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Abstract

Incorporating semantic structure into a
linguistics-free translation model is chal-
lenging, since semantic structures are
closely tied to syntax. In this paper, we
propose a two-level approach to exploiting
predicate-argument structure reordering in a
hierarchical phrase-based translation model.
First, we introduce linguistically motivated
constraints into a hierarchical model, guiding
translation phrase choices in favor of those
that respect syntactic boundaries. Second,
based on such translation phrases, we propose
a predicate-argument structure reordering
model that predicts reordering not only
between an argument and its predicate, but
also between two arguments. Experiments on
Chinese-to-English translation demonstrate
that both advances significantly improve
translation accuracy.

1 Introduction

Hierarchical phrase-based (HPB) translation mod-
els (Chiang, 2005; Chiang, 2007) that utilize syn-
chronous context free grammars (SCFG) have been
widely adopted in statistical machine translation
(SMT). Although formally syntactic, such models
rarely respect linguistically-motivated syntax, and
have no formal notion of semantics. As a re-
sult, they tend to produce translations containing
both grammatical errors and semantic role confu-
sions. Our goal is to take advantage of syntactic
and semantic parsing to improve translation qual-
ity of HPB translation models. Rather than intro-
ducing semantic structure into the HPB model di-
rectly, we construct an improved translation model
by incorporating linguistically motivated syntactic
constraints into a standard HPB model. Once the
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translation phrases are linguistically constrained, we
are able to propose a predicate-argument reorder-
ing model. This reordering model aims to solve
two problems: ensure that arguments are ordered
properly after translation, and to ensure that the
proper argument structures even exist, for instance
in the case of PRO-drop languages. Experimental
results on Chinese-to-English translation show that
both the hard syntactic constraints and the predicate-
argument reordering model obtain significant im-
provements over the syntactically and semantically
uninformed baseline.

In principle, semantic frames (or, more specifi-
cally, predicate-argument structures: PAS) seem to
be a promising avenue for translational modeling.
While languages might diverge syntactically, they
are less likely to diverge semantically. This has
previously been recognized by Fung et al. (2000),
who report that approximately 84% of semantic
role mappings remained consistent across transla-
tions between English and Chinese. Subsequently,
Zhuang and Zong (2010) took advantage of this
consistency to jointly model semantic frames on
Chinese/English bitexts, yielding improved frame
recognition accuracy on both languages.

While there has been some encouraging work on
integrating syntactic knowledge into Chiang’s HPB
model, modeling semantic structure in a linguisti-
cally naive translation model is a challenge, because
the semantic structures themselves are syntactically
motivated. In previous work, Liu and Gildea (2010)
model the reordering/deletion of source-side seman-
tic roles in a tree-to-string translation model. While
it is natural to include semantic structures in a tree-
based translation model, the effect of semantic struc-
tures is presumably limited, since tree templates
themselves have already encoded semantics to some
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extent. For example, template (VP (VBG giving)
NP#1 NP#2) entails NP#I as receiver and NP#2 as
thing given. Xiong et al. (2012) model the reorder-
ing between predicates and their arguments by as-
suming arguments are translated as a unit. However,
they only considered the reordering between argu-
ments and their predicates.

2 Syntactic Constraints for HPB
Translation Model

In this section, we briefly review the HPB model,
then present our approach to incorporating syntactic
constraints into it.

2.1 HPB Translation Model

In HPB models, synchronous rules take the form
X — (v,q,~), where X is the non-terminal sym-
bol, v and « are strings of lexical items and non-
terminals in the source and target side, respectively,
and ~ indicates the one-to-one correspondence be-
tween non-terminals in v and «. Each such rule
is associated with a set of translation model fea-
tures {¢;}, including phrase translation probabil-
ity p(a|7) and its inverse p (v | «), the lexical
translation probability pje. (o | 7y) and its inverse
Plez (7| @), and a rule penalty that affects prefer-
ence for longer or shorter derivations. Two other
widely used features are a target language model
feature and a target word penalty.

Given a derivation d, its translation probability is
estimated as:

P(d) o [T e (@™ (1)

where J\; is the corresponding weight of feature ¢;.
See (Chiang, 2007) for more details.

