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Abstract

Measuring term informativeness is a funda-
mental NLP task. Existing methods, mostly
based on statistical information in corpora, do
not actually measure informativeness of a term
with regard to its semantic context. This pa-
per proposes a new lightweight feature-free
approach to encode term informativeness in
context by leveraging web knowledge. Given
a term and its context, we model context-
aware term informativeness based on semantic
similarity between the context and the term’s
most featured context in a knowledge base,
Wikipedia. We apply our method to three ap-
plications: core term extraction from snippets
(text segment), scientific keywords extraction
(paper), and back-of-the-book index genera-
tion (book). The performance is state-of-the-
art or close to it for each application, demon-
strating its effectiveness and generality.

1 Introduction

Computationally measuring importance of a word
in text, or “term informativeness” (Kireyev, 2009;
Rennie and Jaakkola, 2005), is fundamental to many
NLP tasks such as keyword extraction, text catego-
rization, clustering, and summarization, etc. Various
features derived from statistical and linguistic infor-
mation can be helpful in encoding term informative-
ness, whereas practical feature definition and selec-
tion are usually ad hoc, data-driven and application
dependent. Statistical information based on term
frequency (TF) and document frequency (DF) tend
to be more effective in finding keywords in large
corpora, but can have issues with small amounts of
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text or small corpora. Linguistic information such
as POS tag patterns often require manual selection
based on prior applications. We contend that few
methods actually measure the informativeness of a
term to the discourse unit it contains. For example,
given a context such as “A graph comprises nodes
(also called vertices) connected by links (also known
as edges or arcs)”, it is difficult to measure the
term informativeness of “graph”, “nodes”, or “links”
based on any statistical or linguistic information.

This raises many issues. Is there a fundamental
and less ad hoc way to measure the term informa-
tiveness of a word within a discourse unit? Can we
actually find a general approach based on compre-
hensive and high-level “knowledge” and not have
to nitpick over features? Can this new metric be
effectively applied to real world applications? To
answer these questions, we develop a new term in-
formativeness metric, motivated by query-document
relevance in information retrieval. The higher the
relevance score a query-document pair is, the more
informative the query is to the document. If a sim-
ilar principle also exists between word and con-
text and there is an effective search engine return-
ing ranked contexts for a given word, then we con-
tend that word is more informative in the higher rank
contexts. To see the term informativeness of three
words “graph”, “nodes” and “links” in context, we
manually check the search results from Wikipedia,
Google, and Bing. We found that very similar con-
texts are among the top 5 ranked results of “graph”
while no such contexts appear in that of the other
two words. Thus, we define a context-aware term
informativeness based on the semantic relatedness
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between the context and the term’s featured contexts
(or the top important contexts that cover most of a
term’s semantics).

We apply the context-aware term informativeness
(CTI) to three typical NLP applications: core term
extraction in snippets, keyword extraction and back-
of-the-book index generation. Experiments show
that the method is effective and efficient. Moreover,
the metric can be easily combined with other meth-
ods, or as a feature for learning algorithms.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the literature of term infor-
mativeness measurements. Section 3 proposes the
formal definition of the context-aware term informa-
tiveness as well as its practical implementation using
Web knowledge. Section 4 studies the three appli-
cations. Finally, we conclude with discussion and
future work.

2 Related Work

Most known approaches to measure term informa-
tiveness fall into basically two categories: statistics-
based and semantic-based.

