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Abstract

In the field of Intelligent User Interfaces, Spo-
ken Dialogue Systems (SDSs) play a key role
as speech represents a true intuitive means
of human communication. Deriving informa-
tion about its quality can help rendering SDSs
more user-adaptive. Work on automatic esti-
mation of subjective quality usually relies on
statistical models. To create those, manual
data annotation is required, which may be per-
formed by actual users or by experts. Here,
both variants have their advantages and draw-
backs. In this paper, we analyze the relation-
ship between user and expert ratings by in-
vestigating models which combine the advan-
tages of both types of ratings. We explore two
novel approaches using statistical classifica-
tion methods and evaluate those with a pre-
existing corpus providing user and expert rat-
ings. After analyzing the results, we eventu-
ally recommend to use expert ratings instead
of user ratings in general.

1 Introduction and Motivation

In human-machine interaction it is important that
user interfaces can adapt to the specific requirements
of its users. Handicapped persons or angry users, for
example, have specific needs and should be treated
differently than regular users.

Speech is a major component of modern user in-
terfaces as it is the natural means of human com-
munication. Therefore, it seems logical to use Spo-
ken Dialogue Systems (SDS) as part of Intelligent
User Interfaces enabling speech communication of
different complexity reaching from simple spoken

commands up to complex dialogues. Besides the
spoken words, the speech signal also may be used
to acquire information about the user state, e.g.,
about their emotional state (cf., e.g., (Polzehl et
al., 2011))). By additional analysis of the human-
computer-dialogues, even more abstract informa-
tion may be derived, e.g., the quality of the system
(cf., e.g., (Engelbrecht and Möller, 2010)). System
quality information may be used to adapt the sys-
tem’s behavior online during the ongoing dialogue
(cf. (Ultes et al., 2012)).

For determining the quality of Spoken Dialogue
Systems, several aspects are of interest. Möller et
al. (2009) presented a taxonomy of quality criteria.
They describe quality as a bipartite issue consisting
of Quality of Service (QoS) and Quality of Experi-
ence (QoE). Quality of Service describes objective
criteria like dialogue duration or number of turns.
While these are well-defined items that can be de-
termined easily, Quality of Experience, which de-
scribes the user experience with subjective criteria,
is more vague and without a sound definition, e.g.,
User Satisfaction (US).

Subjective aspects like US are either determined
by using questionnaires like SASSI (Hone and Gra-
ham, 2000) or the ITU-standard augmented frame-
work for questionnaires (Möller, 2003), or by us-
ing single-valued ratings, i.e., a rater only applies
one single score. In general, two major categories
of work on determining single-valued User Satisfac-
tion exist. The satisfaction ratings are applied either

• by users during or right after the dialogue or

• by experts by listening to recorded dialogues.
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In this work, users or user raters are people who
actually perform a dialogue with the system and ap-
ply ratings while doing so. There is no constraint
about their expertise in the field of Human Com-
puter Interaction or Spoken Dialogue Systems: They
may be novices or have a high expertise. With ex-
perts or expert raters, we refer to people who are
not participating in the dialogue thus constituting
a completely different set of people. Expert raters
listen to recorded dialogues after the interactions
and rate them by assuming the point of view of the
actual person performing the dialogue. These ex-
perts are supposed to have some experience with di-
alogue systems. In this work, expert raters were “ad-
vanced students of computer science and engineer-
ing” (Schmitt et al., 2011a).

For User Satisfaction, ratings applied by the users
seem to be clearly the better choice over ratings ap-
plied by third persons. However, determining true
User Satisfaction is only possible by asking real
users interacting with the system. Ideally, the ratings
are applied by users talking to a system employed in
the field, e.g., commercial systems, as these users
have real concerns.