2.2 Syntactic Constraints

Translation rules in an HPB model are extracted
from initial phrase pairs, which must include at least
one word inside one phrase aligned to a word inside
the other, such that no word inside one phrase can
be aligned to a word outside the other phrase. It
is not surprising to observe that initial phrases fre-
quently are non-intuitive and inconsistent with lin-
guistic constituents, because they are based only on
statistical word alignments. Nothing in the frame-
work actually requires linguistic knowledge.
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Koehn et al. (2003) conjectured that such non-
intuitive phrases do not help in translation. They
tested this conjecture by restricting phrases to syn-
tactically motivated constituents on both the source
and target side: only those initial phrase pairs are
subtrees in the derivations produced by the model.
However, their phrase-based translation experiments
(on Europarl data) showed the restriction to syn-
tactic constituents is actually harmful, because too
many phrases are eliminated. The idea of hard syn-
tactic constraints then seems essentially to have been
abandoned: it doesn’t appear in later work.

On the face of it, there are many possible rea-
sons Koehn et al. (2003)’s hard constraints did not
work, including, for example, tight restrictions that
unavoidably exclude useful phrases, and practical is-
sues like the quality of parse trees. Although en-
suing work moved in the direction of soft syntactic
constraints (see Section 6), our ultimate goal of cap-
turing predicate-argument structure requires linguis-
tically valid syntactic constituents, and therefore we
revisit the idea of hard constraints, avoiding prob-
lems with their strictness by relaxing them in three
ways.

First, requiring source phrases to be subtrees in
a linguistically informed syntactic parse eliminates
many reasonable phrases. Consider the English-
Chinese phrase pair (the red car, hongse de giche).!
It is easily to get a translation entry for the whole
phrase pair. By contrast, the phrase pair (the red,
hongse de) is typically excluded because it does not
correspond to a complete subtree on the source side.
Yet translating the red is likely to be more useful
than translating the red car, since it is more general:
it can be followed by any other noun translation. To
this end, we relax the syntactic constraints by allow-
ing phrases on the source side corresponding to ei-
ther one subtree or sibling subtrees with a common
parent node in the syntactic parse. For example, the
red in Figure 1(a) is allowed since it spans two sub-
trees that have a common parent node NP.

Second, we might still exclude useful phrases be-
cause the syntactic parses of some languages, like
Chinese, prefer deep trees, resulting in a head and
its modifiers being distributed across multiple struc-
tural levels. Consider the English sentence I still

'We use English as source language for better readability.



like the red car very much and its syntactic structure
as shown in Figure 1(a). Phrases [ still, still like,
I still like are not allowed, since they don’t map to
either a subtree or sibling subtrees. Logically, how-
ever, it might make sense not just to include phrases
mapping to (sibling) subtrees, but to include phrases
mapping to subtrees with the same head. To this end,
we flatten the syntactic parse so that a head and all its
modifiers appear at the same level. Another advan-
tage of this flattened structure is that flattened trees
are more reliable than unflattened ones, in the sense
that some bracketing errors in unflattened trees can
be eliminated during tree flattening. Figure 1(b) il-
lustrates flattening a syntactic parse by moving the
head (like) and all its modifiers (I, still, the red car,
and very much) to the same level.

Third, initial phrase pair extraction in Chiang’s
HPB generates a very large number of rules, which
makes training and decoding very slow. To avoid
this, a widely used strategy is to limit initial phrases
to a reasonable length on either side during rule ex-
traction (e.g., 10 in Chiang (2007)). A correspond-
ing constraint to speed up decoding prohibits any X
from spanning a substring longer than a fixed length,
often the same as the maximum phrase length in rule
extraction. Although the initial phrase length limita-
tion mainly keeps non-intuitive phrases out, it also
closes the door on some useful phrases. For ex-
ample, a translation rule (I still like X, wo rengran
xihuan X) will be prohibited if the non-terminal X
covers 8 or more words. In contrast, our hard con-
straints have already filtered out dominating non-
intuitive phrases; thus there is more room to include
additional useful phrases. As a result, we can switch
off the constraints on initial phrase length in both
training and decoding.

2.3 Reorderable Glue Rules

In decoding, if no good rule (e.g., a rule whose left-
hand side is X) can be applied or the length of the
potential source span is larger than a pre-defined
length, a glue rule (either S — (X;, X;1) or S —
(S1X2, S1X2)) will be used to simply stitch two
consequent translated phrases together in monotonic
way. This will obviously prevent some reasonable
translation derivations because in certain cases, the
order of phrases may be inverted on the target side.
Moreover, even that the syntactic constraints dis-
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b. Flattened parse tree for the English sentence

Figure 1: Example of flattening parse tree.

cussed above make translation node X's are syntacti-
cally informed, stitching translated phrases from left
to right will unavoidably generate non-syntactically
informed node Ss. For example, the combination of
X (like) and X (the) does not make much sense in
linguistic perspective.