Statistics-based methods, such as TFIDF (Salton
and Buckley, 1988), Residuall DF (RIDF), Variance,
Burstiness and Gain, are based on derivations from
term frequency (TF) and document frequency (DF).
Sprck Jones defines IDF or inverse document fre-
quency as:

IDF(w) = —loga(df.,/D)

where D is the size of the corpus (Jones, 1972;
Jones, 1973). Based on a finding that informative
words tend to have large deviation between IDF
and collection frequency f,(the total number of oc-
currence of a word), many other informativeness
scores have been proposed. Bookstein and Swan-
son (Bookstein and Swanson, 1974) introduced the

I‘I as:

)]

X I'= f w df w
Church and Gale (1995) introduced

1 2 -
variance(w) = D1 Z(tdw —ty) (2
d=1

where t 4,, denotes w’s TF in d and t,, = f,/ D indi-
cates its mean expected word rate. Another measure
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suggested by them is

_Jw
-~ dfu

which tends to compare collection frequency and
document frequency directly. Informative words
were found to have IDF scores that are larger than
what would be expected according to the Poisson
model; residual IDF (RIDF) was introduced to mea-
sure this deviation

3)

burstiness(w)

RIDF(w) = IDF(w) — IDF(w)  (4)
where IDF(w) = —loga(1 — e~t*). In addition,
Papineni (2001) introduced the notion of gain as

dfu { dfu dfs
:% (g—l—log({))> 5)

More recently, Rennie and Jaakkola (2005) intro-
duced an informativeness score based on the fit of
a word’s frequency to a mixture of 2 Unigram dis-
tribution and applied it to named entity detection. It
is worth noting that term necessity, which measures
the probability that a term occurs in documents rel-
evant to a given query, has been well studied in In-
formation Retrieval community (Zhao and Callan,
2010; Yang and Callan, 2010). Though our CIT is
not designed for probabilistic retrieval models, we
may apply it to measure the term necessity in a query
by considering it as a context.

Despite extensive research on semantic analysis
and understanding of word and text (Deerwester et
al., 1990; Budanitsky and Hirst, 2006; Cilibrasi and
Vitanyi, 2007; Gabrilovich and Markovitch, 2007;
Agirre et al., 2009; Yazdani and Popescu-Belis,
2012), little work studied the measurement of the
semantics of term informativeness. An exception
is the LS Aspec from Kireyev (2009), based on la-
tent semantic analysis (Deerwester et al., 1990),
which is defined as the ratio of a term’s LSA vec-
tor length to its document frequency and thus can
be interpreted as the rate of vector length growth.
However, latent semantic models such as LSA are
notoriously hard to interpret since the “latent con-
cepts” cannot be readily mapped to human knowl-
edge (Gabrilovich and Markovitch, 2007). Our ap-
proach explicitly leverages the semantics of word
and text using existing knowledge bases.

gain(w)



Previous methods, all corpus-based, might be ef-
fective in identifying informative words at the doc-
ument or corpus level, but do not the ability to cap-
ture term informativeness in a particular context due
to their absence of semantics and obliviousness of
context. Our method measures the term informative-
ness within a context in a semantic-based approach,
regardless of the absence of statistical information.

3 Context-aware Term Informativeness

3.1 Context

A context of a word or phrase may refer to a few
words nearby (He et al., 2010), a sentence or para-
graph (Soricut and Marcu, 2003), or even a set
of documents containing it (Cilibrasi and Vitanyi,
2007). Here we define context as a syntactic unit
of discourse such as a sentence or paragraph, for ex-
ample, “PL/SQL is one of three key programming
languages embedded in the Oracle Database”, or
“There are two types of functions in PL/SQL”. The
universal context set U (¢) of a word ¢ is defined as
all the contexts containing it in the web. Different
contexts vary in their authority just like web pages
vary. For the two examples, we could argue that
the first context is much more “authoritative” than
the second. This can be verified by their popular-
ity on Google; (all results from actual search en-
gines were at the time of this publication) the first
retrieves approximately 302,000 exact matching re-
sults while the second retrieves only one. We con-
sider this as the number of citations of a context,
which, to some extent, indicates its “authority”. We
define the source of a context as the set of all docu-
ments citing it. Here “citing” instead of “containing”
is used because some documents may not literally
contain an exact copy of the context.