For such Spoken Dialogue Systems, though, it
is not easy to get users to apply quality ratings
to the dialogue – especially for each system-user-
exchange. The users would have to rate either by
pressing a button on the phone or by speech, which
would significantly influence the performance of the
dialogue. Longer dialogues imply longer call dura-
tions which cost money. Further, most callers only
want to quickly get some information from the sys-
tem. Therefore, it may be assumed that most users
do not want to engage in dialogues which are ar-
tificially made longer. This also inhabits the risk
that users who participated in long dialogues do
not want to call again. Therefore, collecting rat-
ings applied by users are considered to be expensive.
One possible way of overcoming the problem of rat-
ing input would be to use some special installation
which enables the users to provide ratings more eas-
ily (cf. (Schmitt et al., 2011b)). However, this is also
expensive and the system’s usability would be very
restricted. Further, this setup could most likely only
be used in a lab situation.

Expert raters, on the other hand, are able to simply
listen to the recorded dialogues and to apply ratings,

e.g., by using a specialized rating software. This
process is much easier and does not require the same
amount of effort needed for acquiring user ratings.
Further, as already pointed out, we refer to experts
as people who have some basic understanding of di-
alogue systems but are not required to be high-level
experts in the field. That is why we believe that these
people can be found easily.

As both categories of ratings have their advan-
tages and disadvantages, this contribution aims at
learning about the differences and similarities of
user and expert ratings with the ultimate goal of
either being able to predict user ratings more effi-
ciently or of advocating for replacing the use of user
ratings by using only expert ratings in general.

Therefore, this work analyzes the relation be-
tween quality ratings applied by user and expert
raters by analyzing approaches which take advan-
tage of both categories: Using the less expensive
rating process with expert raters and still predict-
ing real User Satisfaction ratings. Moreover, this
works’ goal is to shed light on the question whether
information about one rating (in this case the less
expensive expert ratings) may be used to predict the
other rating (the more expensive user ratings). For
this, we present two approaches applying two differ-
ent statistical classification methods for a showcase
corpus. Results of both methods are compared to a
given baseline.

The remainder of this paper is organized as fol-
lows. First, we give a brief overview of work done
in both categories (user ratings vs. expert ratings) in
Section 2 and present our choice of data the analy-
sis in this paper is based on in Section 3. Further,
evaluation metrics are illustrated in Section 4 and
approaches on facilitating prediction of user rater
scores by expert rater information are presented in
Section 5 followed by an evaluation and discussion
of the results in Section 6.

2 Significant Related Work

Predicting User Satisfaction for SDSs has been in
the focus of research for many years, most famously
the PARADISE framework by Walker et al. (1997).
The authors assume a linear dependency between
quantitative parameters derived from the dialogue
and US, modeling this dependency using linear re-
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gression. Unfortunately, for generating the regres-
sion model, weighting factors have to be computed
for each system anew. This generates high costs
as dialogues have to be performed with real users
where each user further has to complete a question-
naire after completing the dialogue. Moreover, in
the PARADISE framework, only quality measure-
ment for the whole dialogue (or system) is allowed.
However, this is not suitable for using quality infor-
mation for online adaption of the dialogue (cf. (Ultes
et al., 2012)). Furthermore, PARADISE relies on
questionnaires while we focus on work using single-
valued ratings.

Numerous work on predicting User Satisfaction
as a single-valued rating task for each system-user-
exchange has been performed in both categories.
This work is briefly presented in the following.

2.1 Expert Ratings

Higashinaka et al. (2010a) proposed a model to pre-
dict turn-wise ratings for human-human dialogues
(transcribed conversation) and human-machine di-
alogues (text from chat system). Ratings ranging
from 1-7 were applied by two expert raters label-
ing “Smoothness”, “Closeness”, and “Willingness”
not achieving a Match Rate per Rating (MR/R)1 of
more than 0.2-0.24. This results are only slightly
above the random baseline of 0.14. Further work
by Higashinaka et al. (2010b) uses ratings for over-
all dialogues to predict ratings for each system-
user-exchange. Again, evaluating in three user
satisfaction categories “Smoothness”, “Closeness”,
and “Willingness” with ratings ranging from 1-7
achieved best performance of 0.19 MR/R.