Alternatively, we replace glue rules of HPB with
reorderable ones:

[ ] T — <X1,X1>
o I'— (I"To, Th Tv)
o T — (IhT,, TrTy)

where the second (third) rule combines two trans-
lated phrases in a monotonic (inverted) way. Specif-
ically, we set the translation probability of the first
translation rule as 1 while estimating the probabil-
ities of the other two rules from training data. In
both training and decoding, we require the phrases
covered by T to satisfy our syntactic constraints.
Therefore, all translation nodes (both X's and T's)
in derivations are syntactically informed, providing
room to explore PAS reordering in HPB model.

3 PAS Reordering Model

Ideally, we aim to model PAS reordering based on
the true semantic roles of both the source and tar-
get side, as to better cater not only consistence but
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I still like theredcar very much
kR W B a6 R

wo rengran feichang xihua hongse de giche

a. Word alignment for an English-Chinese sentence
pair with semantic roles for the English sentence

PAS-S

AO0;  AM-TMP, VBP; Al, AM-MNRs
PAS-T

X1 Xz Xs X3 Xa

b. PAS-S and PAS-T for predicate like

Figure 2: Example of PAS on both the source and target
side. Items are aligned by indices.

divergence between semantic frames of the source
and target language. However, considering there is
no efficient way of jointly performing MT and SRL,
accurate SRL on target side can only be done after
translation. Similar to related work (Liu and Gildea,
2010; Xiong et al., 2012), we obtain the PAS of
the source language (PAS-S) via a shallow seman-
tic parser and project the PAS of the target language
(PAS-T) using the word alignment derived from the
translation process. Specifically, we use PropBank
standard (Palmer et al., 2005; Xue, 2008) which de-
fines a set of numbered core arguments (i.e., AO-AS)
and adjunct-like arguments (e.g., AM-TMP for tem-
poral, AM-MNR for manner). Figure 2(b) shows
an example of PAS projection from source language
to target language.”> The PAS reordering model de-
scribes the probability of reordering PAS-S into PAS-
T. Given a predicate p, it takes the following form:

P (PAS-T | PAS-S, PRE=p) ()
Note that cases for untranslated roles can be natu-
rally reflected in our PAS reordering model. For ex-

ample, if the argument [ 49 is untranslated in Figure
2, its PAS-T will be X5 X5X3X},.

In PAS-S, we use parts-of-speech (POS) of predicates to
distinguish different types of verbs since the semantic structures
of Chinese adjective verbs are different from those of others.
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3.1 Probability Estimation

While it is hard and unnecessary to translate a pred-
icate and all its associated arguments with one rule,
especially if the sentence is long, a practicable way,
as most decoders do, is to translate them in multi-
ple level rules. In addition, some adjunct-like argu-
ments are optional, or structurally dispensable part
of a sentence, which may result in data sparsity is-
sue. Based on these observations, we decompose
Formula 2 into two parts: predicate-argument re-
ordering and argument-argument reordering.

Predicate-Argument Reordering estimates the
reordering probability between a predicate and one
of its arguments. Taking predicate like and its argu-
ment Al the red car in Figure 2(a) as an example,
the predicate-argument pattern on the source side
(PA-S) is VBP; Aly while the predicate-argument
pattern on the target side (PA-T) is X1X>. The re-
ordering probability is estimated as:

Pp.a (PA-T=X; X2 | PA-S=VBP; Al2, PRE=like) =
Count (PA-T=X1 X2, PA-S=VBP; Al2, PRE=like)
> ca(pas) Count (PA-T=T, PA-S=VBP; Al2, PRE=like)
3)

where ® (PA-S) enumerates all possible reorder-
ings on the target side. Moreover, we take the pred-
icate lexicon of predicate into account. To avoid
data sparsity, we set a threshold (e.g., 100) to re-
tain frequent predicates. For infrequent predicates,
their probabilities are smoothed by replacing predi-
cate lexicon with its POS. Finally, if source side pat-
terns are infrequent (e.g., less than 10) for frequent
predicates, their probabilities are smoothed as well
with the same way.

