model.

5 Inference

In (Guo and Diab, 2012b) we use Alternating Least
Square [ALS] for inference, which is to set the

derivative of equation 1 for P/Q to 0 and iteratively
compute P/Q by fixing the other matrix (Srebro and
Jaakkola, 2003). However, it is no longer applicable
with the new term (equation 2) involving the length
of word vectors |P·,i|. Therefore we approximate the
objective function by treating the vector length |P·,i|
as fixed values during the ALS iterations:

Q·,j =
(
PW̃ (j)P> + λI

)−1

PW̃ (j)X·,j

P·,i =
(
QW̃ (i)Q> + λI + δP·,s(i)P

>
·,s(i)

)−1

(
QW̃ (i)X>i,· + δLiP·,s(i)Ls(i)

) (3)

where P·,s(i) are the latent vectors of similar words
of word i; the length of these vectors in the current
iteration are stored in Ls(i) (similarly Li is the cur-
rent length of P·,i) (cf. (Steck, 2010; Guo and Diab,
2012b) for optimization details).

6 Experimental Setting

We build the model WTMF+PK on the same cor-
pora as used in our previous work (Guo and Diab,
2012b), comprising the following: Brown corpus
(each sentence is treated as a document), sense def-
initions from Wiktionary and Wordnet (only defini-
tions without target words and usage examples). We
follow the preprocessing steps in (Guo and Diab,
2012c): tokenization, pos-tagging, lemmatization
and further merge lemmas. The corpus is used for
building matrix X .

The evaluation datasets are LI06 dataset and
Semeval-2012 STS [STS12] (Agirre et al., 2012)
dataset. LI06 consists of 30 sentence pairs (dic-
tionary definitions). For STS12,1 the training data
(2000 pairs) are used as the tuning set for setting the

1A detailed description of the data sets is provided in (Agirre
et al., 2012).
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parameters of our models. This data comprises msr-
par, msr-vid, smt-eur. Once the models are tuned,
we evaluate them on the STS12 test data that com-
prises 3150 sentence pairs from msr-par, msr-vid,
smt-eur, smt-news, On-WN. It is worth noting that
smt-news and On-WN are not part of the tuning data.
We use cosine similarity to measure the similarity
scores between two sentences. Pearson correlation
between the system’s answer and gold standard sim-
ilarity scores is used as the evaluation metric.

We include three baselines LSA, LDA and
WTMF using the setting described in (Guo and
Diab, 2012b). We run Gibbs Sampling based LDA
for 2000 iterations and average the model over the
last 10 iterations. For WTMF, we run 20 iterations
and fix the missing words weight at wm = 0.01 with
a regularization coefficient set at λ = 20, which is
the best condition found in (Guo and Diab, 2012b).

7 Experiments

Table 1 summarizes the results at dimension K =
100 (the dimension of latent vectors). To remove
randomness, each reported number is the averaged
results of 10 runs. Based on the STS tuning set,
we experiment with different values for the selec-
tional preference weight (γ = {0, 1, 2}), and like-
wise for the similar word pairs weight varying the δ
value as follows δ = {0, 0.1, 0.3, 0.5, 0.7}. The per-
formance on STS12 tuning and test dataset as well
as on the LI06 dataset are illustrated in Figures 3a,
3b and 3d. The parameters of model 6 in Table 1
(γ = 2, δ = 0.3) are the chosen values based on
tuning set performance.

7.1 Evaluation on the STS12 datasets

Table 1 shows WTMF is already a very strong base-
line: it outperforms LSA and LDA by a large mar-
gin. Same as in (Guo and Diab, 2012b), LSA per-
formance degrades dramatically when trained on a
corpus of sentence sized documents, yielding results
worse than the surface words baseline 31% (Agirre
et al., 2012). Using corpus-based selectional prefer-
ence semantics alone (model 4 WTMF+P in Table
1) boosts the performance of WTMF by +1.17% on
the test set, while using knowledge-based semantics
alone (model 5 WTMF+K) improves the over the
WTMF results by an absolute +2.31%. Combining

them (model 6 WTMF+PK) yields the best results,
with an absolute increase of +3.39%, which sug-
gests that the two sources of semantic evidence are
useful, but more importantly, they are complemen-
tary for each other.

Table 1 also presents the performance on each in-
dividual dataset. The gain on each individual source
is not as much as the overall gain, which suggests
part of the overall gain comes from the correct rank-
ing of intra-source pairs. Note that WTMF+PK im-
proves all individual datasets except smt-eur. This
may be caused by too many overlapping words in
the sentence pairs in smt-eur, while our approach
focuses on extracting similarity between different
words.