Interaction Quality (IQ) has been introduced by
Schmitt et al. (2011a) as an alternative performance
measure to User Satisfaction. In their terminology,
US ratings are only applied by users. As their pre-
sented measure uses ratings applied by expert raters,
a different term is used. Each system-user exchange
was annotated by three different raters using strict
guidelines. The ratings ranging from 1-5 are used
as target variable for statistical classifiers using a set
of automatically derivable interaction parameters as
input. They achieve a MR/R of 0.58.

1MR/R is equal to Unweighted Average Recall (UAR)
which is explained in Section 4.

2.2 User Ratings

An approach presented by Engelbrecht et al. (2009)
uses Hidden Markov Models (HMMs) to model the
SDS as a process evolving over time. User Satisfac-
tion was predicted at any point within the dialogue
on a 5 point scale. Evaluation was performed based
on labels the users applied themselves during the di-
alogue.

Hara et al. (2010) derived turn level ratings from
an overall score applied by the users after the dia-
logue. Using n-gram models reflecting the dialogue
history, the achieved results for recognizing User
Satisfaction on a 5 point scale showed to be hardly
above chance.

Work by Schmitt et al. (2011b) deals with deter-
mining User Satisfaction from ratings applied by the
users themselves during the dialogues. A statistical
classification model was trained using automatically
derived interaction parameter to predict User Satis-
faction for each system-user-exchange on a 5-point
scale achieving an MR/R of 0.49.

3 Corpus

The corpus used by Schmitt et al. (2011b) not only
contains user ratings but also expert ratings which
makes it a perfect candidate for our research pre-
sented in this paper. Adopting the terminology by
Schmitt et al., user ratings are described as User Sat-
isfaction (US) whereas expert ratings are referred to
with the term Interaction Quality (IQ) (cf. (Schmitt
et al., 2011a)). The data used for all experiments
of this work was collected by Schmitt et al. (2011b)
during a lab user study with 38 users in the domain
of the “Let’s Go Bus Information” system (Raux et
al., 2006) of the Carnegie Mellon University in Pitts-
burgh. 128 calls were collected consisting of a total
of 2,897 system-user exchanges. Both ratings, IQ
and US, are at a scale from 1 to 5 where 1 stands for
“extremely unsatisfied” and 5 for “satisfied”. Each
dialogue starts with a rating of 5 as the user is ex-
pected to be satisfied in the beginning because noth-
ing unsatisfying has happened yet.

Further, the corpus also provides interaction pa-
rameters which may be used as input variables
for the IQ and US recognition models. These
parameters have been derived automatically from
three dialogue modules: Automatic Speech Recog-
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Figure 1: The three different modeling levels representing the interaction at exchange en: The most detailed exchange
level, comprising parameters of the current exchange; the window level, capturing important parameters from the
previous n dialog steps (here n = 3); the dialog level, measuring overall performance values from the entire previous
interaction.

nition, Spoken Language Understanding, and Dia-
logue Management. Furthermore, the parameters
are modeled on three different levels (see Figure 1):

• Exchange level parameters can be derived di-
rectly from the respective dialogue modules,
e.g., ASRConfidence.

• Dialogue level parameters consist of counts (#),
means (Mean), etc. of the exchange level pa-
rameters calculated from all exchanges of the
whole dialogue up to the current exchange, e.g.,
MeanASRConfidence.

• Window level parameters consist of counts
({#}), means ({Mean}), etc. of the exchange
level parameters calculated from the last three
exchanges, e.g., {Mean}ASRConfidence.

4 Evaluation metrics

For measuring the performance of the classification
algorithms, we rely on Unweighted Average Recall
(UAR), Cohen’s Kappa and Spearman’s Rho. The
latter two also represent a measure for similarity of
paired data. All measures will be briefly described
in the following:

Unweighted Average Recall The Unweighted Av-
erage Recall (UAR) is defined as the sum of all
class-wise recalls rc divided by the number of
classes |C|:

UAR =
1

|C|
∑
c∈C

rc . (1)

Recall rc for class c is defined as

rc =
1

|Rc|

|Rc|∑
i=1

δhiri
, (2)

where δ is the Kronecker-delta, hi and ri rep-
resent the corresponding hypothesis-reference-
pair of rating i, and |Rc| the total number of
all ratings of class c. In other words, UAR
for multi-class classification problems is the ac-
curacy corrected by the effects of unbalanced
data.