Argument-Argument Reordering estimates the
reordering probability between two arguments, i.e.,
argument-argument pattern on the source side (AA-
S) and its counterpart on the target side (AA-T).
However, due to that arguments are driven and piv-
oted by their predicates, we also include predicate
in patterns of AA-S and AA-T. Let’s revisit Fig-
ure 2(a). Al the red car and AM-MNR very much
are inverted on the target side, whose probability is
estimated as:

Paa (AA-T=X3 X1 X2 | AA-S=VBP; Al AM-MNR3, PRE=like)

“)
Similarly we smooth the probabilities by distin-
guishing frequent predicates from infrequent ones,




as well as frequent patterns from infrequent ones.

3.2 Integrating the PAS Reordering Model into
the HPB Model

We integrate the PAS reordering model into the HPB
SMT by adding a new feature into the log-linear
translation model. Unlike the conventional phrase
and lexical translation features whose values are
phrase pair-determined and thus can be calculated
offline, the value of the PAS reordering model can
only be obtained with being aware of the predicate-
argument structures a hypothesis may cover. Before
we present the algorithm of integrating the PAS re-
ordering model, we define a few functions by assum-
ing p for a predicate, a for an argument, and H for a
hypothesis:

e A(i, j, p): returns arguments of p which are
fully located within the span from word i to j
on the source side. For example, in Figure 2,
A (4, 8, like) = {Al, AM-MRN}.?

e B(i, j, p): returns true if p is located within [, j;
otherwise returns false.

e C (a, p): returns true if predicate-argument reorder-
ing for a and p has not calculated yet; otherwise re-
turns false.

e D(ay, ag, p): returns frue if argument-argument
reordering for p’s arguments a1 and a, has not cal-
culated yet; otherwise returns false.

e Pp.a(H, a, p): according to Eq. 3, returns the
probability of predicate-argument reordering of a
and p, given a and p are covered by H. The po-
sitional relation of a and p on the target side can be
detected according to translation derivation of H.

® Paa(H, ar, az, p):
the probability of argument-argument reordering of

according to Eq. 4, returns

p’s arguments aq and ae, given aj, as and p are cov-
ered by H.

Algorithm 1 integrates the PAS reordering model
into a CKY-style decoder whenever a new hypothe-
sis is generated. Given a hypothesis H, it first looks
for predicates and their arguments which are covered

3The hard constraints make sure a valid source text span
would never fully cover some roles while partially cover other
roles. For example, phrases like the red, the read car very in
Figure 1 are invalid.
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Algorithm 1: Integrating the PAS reordering
model into a CKY-style decoder

Input: Sentence f in the source language
Predicate-Argument Structures of f
Hypothesis H spanning from word 7 to j

Output: Log-Probability of the PAS reordering

model

1. set prob =0.0

2. for predicate p in f, such that B (4, j, p) is true

ARG = A (i, j, p)

4.  for a € ARG such that C (a, p) is true

5. prob+=log Pp.4 (H, a, p)

6 for a1, as € ARG such that a; # as and

D (a1, ag, p) is true

7. prob+=1log P4 (H, ay, az, p)

8. return prob

(O]

by H (line 2-3). Then it respectively calculates the
probabilities of predicate-argument reordering and
argument-argument reordering(line 4-7).

4 Experiments

We have presented our two-level approach to in-
corporating syntactic and semantic structures in a
HPB system. In this section, we test the effect of
such structural information on a Chinese-to-English
translation task. The baseline system is a reproduc-
tion of Chiang’s (2007) HPB system. The bilin-
gual training data contains 1.5M sentence pairs with
39.4M Chinese words and 46.6M English words.*
We obtain the word alignments by running GIZA++
(Och and Ney, 2000) on the corpus in both direc-
tions and applying “grow-diag-final-and” refinement
(Koehn et al., 2003). We use the SRI language mod-
eling toolkit to train a 5-gram language model on the
Xinhua portion of the Gigaword corpus and standard
MERT (Och, 2003) to tune the feature weights on
the development data.