Given a term ¢, define its universal context set
U(t) = {c;} and the source of ¢; is S(c;) = {di;}.
Ideally, the authority of a context will be contributed
by every document citing it. Therefore, we define
the authority score of a context as

CA(c) = Y DA(dyy) (©)

where D A(d;;) denotes the authority contributed by
d;;. It is very difficult to acquire the universal con-
text set of a term. Considering that usually we only
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care about the top few results of a query returned by
search engines and ignore a large faction of less im-
portant ones, it is reasonable to assume that a term’s
semantics will be well covered by a few important
contexts. We therefore define the featured context
set of term ¢, or Uf(t), as the top k contexts with
the highest authority scores, where k is an applica-
tion dependent parameter. In our experiments, the
default & for the Wikipedia based implementation is
20.

3.2 Term Informativeness

‘We now consider how to measure the term informa-
tiveness in context. Using the context “PL/SQL is
one of three key programming languages embedded
in the Oracle Database” (denoted by C)) as an ex-
ample, for its term “PL/SQL”, the top three contexts
returned by Google are

1. PL/SQL (Procedural Language/Structured Query Language) is

Oracle Corporation’s procedural extension language for SQL and
the Oracle relational database.

2. PL/SQL is Oracle’s procedural extension to industry-standard
SQL. PL/SQL naturally, efficiently, and safely extends SQL.

3. This Oracle PL SQL tutorial teaches you the basics of program-
ming in PL/SQL like cursors, stored procedures, PISQL func-
tions.

Those contexts, though being diverse in actual
meaning, all have semantic relatedness to C,. Even
someone who does not completely understand them
can gain some meaning by observing common
words such as “Oracle”, “database” and “program-
ming”. However, checking the Google results for
“Oracle Database” or “programming languages”, we
will find little relatedness between them and C,.
This suggests that if term ¢, in context ¢ is more in-
formative than t;, then most likely the contexts from
t,’s featured context set will be more related to c
than will ¢p. Thus, given a term ¢ and its featured
context set Us(t) = {c1, ..., ¢ }, we define the term
informativeness of ¢ in context ¢; as

Z k(ci,cj) - CA(cj)

c;€EU(t)

I(t,ci) = )

where k(cj,cj) is the semantic relatedness of
¢; and c;j, which can be computed by various
semantic relatedness metrics such as Wikipedia
based (Gabrilovich and Markovitch, 2007; Yazdani



and Popescu-Belis, 2012), Wordnet based (Agirre et
al., 2009; Budanitsky and Hirst, 2006), or simple co-
sine similarity and Jaccard similarity based (Zobel
and Moffat, 1998).

The context-aware term informativeness (CTI) in-
troduced above is a formal and general definition.
As such the definition in Equation (7) includes sev-
eral features such as context authority score, fea-
tured context set, semantic relatedness, and knowl-
edge base, any or all of which could be flexible for
different applications.

3.3 Implementation

Here, we present a simple practical implementation
using Wikipedia as the knowledge base and the con-
text authority estimated by the discounted rank of
the Wikipedia document. Note that the problem is
how to compute C'A(c;) for each context in Uy. We
rewrite Equation (6) as

CA(ci) = DA(dio) + Y DA(dij) (8
J#0

where d;g is the original document of ¢; and all the
others are further derivatives of “citing” ¢;. For ex-
ample, the Wikipedia page of “PL/SQL” will be con-
sidered as the original document of C), while all
other documents citing C), are its derivatives. Intu-
itively, the authority of a context will mainly rely on
the authority of its original document. Here, we sim-
ply assume that the context authority depends only
on its original document, or

We then take the top ranked document returned by
the web knowledge base as the original document.
We present a practical implementation of CTI in
Algorithm 1. The discounted rank is used to rep-
resent the relative context authority score of each
context in Uy. We use Wikipedia as our knowl-
edge base to implement the metric since it is cur-
rently one of the largest and most readily available
knowledge repositories and, more importantly, pro-
vides free, unlimited and fast query APIs'. Given
any keyword, the Wikipedia query API will return
the ranked Wikipedia entries along with the contexts
containing the keyword. We set the default value 20

"http://www.mediawiki.org/wiki/API:Query
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for k, or len(Uy). Note that there could be other
variations of this implementation. For example, we
could rule out duplicate or very similar results in the
Uy. Search engines such as Google and Bing are
also potential sources since they return high qual-
ity web pages along with the contexts containing the
query keyword.