Cohen’s Kappa To measure the relative agreement
between two corresponding sets of ratings, the
number of label agreements corrected by the
chance level of agreement divided by the max-
imum proportion of times the labelers could
agree is computed. κ is defined as

κ =
p0 − pc

1− pc
, (3)

where p0 is the rate of agreement and pc is the
chance agreement (Cohen, 1960). As US and
IQ are on an ordinal scale, a weighting factor w
is introduced reducing the discount of disagree-
ments the smaller the difference is between two
ratings (Cohen, 1968):

w =
|r1 − r2|

|rmax − rmin|
. (4)

Here, r1 and r2 denote the rating pair and rmax

and rmin the maximal and minimal rating. This
results inw = 0 for agreement andw = 1 if the
ratings have maximal difference.

Spearman’s Rho The correlation of two variables
describes the degree by that one variable can be
expressed by the other. Spearman’s Rank Cor-
relation Coefficient is a non-parametric method
assuming a monotonic function between the
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two variables (Spearman, 1904). It is defined
by

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
, (5)

where xi and yi are corresponding ranked rat-
ings and x̄ and ȳ the mean ranks. Thus, two
sets of ratings can have total correlation even if
they never agree. This would happen if all rat-
ings are shifted by the same value, for example.

5 Recognition of US Using IQ Information

As discussed in Section 1, automatic recognition of
ratings applied by users as performed by Schmitt et
al. (2011b) for User Satisfaction is time-consuming
and expensive. Therefore, approaches are presented
which facilitate expert ratings, i.e., Interaction Qual-
ity, with the hope of making US recognition more
feasible. IQ an US are strongly related as both met-
rics represent the same quantity applied by differ-
ent rater groups. Results of the Mann-Whitney U
test, which is used to test for significant difference
between Interaction Quality and User Satisfaction,
show their difference (p < 0.05) but values for Co-
hen’s Kappa (Cohen, 1960) and Spearman’s Rank
Correlation Coefficient (Spearman, 1904) empha-
size the that IQ and US are quite similar. Achieving
κ = 0.5 can be considered as a moderate agreement
according to Landis and Koch’s Kappa Benchmark
Scale (Landis and Koch, 1977). Furthermore, a cor-
relation of ρ = 0.66 (p < 0.01) indicates a strong
relationship between IQ and US (Cohen, 1988).

While it has been shown that user and expert rat-
ings are similar, it is desirable nonetheless to being
able to predict real user ratings. These ratings are the
desired kind of ratings when it comes to subjective
dialogue system assessment. Only users can give a
rating about their satisfaction level, i.e., how they
like the system and the interaction with the system.
However, user ratings are expensive as elaborated in
Section 1. Therefore, we investigate approaches to
recognize US which rely on means of IQ recogni-
tion.

5.1 Belief-Based Sequential Recognition
Methods used for IQ and US recognition by Schmitt
et al. (2011b; 2011a) suffer from the fact that the

sequential character of the data is modeled inade-
quately as they assume statistical independence be-
tween the single exchanges (recognition of IQ and
US does not depend on the respective value of the
previous exchange). Hence, we present a Marko-
vian approach overcoming these issues. A probabil-
ity distribution over all US states, called belief state,
is updated after each system-user-exchange taking
also into account the belief state of the previous ex-
change. This belief update2 is equivalent to the For-
ward Algorithm known from Hidden Markov Mod-
els (cf. (Rabiner, 1989)). In doing so, the new US
probabilities also depend on the US values of the
previous exchange. Moreover, a latent variable is
introduced in order to decouple the target variable
US with the variable the observation probability de-
pends on IQ. This results in an indirect approach
for recognizing User Satisfaction that is based on the
more affordable recognition of Interaction Quality
assuming that a universal mapping between IQ and
US exists.