To obtain syntactic parse trees for instantiating
syntactic constraints and predicate-argument struc-
tures for integrating the PAS reordering model, we
first parse the source sentences with the Berkeley
Parser (Petrov and Klein, 2007) trained on Chinese
TreeBank 6.0 and then ran the Chinese semantic role

“This dataset includes LDC2002E18,
LDC2003E14, Hansards  portion  of
LDC2004T08 and LDC2005T06

LDC2003E07,
LDC2004T07,



System MT02 MTO04 MTO5 Ave.

base HPB  40.00 35.33 3297 36.10

max-phrase-length=10 | + basic constraints + unflattened tree ~ 33.90 32.00 29.83  31.91
max-char-span=10 + our constraints + unflattened tree ~ 38.47 34.51 32.15 35.04

+ our constraints + flattened tree ~ 38.55 35.38 3244 3546

max-phrase-length=oo + basic constra?nts + unflattened tree ~ 35.38 32.89 3042 3290
max-char-span=oo + our constramtls + unflattened tree ~ 39.41 36.02 33.21 36.21

+ our constraints + flattened tree ~ 40.01 36.24 33.65 36.71

Table 1: Effects of hard constraints. Here max-phrase-length is for maximum initial phrase length in training and
max-char-span for maximum phrase length can be covered by non-terminal X in decoding.

labeler (Li et al., 2010) on all source parse trees to
annotate semantic roles for all verbal predicates.
We use the 2003 NIST MT evaluation test data
(919 sentence pairs) as the development data, and
the 2002, 2004 and 2005 NIST MT evaluation
test data (878, 1788 and 1082 sentence pairs, re-
spectively) as the test data. For evaluation, the
NIST BLEU script (version 11b) is used to calcu-
late the NIST BLEU scores, which measures case-
insensitive matching of n-grams with n up to 4. To
test whether a performance difference is statistically
significant, we conduct significance tests following
the paired bootstrapping approach (Koehn, 2004).

4.1 Effects of Syntactic Constraints

We have also tested syntactic constraints that simply
require phrases on the source side to map to a sub-
tree (called basic constraints). Similar to requiring
initial phrases on the source side to satisfy the con-
straints in training process, we only perform chart
parsing on text spans which satisfy the constraints
in decoding process. Table 1 shows the results of
applying syntactic constraints with different experi-
mental settings. From the table, we have the follow-
ing observations.

e Consistent with the conclusion in Koehn et
al. (2003), using the basic constraints is harmful to
HPB. Fortunately, our constraints consistently work
better than the basic constraints.

e Relaxing maximum phrase length in training and
maximum char span length in decoding, we obtain
an average improvement of about 1.0~1.2 BLEU
points for systems with both basic constraints and
our constraints. It is worth noting that after re-
laxing the lengths, the system with our constraints
performs on a par with the base HPB system (e.g.,
36.21 vs. 36.10).
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System MT 02 MT 04 MT 05 Ave.
base HPB 40.00 35.33 32.97 36.10
+our constraints 40.01 362477  33.65T 36.71
withreorderable g 70+ 3600+ 3367t 3679
glue rules

+PAS model 40417 3673777 342477 37.13

Table 2: Effects of reorderable glue rules and the PAS
reordering model. +/++: significant over base HPB at
0.05/0.01; */**: significant over the system with reorder-
able glue rules at 0.05/0.01.

e Flattening parse trees further improves 0.4~0.5
BLEU points on average for systems with our syn-
tactic constraints. Our final system with constraints
outperforms the base HPB system with an average
of 0.6 BLEU points improvement (36.71 vs. 36.10).

Another advantage of applying syntactic constraints
is efficiency. By comparing the base HPB system
and the system with our syntactic constraints (i.e.,
the last row in Table 1), it is not surprising to ob-
serve that the size of rules extracted from training
data drops sharply from 193M in base HPB sys-
tem to 60M in the other. Moreover, the system
with constraints needs less decoding time than base
HPB does. Observation on 2002 NIST MT test data
(26 words per sentence on average) shows that basic
HPB system needs to fill 239 cells per sentence on
average in chart parsing while the other only needs
to fill 108 cells.

4.2 Effects of Reorderable Glue Rules

Based on the system with our syntactic constraints
and relaxed phrase lengths in training and decoding,
we replace traditional glue rules with reorderable
glue rules. Table 2 shows the results, from which
we find that the effect of reorderable glue rules is
elusive: surprisingly, it achieves 0.7 BLEU points



sentence length 1-10 11-20 21-30 31-40 41+ all
sentence count 337 1001 1052 768 590 3748
base HPB 32.21 37.51 36.71 34.96 35.00 35.73

+our constraints 31.70 37.57 37.10 36.207T 35.78FT 36.39TF

Table 3: Experimental results over different sentence
length on the three test sets. +/++: significant over base
HPB at 0.05/0.01.

improvement on NIST MT 2002 test set while hav-
ing negligible or even slightly negative impact on the
other two test sets. The reason of reorderable glue
rules having limited influence on translation results
over monotonic only glue rules may be due to that
the monotonic reordering overwhelms the inverted
one: estimated from training data, the probability of
the monotonic glue rule is 95.5%.