In terms of scalability, the proposed method is
inherently parallelizable, not only at the document
level, but also a the context level, since computing
CTTI does not depend on any other context in the doc-
ument. In addition, we do not need to issue the same
query more than once. Our strategy is to locally
cache the returned results of every seen query. For a
new term seen in a previous query, we can directly
access the local cached file. If we have built a large
local pool, the queries will rarely go to a search en-
gine or other source. Given a corpus size N (words
in total), the number of actual issued queries will
be at most the number of unique terms, which is far
less than O(N). Of course, new terms never seen will
have to be processed, but there will be fewer of these
over time.

Algorithm 1: Wikipedia-based I (¢, ¢;)

1 Input: ¢, ¢;

2 Output: I(t,c;)

3 begin

4 I —0;

5 Uy «— queryWikipedia(t);
6 for j € range(len(Uy)) do

7 s — k(ci, Uglg]);

8 if 7 > 0 then

9 | I I+s/log(j+1);
10 else/ — [ +s

1 return [;

4 Applications

4.1 Core Terms Extraction from Snippets

We first investigate CTI in a well defined setting.
That is, if we have a collection of terms such that
its most important context is a “definition,” e.g.
“database” and “A database is a structured collec-
tion of data, which are typically organized to model
relevant aspects of reality, in a way that supports



Exemplary snippets of computer science terms

| Top 5 terms ranked by CTI

Acrobat, a document exchange software from Adobe Systems, provides a platform-independent means of
creating, viewing, and printing documents. Acrobat can convert a DOS, Windows, UNIX or Macintosh
documents into a Portable Document Format (PDF) which can be displayed on any computer with an
Acrobat reader. The Acrobat reader can be downloaded free from the Adobe website.

Acrobat:3.19

Acrobat reader:2.94

Portable Document Format:2.08
Adobe website:2.03

Adobe Systems:1.82

Data mining (DM), also known as Knowledge-Discovery in Databases (KDD) or Knowledge-Discovery
and Data Mining (KDD), is the process of automatically searching large volumes of data for patterns. Data
mining uses automated data analysis techniques to uncover previously undetected relationships among
data items. Data mining often involves the analysis of data stored in a data warehouse. Three of the major

data mining:3.77

data mining techniques:3.64
KDD:1.79
Knowledge-Discovery:1.66

data mining techniques are regression, classification and clustering.

data analysis techniques:1.20

browser to include them all and achieve wide adoption.

Firefox, also known as Mozilla Firefox, is a free, open source, cross-platform, graphical web browser
developed by the Mozilla Corporation and hundreds of volunteers. Firefox includes an integrated pop-up
blocker, tabbed browsing, live bookmarks, support for open standards, and an extension mechanism for
adding functionality. Although other browsers have some of these features, Firefox became the first such

Mozilla Firefox:3.89
firefox:3.13

web browser:2.44
browser:2.39

graphical web browser:2.35

Table 1: Term ranked by CTI from exemplary snippets

processes requiring this information”, can CTI iden-
tify “database” as the most informative term in this
context? To construct the term-context pairs, we
could use the Wikipedia title and the top ranked
context returned by searching the title using the
Wikipedia API. Then we could test our metric based
on other search engines such as Google or Bing.
Testing manually, we found the results compare well
to the search engine results, since both Google and
Bing give top ranks to Wikipedia pages if the query
keyword is a Wikipedia title. For further analy-
sis, we need a collection of term-context pairs from
other sources different from Wikipedia. Fortunately,
we found a list of 1255 computer science terms
with its definition snippets manually created by Web
users 2. The snippets are literally different from
those contexts in Wikipedia and some of the terms
are even not Wikipedia titles, e.g. bBlog, BetBug,
etc. These can be part of an “initial” evaluation. The
core term extraction algorithm works in the follow-
ing steps for each term-context pair:

1. Extract all n-grams (1 < n < 4) in the context
as candidates

2. For each candidate, calculate its CTI using
Wikipedia based implementation

3. Return the top K highest CTI as core terms

We used the top 20 returned Wikipedia contexts
as a featured context set Uy and apply the cosine
similarity for k. We show some exemplary snippets

Zhttp://www.labautopedia.org/mw/index.php/List_of _
programming_and_computer_science_terms
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K | Precision (%) | Recall (%) | F1(%)
1 37.5 37.5 37.5
2 35.1 55.2 42.9
3 323 64.7 43.1
4 31.3 72.2 437
5 27.6 76.3 40.5
10 20.0 88.1 32.6

Table 2: Results on computer science term extrac-
tion from descriptive snippets

with its top 5 core terms and their CTI scores in Ta-
ble 1. The overall performance is shown in Table 2,
in terms of precision, recall and F1 scores based on
the only one titled term of each snippet as the ground
truth. CTI can correctly find the core term for 37.5%
snippets. If we take the top 5 results, then the recall
increase to 76.3%.

Though the algorithm can be easily parallelized,
sequentially runtime on all snippets took only
slightly more than a minute on a 2.35GHz Intel(R)
Xeon(R) 4 processors, 23GB of RAM, and Red Hat
Enterprise Linux Server(5.7) machine. However, the
time could vary due to network conditions.

Though these results look promising, but it could
be due to the high lexical similarity between this
dataset and Wikipedia content. To test on a more
general corpora, we explore more real world tasks.

4.2 Keyword Extraction

There is a rich literature on keyword extraction prob-
lem (Frank et al., 1999; Witten et al., 1999; Turney,
2000; Hulth et al., 2003; Tomokiyo and Hurst, 2003;




Wiki20 citeulike180 Method | Precision (%) | Recall (%) | F1(%)
Method P R F P R F TFIDF 14.9 15.3 15.1
TFIDF | 13.7 | 17.8 | 155 | 144 | 16.0 | 15.2 HUMB 27.2 27.8 27.5
KEA 184 | 21.5 | 19.8 | 204 | 22.3 | 21.3 CTI 19.3 20.1 19.7
CTI 19.6 | 22.7 | 21.0 | 185 | 21.4 | 19.8 CTI+ 25.3 26.2 25.7

Table 3: Results on Wiki20 and citeulike180

Mihalcea and Tarau, 2004; Medelyan and Witten,
2008; Liu, 2010), most of which is treated as a clas-
sification or ranking problem with corresponding
machine learning algorithms that use statistical and
linguistic features in a corpus. Here, we consider
the task as finding the most informative keywords in
a document. Given a document d = {¢;}, our key-
word extraction algorithm based on CTI works as
follows.

1. For each context ¢; in a document, compute the
semantic relatedness s(c;, d) between ¢; and d

2. For each n-gram (1 < n < 4) t in ¢;, calculate
1(t, ¢;) using Wikipedia based implementation

3. Select the top keywords with the highest
>oil(t, ) * s(ci,d)

Note that for the last step keywords are selected
based on a summarized weighted informativeness
score over a document. Obviously, the pure co-
sine or Jaccard similarity is not a good choice
to measure semantic relatedness between two text
segments of very low lexical similarity. We thus
use the Wikipedia based ESA (Gabrilovich and
Markovitch, 2007) to compute the semantic relat-
edness s(c;,d) and k(c;,cj). To make the cal-
culation more efficient, only the Wikipedia pages
whose title is contained in the dataset are used to
build the concept space. We ran the algorithm on
several datasets including Wiki20 (Medelyan et al.,
2008), citeulike180 (Medelyan et al., 2009) and Se-
mEval2010 (Kim et al., 2010) 3.