Thus, to determine the probability b(US) of hav-
ing the true User Satisfaction label US after the cur-
rent system-user-exchange, we rely on Interaction
Quality recognition, whose observation probability
is depicted as P (o|IQ). Furthermore, for coupling
both quantities, we introduce a coherence probabil-
ity P (IQ|US). Belief update for estimating the new
values for b′(US′) is as follows:

b′(US′) = α ·
∑
IQ′

P (o′|IQ′) · P (IQ′|US′)

·
∑
US

P (US′|US)b(US) (6)

The observation probability P (o′|IQ′) is modeled
using confidence scores of classifiers applied for IQ
recognition. Further, we compute the sum over all
previous US beliefs b(US) weighted by the transi-
tion probability P (US′|US). Both, transition and
coherence probability have been computed by tak-
ing the frequency of their occurrences in the training
data. The α factor is used for normalization only.

Since we are aiming at generating an estimate ÛS

2Terminology is taken from Partially Observable Markov
Decision Processes, cf. (Kaelbling et al., 1998)
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at each exchange, it is calculated by

ÛS = arg max
US′

b′(US′) (7)

generating a sequence of estimates for each dia-
logue.

As the action of the system a can be expected to
influence the satisfaction level of the user, action-
dependency is added to Equation 6 resulting in

b′(US′) = α ·
∑
IQ′

P (o′|IQ′) · P (IQ′|US′, a)

·
∑
US

P (US′|US, a)b(US). (8)

Hence, each system action a influences coherence
and transition probabilities. It should be noted that
action-dependency can only be introduced as in a
SDS each turn a system action is selected and ex-
ecuted by the dialogue manager.

5.2 Model Exchange
While in Belief-Based Sequential Recognition, prob-
ability models are used for coupling expert and user
ratings explicitly, a simpler approach has also been
examined. A statistical classifier trained on the tar-
get variable IQ is used to evaluate classification of
the target variable US. This seems to be reasonable
as the set of scores and meaning of the scores of both
metrics are equivalent. Furthermore, necessary pre-
requisites are fulfilled: the sample corpus contains
both labels, the labels for US and IQ correspond, and
both recognition approaches are based on the same
feature set.

6 Experiments and Results

For evaluating Belief-Based Sequential Recognition,
not only the absolute performance is of interest but
also how this performance is influenced by the char-
acteristics of the observation probability, i.e., the
performance of the applied statistical classification
approach and the variance of their confidence scores.
In order to obtain different confidence characteris-
tics, multiple classification algorithms, or algorithm
variants respectively, are needed. Hence, five statis-
tical classifiers have been chosen arbitrarily to pro-
duce the observation probabilities for Belief-Based
Sequential Recognition:

• SVM3 with cubic kernel

• SVM with RBF-kernel

• Naive Bayes

• Naive Bayes with kernel

• Rule Induction

In contrast to Schmitt et al. (2011b; 2011a), a re-
duced feature set was used consisting of 43 parame-
ters as some textual parameters were removed which
are very specific and take many different values, e.g.,
UTTERANCE (the system utterance) or INTERPRE-
TATION (the interpretation of the speech input).

The resulting feature set consists of the following
parameters (parameter names are in accordance with
the parameter names of the LEGO corpus (Schmitt
et al., 2012)):

Exchange Level ACTIVITY, ACTIVITYTYPE,
UTD, BARGED-IN?, ASRCONFIDENCE,
MEANASRCONFIDENCE, TURNNUMBER,
MODALITY, LOOPNAME, ASRRECOGNI-
TIONSTATUS, ROLEINDEX, ROLENAME,
NOISE?, HELPREQUEST?, REPROMPT?,
WPST, WPUT