4.3 Effects of the PAS Reordering Model

Based on the system with reorderable glue rules, we
examine whether the PAS reordering model is capa-
ble of improving translation performance. The last
row in Table 2 presents the results . It shows the sys-
tem with the PAS reordering model obtains an aver-
age of 0.34 BLEU points over the system without it
(e.g., 37.13 vs. 36.79). It is interesting to note that it
achieves significant improvement on NIST MT 2004
and 2005 test sets (p < 0.05) while slightly lowering
performance on NIST MT 2002 test set (p > 0.05):
the surprising improvement of applying reorderable
glue rules on NIST MT 2002 test set leaves less
room for further improvement. Finally, it shows we
obtain an average improvement of 1.03 BLEU points
on the three test sets over the base HPB system.

5 Discussion and Future Work

The results in Table 1 demonstrate that significant
and sometimes substantial gains over baseline can
be obtained by incorporating hard syntactic con-
straints into the HPB model. Due to the capability of
translation phrases of arbitrary length, we conjecture
that the improvement of our system over the baseline
HPB system mostly comes from long sentences. To
test the conjecture, we combine all test sentences in
the three test sets and group them in terms of sen-
tence length. Table 3 presents the sentence distri-
bution and BLEU scores over different length. The
results validate our assumption that the system with
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constraints outperforms the base systems on long
sentences (e.g., sentences with 20+ words).

Figure 3 displays a translation example which
shows the difference between the base HPB
system and the system with constraints. The
inappropriate translation of the base HPB
system can be mainly blamed on the rule
(Xpo5) — 812 BJs Xiu5), X(u5 thedevelopmentof),
where #)y & %3 , a part of the subtree [0, 3] span-
ning from word 0O to 3, is translated immediately
to the right of Xy 5, making a direct impact that
subtree [0, 3] is translated discontinuously on the
target side. On the contrary, we can see that our
constraints are able to help select appropriate phrase
segments with respect to its syntactic structure.

Although our syntactic constraints apply on the
source side, they are completely ignorant of syn-
tax on the target side, which might result in ex-
cluding some useful translation rules. Let’s re-
visit the sentence in Figure 3, where we can see
that a transition rule spanning from word 0 to 5,
say (X[o5 — X3 %4 B RT5, X3 dependson)
is intuitive: the syntactic structure on the target side
satisfies the constraints, although that of the source
side doesn’t. One natural extension of this work,
therefore, would be to relax the constraints by in-
cluding translation rules whose syntactic structure
of either the source side or the target side satisfies
the constraints.

To illustrate how the PAS reordering model im-
pacts translation output, Figure 4 displays two trans-
lation examples of systems with or without it. The
predicate 1% #/convey in the first example has three
core arguments, i.e., A0, A2, and A1l. The difference
between the two outputs is the reordering of A1 and
A2 while the PAS reordering model gives priority to
pattern VV Al A2. In the second example, we clearly
observe two serious translation errors in the system
without PAS reordering model: #{1/them4; is un-
translated; ¥ B/chinayo is moved to the immediate
right of predicate 7 #/allow and plays as direct ob-
ject.

Including the PAS reordering model improves the
BLEU scores. One further direction to refine the ap-
proach is to alleviate verb sparsity via verb classes.
Another direction is to include useful context in es-
timating reordering probability. For example, the
content of a temporal argument AM-TMP can be a



Xp251: Xa5) the development of

X031 X0,y development

Xioay: lot Xias): depends on  Xpeq): the devet. of the world sit. X1 -
(Rz 65 ) &R & kT (ks "E) m) kE) o)

Q 1 2 3 4 5 6 1 8 9 10

Xo.y: lot X7 sit. Xo.9: devet.

X[GJ]Z world X[7v7]

Xis,9): depends on X g; Of the Xpg 7

Xpo01" Xo.3] Xp5.97 .