Though keyword extraction as a research topic
has a rich literature, to the best of our knowledge
there is no large scale datasets publicly available.
The Wiki20 dataset contains 20 computer science
articles each with around 5 terms labeled by 15
different teams. Every term is a Wikipedia title.

3http://code.google.com/p/maui-indexer/downloads/list
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Table 4: Results on SemEval2010

The citeulike180 contains a set of 180 papers each
tagged with around three tags by 332 users. For each
dataset, the collection of all labeled keywords by dif-
ferent taggers are considered as the gold standard
for a document. We use the set of all keywords for
evaluation; otherwise a more complicated evaluation
metrics for each dataset will be needed. It would
be better to investigate other weighting schemes.
However, the datasets here are relatively small and
the number of tags on which at least two annota-
tors agreed is significantly small; weighting the key-
words might not make too much difference. KEA *
builds a Naive Bayes model using features TFIDF,
first occurrence, length of a phrase, and node de-
gree (number of candidates that are semantically re-
lated to this phrase) (Witten et al., 1999). First oc-
currence is computed as the percentage of the doc-
ument preceding the first occurrence of the term in
the document. We compute the node degree as the
textrank (Mihalcea and Tarau, 2004) degree in a doc-
ument by simply relating two candidate terms with
each other if they are in the same context. KEA
uses 5 fold cross validation. All precision P, re-
call R and F1 F results are over the top 10 candi-
date keywords and the micro-averaged results of the
first two datasets are shown in Table 3. The CTI-
based algorithm works better than KEA on Wiki20
but slightly worse on citeulike180. We argue that
the reason might be two-fold. First, CTI does not
use any inter-document or corpus information while
KEA learns from the corpus. As such, CTI might not
perform as well as supervised learning methods for a
domain dependent large corpus. Second, the labeled
keywords in Wiki20 are all Wikipedia titles while
those in citeulike are general tags labeled by volun-
tary web users. CTI would give more preference to
Wikipedia titles since their featured context set re-
turned from Wikipedia is more semantically repre-
sentative than other non-Wikipedia title words.

*http://www.nzdl.org/Kea/



Dataset #Books #Words #Contexts | Main domains
Gutenberg 55 7,164,463 301,581 History, Art, Psychology, Philosophy, Literature, Zoology
Open Book 213 22,279,530 | 1,135,919 | Computer Science, Engineering, Information Science

Table 5: Datasets for book index generation evaluation

The SemEval2010 dataset contains a set of 284
scientific papers with 15 keyphrases assigned by
readers and authors. 144 of them are selected as
training set while the other 100 are for testing. A
comparison of CTI to the results from TFIDF and
the best reported results HUMB (Lopez and Romary,
2010) is shown in Table 4. It achieves 19.8% by
micro-averaged F1 score, ranking 11th out of the 19
systems submitted to the competition (Kim et al.,
2010). However, by adding the structural features
used by HUMB into CTI, we can improve the per-
formance by around 6%, making our results close
to that of HUMB. The structural information is en-
coded as weights for context that is located in ti-
tle, abstract, section titles and general content. Each
weight can be regarded as the prior probability that a
keyword will appear in the corresponding location,
whose value can be set according to the fraction of
the number of keyword occurrences of this type of
location with respect to the number of all keyword
occurrences in the entire training set. Here they are
set to be 0.3, 0.4, 0.25, and 0.05.

4.3 Back-of-the-book Index Generation

A back-of-the-book index (or book index) is a col-
lection of words or phrases, often alphabetically ar-
ranged as an index, created to give readers impor-
tant location of important information in a given
book. Usually indexing is done by freelancers hired
by authors or publishers, namely professional in-
dexers °>. Csomai and Mihalcea first evaluated the
performance of different informativeness measure-
ments for selecting book index terms (2007) and
then investigated automatic book index generation
in a supervised learning framework (2008) using
syntactic features, linguistical features, encyclope-
dic features, etc., as a keyword extraction problem
rather than building a actual book index.