Observing the performance using different values
of weights in figure 3a and 3b, we can conclude
that the selectional preference and similar word pairs
yield very promising results. The trends hold in
different parameter conditions with a consistent im-
provement. Figure 3c illustrates the impact of di-
mension K = {50, 75, 100, 125, 150} on WTMF
and WTMF+PK. Generally a larger K leads to a
higher Pearson correlation, but the improvement is
tiny when K ≥ 100 (0.1% increase).

Compared to all the unsupervised systems that
participated in Semeval STS 2012 task, WTMF+PK
yields state-of-the-art performance (70.70%).2 In
(Guo and Diab, 2012c) we also apply WTMF (K =
100) on STS12, achieving a correlation of 69.5%.
However, additional data is incorporated in the train-
ing corpora: (1) STS12 tuning set; (2) for WordNet
and Wiktionary data, the target words are also in-
cluded in the definitions (hence synonym pairs were
used); (3) the usage examples of target words were
also appended to the definitions.3 While trained with
this experimental setting, our model WTMF+PK
(γ = 2, δ = 0.3,K = 100) is able to reach an even
higher correlation of 72.0%.

2WTMF+PK is an unsupervised system, since the gold stan-
dard similarly scores are never used in the objective function.
Moreover, even without a tuning set, a non-zero value of γ or δ
will always improve the baseline WTMF according to figure 3a
and 3b.

3We do not adopt this corpora schema, since some defini-
tions are test set sentences in On-WN, thereby adding target
words and usage examples introduces additional information
for some of the test set sentences
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Models Parameters STS12 tune STS12 test msr-par msr-vid On-WN smt-eur smt-news LI06
1. LSA - 21.67% 24.41% 27.18% 9.91% 50.93% 27.86% 19.73% 63.77%
2. LDA α = 0.05, β = 0.05 71.10% 63.18% 29.15% 76.73% 62.81% 47.81% 27.2% 83.71%
3. WTMF - 71.41% 67.31% 44.00% 82.59% 70.78% 50.89% 37.77% 89.81%
4. WTMF+P γ = 2, δ = 0 72.94% 68.48% 46.21% 83.29% 70.61% 49.54% 39.50% 90.16%
5. WTMF+K γ = 0, δ = 0.3 73.84% 69.64% 45.04% 83.04% 70.40% 49.88% 41.66% 90.11%
6. WTMF+PK γ = 2, δ = 0.3 75.29% 70.70% 46.77% 83.90% 71.03% 49.77% 40.48% 90.17%

Table 1: Evaluation Results using Pearson Correlation on STS12 and LI06
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Figure 3: Pearson correlation at different parameter settings

7.2 Evaluation on the LI06 dataset
Figure 3d presents the results obtained on the LI06
data set at different weight values for the corpus-
based selectional preference semantics γ and for the
knowledge-based semantics δ. Our previous exper-
iments (Guo and Diab, 2012b) show that WTMF
is the state-of-the-art model on LI06. With lexi-
cal semantics explicitly modeled, WTMF+PK yields
better results than WTMF (see Table 1). It should
be noted that LI06 prefers a smaller similar word
pair weight ( a δ = 0.1 yields the best perfor-
mance around of 90.75%), yet in almost all condi-
tions WTMF+PK outperforms WTMF as shown in
Figure 3d.

8 Related Work

SS has progressed immensely in recent years, espe-
cially with the establishment of the Semantic Tex-
tual Similarity task in SEMEVAL 2012. Early work
in SS focused on word pair similarity in the high di-
mensional space (Li et al., 2006; Liu et al., 2007;
Islam and Inkpen, 2008; Tsatsaronis et al., 2010; Ho
et al., 2010), where co-occurrence information was
not efficiently exploited. Researchers (O’Shea et al.,
2008) find LSA does not yield good performance. In
(Guo and Diab, 2012b; Guo and Diab, 2012c), we
show the superiority of the latent space approach in
WTMF. In this paper, we improve the WTMF model

and achieve state-of-the-art Pearson correlation on
two standard SS datasets.

There are latent variable models designed for lex-
ical semantics, such as word senses (Boyd-Graber
et al., 2007; Guo and Diab, 2011), function words
(Griffiths et al., 2005), selectional preference (Ritter
et al., 2010), synonyms and antonyms (Yih et al.,
2012), etc. However little improvement is shown
on document/sentence level semantics: (Ritter et al.,
2010) and (Yih et al., 2012) focus on selectional
preference and antonym identification, respectively;
in (Griffiths et al., 2005) the LDA performance de-
grades in the text categorization task including the
modeling of function words. Rather, we concentrate
on nuanced lexical semantics phenomena that could
benefit sentential semantics.

9 Conclusion

We incorporate corpus-based (selectional prefer-
ence) and knowledge-based (similar word pairs) lex-
ical semantics into a latent variable model. Our
system yields state-of-the-art unsupervised perfor-
mance on two most popular and standard SS
datasets.
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