Figure 3: A translation example of the base HPB system (above) and the system with constraints (below).

w/0 [korean] [W|II] [convey] [to the] hope of [resuming talks information] X1 Xy X4 X3 Xs
Source; [ﬁ:]AO [’{&J]AM apve L[] Fﬁ]Az [H‘ﬁﬁ]PRE wH [kE = Ut_ M f5E]a iA0 AM-ADVP, A2 WV, Als
with [south korean] [W|II] [dell\;er] hope [resume talks mes;;;g-ei -[t_o-tﬁe dprk] X1 Xy Xz Xs X
Ref. isouth korean conveys its desire to resume talking with north korean

w/o [frlday] [aIIowed] [chma] [to seoul through the philippines] . X, Xz X; Xg
Source! [':F' .]AO [ Fﬁﬁ]AM TMP [fﬂltF]pRE [1,L'1|]]A1 [EX Jlﬁ]— /XJ;'JJ(]AZ ° A0; AM-TMP; VV; Al, A2
with [chlna] [frlday] [aIIowed] [them] [to seoul through the philippines] . X1 X X3 Xy Xs
Ref. in friday, china allowed them to travel to seoul through philippines .

Figure 4: Two translation examples of the system with/without PAS reordering model

short/simple phrase (e.g., friday) or a long/complex
one (e.g., when I was 20 years old), which has im-
pact on its reordering in translation.

6 Related Work

While there has been substantial work on linguis-
tically motivated SMT, we limit ourselves here
to several approaches that leverage syntactic con-
straints yet still allow cross-constituent transla-
tions. In terms of tree-based SMT with cross-
constituent translations, Cowan et al. (2006) al-
lowed non-constituent sub phrases on the source
side and adopted phrase-based translation model for
modifiers in clauses. Marcu (2006) and Galley
et al. (2006) inserted artificial constituent nodes in
parsing tree as to capture useful but non-constituent
phrases. The parse tree binarization approach
(Wang et al., 2007; Marcu, 2007) and the forest-
based approach (Mi et al., 2008) would also cover
non-constituent phrases to some extent. Shen et
al. (2010) defined well-formed dependency struc-
ture to cover uncompleted dependency structure in
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translation rules. In addition to the fact that the
constraints of Shen et al. (2010) and this paper
are based on different syntactic perspectives (i.e.,
dependency structure vs. constituency structure),
the major difference is that in this work we don’t
limit the length of phrases to a fixed maximum size
(e.g., 10 in Hiero). Consequently, we obtain some
translation rules that are not found in Hiero sys-
tems constrained by the length. In terms of (hi-
erarchical) phrase-based SMT with syntactic con-
straints, particular related to constituent boundaries,
Koehn et al. (2003) tested constraints allowing con-
stituent matched phrases only. Chiang (2005) and
Cherry (2008) used a soft constraint to award or pe-
nalize hypotheses which respect or violate syntactic
boundaries. Marton and Resnik (2008) further ex-
plored the idea of soft constraints by distinguishing
among constituent types. Xiong et al. (2009; 2010)
presented models that learn phrase boundaries from
aligned dataset.

On the other hand, semantics motivated SMT has
also seen an increase in activity recently. Wu and



Fung (2009) re-ordered arguments on the target side
translation output, seeking to maximize the cross-
lingual match of the semantic frames of the re-
ordered translation to that of the source sentence.
Liu and Gildea (2010) added two types of semantic
role features into a tree-to-string translation model.
Although Xiong et al. (2012) and our work are both
focusing on source side PAS reordering, our model
differs from theirs in two main aspects: 1) we con-
sider reordering not only between an argument and
its predicate, but also between two arguments; and
2) our reordering model can naturally model cases
of untranslated arguments or predicates.

7 Conclusion

In this paper, we have presented an approach to
incorporating syntactic and semantic structures for
the HPB translation model. To accommodate the
close tie of semantic structures to syntax, we first
revisited the idea of hard syntactic constraints, and
we demonstrated that hard constraints can, in fact,
lead to significant improvement in translation qual-
ity when applied to Chiang’s HPB framework. Then
our PAS reordering model, thanks to the constraints
which guided translation phrases in favor of syntac-
tic boundaries, made further improvements by pre-
dicting reordering not only between an argument
and its predicate, but also between two arguments.
In the future work, we will extend the PAS reorder-
ing model to include useful context, e.g., the head
words and the syntactic categories of arguments.
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