Dialogue Level #BARGEINS #ASRSUCCESS,
#HELPREQUESTS, #TIMEOUTS, #TIME-
OUTS ASRREJECTIONS, #ASRREJEC-
TIONS, #REPROMPTS, #SYSTEMQUES-
TIONS, #SYSTEMTURNS, #USERTURNS,
%BARGEINS, %ASRSUCCESS, %HEL-
PREQUESTS, %TIMEOUTS, %TIME-
OUTS ASRREJECTIONS, %ASRREJEC-
TIONS, %REPROMPTS

Window Level {#}TIMEOUTS ASRREJCTIONS,
{#}HELPREQUESTS, {#}ASRREJECTIONS,
{MEAN}ASRCONFIDENCE, {#}TIMEOUTS,
{#}REPROMPTS, {#}SYSTEMQUESTIONS,
{#}ASRSUCCESS, {#}BARGEINS

All results are evaluated with respect to the ref-
erence experiment of direct US recognition (US
recognition using models trained on US). This is
performed in accordance to Schmitt et al. (2011b)
using the statistical classification algorithms stated

3Support Vector Machine, cf. (Vapnik, 1995)
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Table 1: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of US
recognition using models trained on US

Classifier UAR κ ρ

SVM (cubic Kernel) 0.39 0.33 0.48
SVM (RBF-Kernel) 0.39 0.42 0.55

Naive Bayes 0.36 0.40 0.55
Naive Bayes (Kernel) 0.42 0.44 0.59

Rule Induction 0.50 0.51 0.61

Table 2: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of the
Model Exchange approach (trained on IQ, evaluated on
US)

Classifier UAR κ ρ

SVM (cubic Kernel) 0.34 0.42 0.55
SVM (RBF-Kernel) 0.34 0.42 0.58

Naive Bayes 0.35 0.40 0.57
Naive Bayes (Kernel) 0.34 0.37 0.60

Rule Induction 0.34 0.42 0.59

above. The performance of the reference experiment
is shown in Table 1.

Using the same feature set, these classification al-
gorithms are also applied for the evaluation of the
Model Exchange approach using 10-fold cross val-
idation. Note that the parameters of the classifiers
also remained the same. The data was partitioned
randomly on exchange level, i.e., without regarding
their belonging to a specific dialogue. The measured
results of the Model Exchange approach for the five
classification methods can be seen in Table 2.

While the results are significantly above chance4,
comparing them to the reference experiment reveals
that in terms of UAR the reference experiment out-
performs Model Exchange for all five classifiers.
The achieved κ and ρ values show similar scores
for both the reference experiment and the Model Ex-
change approach. However, in the data used for the
experiments, the amount of occurrences of the rat-
ings was not balanced (equal for all classes) which
has been identified as the most likely reason for this
effect.

Experiments for Belief-Based Sequential Recog-
nition have also been performed using 10-fold cross
validation. As complete dialogues and the order

4UAR of 0.2 for five classes

Table 3: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of
action-independent Belief-Based Sequential Recognition

Classifier UAR κ ρ

SVM (cubic Kernel) 0.28 0.36 0.48
SVM (RBF-Kernel) 0.30 0.40 0.54

Naive Bayes 0.32 0.39 0.54
Naive Bayes (Kernel) 0.33 0.45 0.61

Rule Induction 0.33 0.47 0.63

Table 4: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of
action-dependent Belief-Based Sequential Recognition

Classifier UAR κ ρ

SVM (cubic Kernel) 0.28 0.35 0.48
SVM (RBF-Kernel) 0.29 0.40 0.54

Naive Bayes 0.32 0.40 0.55
Naive Bayes (Kernel) 0.34 0.44 0.60

Rule Induction 0.35 0.47 0.62

of exchanges within the dialogues are important for
this approach, the data was partitioned randomly on
the dialogue level. As previously explained, for the
probability distributions of the observation proba-
bility model, classification results of IQ recognition
with 10-fold cross validation has been used in order
to get good estimates for the whole data set. Re-
sults for the action-independent version can be seen
in Table 3.

For the action-dependent version, four different
basic actions ANNOUNCEMENT, CONFIRMATION,
QUESTION, and WAIT have been used, generat-
ing results presented in Table 4. The results il-
lustrate that neither action-independent nor action-
dependent Belief-Based Sequential Recognition can
outperform the reference experiment (cf. Table 1).
Still, both variants achieve results clearly above
chance. Again, the unbalanced data causes κ and
ρ to be similar to the reference experiment.

A comparison of the action-independent with the
action-dependent approach shows almost no differ-
ences in their performances. Only a slight tendency
towards better UARs for action-dependency can be
spotted.

Figure 2 displays the performances of both vari-
ants of Belief-Based Sequential Recognition along
with performance of IQ recognition and the vari-
ance σ2 of the corresponding confidence distribu-
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Figure 2: UAR of IQ recognition and Belief-Based Se-
quential Recognition along with σ2 of confidence distri-
butions of IQ recognition

Table 5: Recognition performance and variance of confi-
dence distributions for IQ recognition

Classifier σ2 UAR κ ρ

SVM (cubic Kernel) 0.03 0.38 0.54 0.69
SVM (RBF-Kernel) 0.05 0.48 0.65 0.77

Naive Bayes 0.13 0.49 0.57 0.71
Naive Bayes (Kernel) 0.12 0.52 0.59 0.73

Rule Induction 0.13 0.55 0.68 0.79

tion (cf. Table 5). It can easily be seen that with
rising UAR for IQ recognition, σ2 also rises. This
directly transfers to the performance of the Belief-
Based Sequential Recognition. The more accu-
rate the observation performance, the more accurate
the belief prediction. Furthermore, when compar-
ing the action-dependent to the action-independent
variant of Belief-Based Sequential Recognition, bet-
ter IQ performance and therefore a higher variance
also causes slightly better results for the action-
dependent variant. These differences, however, are
only marginally. Therefore, they do not allow for
drawing a conclusion.

7 Conclusions

For estimating User Satisfaction-like ratings, two
categories exist: work relying on user ratings and
work relying on expert ratings. To learn something
about their differences and similarities, we explored
the possibility of using the information encoded in
the expert ratings to predict user ratings with the
hope to get acceptable user rating prediction results.
Therefore, we investigated if it is possible to de-
termine the preferred true User Satisfaction value

based on less expensive expert ratings. For this, a
corpus containing both kinds of ratings was chosen,
i.e., User Satisfaction (US) and Interaction Qual-
ity (IQ) ratings. Furthermore, interaction parame-
ters were used to create statistical recognition mod-
els for predicting IQ and US, respectively. Two ap-
proaches have been investigated: Belief-Based Se-
quential Recognition, which is based on an HMM-
like structure with IQ as an additional latent variable,
and Model Exchange, which uses statistical models
trained on IQ to recognize US. Unfortunately, nei-
ther Belief-Based Sequential Recognition nor Model
Exchange achieved results with an acceptable UAR.

The high correlation between expert and user rat-
ings, depicted by high values for Cohen’s κ and
Spearman’s ρ, already allow the conclusion that ex-
pert ratings can be used as a good replacement for
user ratings. Moreover, the presented recognition re-
sults of the Model Exchange approach being clearly
above chance underpin the strong similarity of IQ
and US. Furthermore, IQ recognition is much more
reliable and accurate than US recognition (shown by
higher UAR, κ and ρ values).

While the experiments disproved the hope of get-
ting acceptable user rating prediction results, the ob-
tained results confirmed the similarity between both
kinds of ratings. And as it is not necessary to use
user ratings for most applications, e.g., for using the
quality information to automatically improve the in-
teraction (cf. (Ultes et al., 2012)), we believe that it
suffices to use expert ratings as those can be acquired
easier and less expensively and are similar enough
to user ratings. Prompting the user to apply quality
ratings in everyday situations with real-life systems
will always be annoying to the user while recording
of such interactions are always much easier to rate.

By providing a study for determining quality rat-
ings of dialogues, we hope to encourage other re-
searchers to look into this research for other param-
eters, e.g., emotion recognition.
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