A set of keywords is not a back-of-the-book in-
dex. What really matters for such an index is that

>http://www.asindexing.org/
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an index term or phrase points to its proper loca-
tion in the text. For example, in “pattern recognition
and machine learning” by Bishop, “hidden Markov
model” appears in more than 20 pages while the
actual index entry has only 2 pages as its locators.
Thus the actual problem is to identify a index term
with its context. As such, learning a robust and ef-
ficient model for real book indexes is challenging.
First, books from different domains vary in vocabu-
lary composition and structure style, requiring vari-
ous indexing specialties. There are different index-
ing guides for medicine (Wyman, 1999), psychol-
ogy (Hornyak, 2002), and law (Kendrick and Zafran,
2001). Second, book indexing is a highly subjec-
tive work and indexes of different books are always
created by different professional indexers who have
their own preferences and background (Diodato and
Gandt, 1991; Diodato, 1994). Third, the training
set is extremely unbalanced. As we found in our
dataset, the index size is only 0.42% of the length of
book on average. All these motivate us to explore the
automatic creation of index terms that are aware of
the context at the term’s locations (locators). To do
so we propose the following efficient training-free
and domain independent approach:

1. For each context ¢; in a book, compute its
weight w; based on structural features

2. For each candidate term ¢ in c¢;, calculate
I(t, c;) using Wikipedia based implementation

3. Select term-context pairs with the highest w; *
I(t, ¢;) as index entries

The weight in step 1 represents the relative im-
portance of a context in a book. w(c) = 1 —
W measures the weight based on the
normalized distance from the context to its direct
chapter or sub-chapter title, where ¢;4(c) denotes the
id of context ¢, title. the title of context c and Ny,
the number of contexts under title.. To select candi-

date terms, we first filter the improbable index terms



based on POS patterns using the Standard POS Tag-
ger (Toutanova et al., 2003). We then select multi-
word keyphrases based on Pointwise Mutual Infor-
mation (PMI) (Church and Hanks, 1990), which was
shown to be the best metric to measure word associ-
ations (Terra and Clarke, 2003).

To evaluate our back-of-the-book index gener-
ation method, we conduct extensive experiments
on books in various domains, from the Gutenberg
dataset and the open book dataset described in Ta-
ble 5. The first one was created by (Csomai and
Mihalcea, 2006), containing 55 free books collected
from Gutenburg®. Since the dataset does not pro-
vide the locators of index terms, we can only serve
the evaluation as a keyword extraction task. The sec-
ond dataset was collected from CiteSeer repository,
most of which are in computer science and engineer-
ing. We extracted the paged body text and the back
index using Pdfbox’. Having each index term asso-
ciated with its locators (page numbers), we can per-
form an evaluation for different methods, not based
solely on keyword extraction.

We first compare CTI with other metrics on both
datasets for keywords extraction since all other met-
rics are context-oblivious. CTI selects index terms
based on the sum of a term’s CTI scores over all its
contexts, the same as the algorithm used in Section
4.2. The results are shown in Table 6, where the in-
dex size = n indicates the number of output terms is
n times of the true book index size for each book.
The scores are the average recall over a dataset.
The CTI outperforms all other 7 metrics in the two
datasets as the output index size increases. More-
over, results show that TF and TFIDF are better than
RIDF in identifying book index terms, which seems
contradictory to previous findings (Church and Gale,
1995). A possible reason is that a book is much
longer than a regular document thus enhancing T'F'
as a better indicator of keywords but weakening the
role of I DF'. We believe this is why Variance, Gain,
and Burstiness, which relies on DF’, are less effec-
tive here. Wikipedia keyphraseness (Csomai and Mi-
halcea, 2008) can only find a small fraction of index
terms because it emphasizes Wikipedia titles that
have high in-degree in hyper-link network formed

Swww.gutenberg.org/
"pdfbox.apache.org/
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(c) SLD (d) size of featured context set

Figure 1: Results for book index generation

by Wikipedia terms. However, a book index covers
much broader terms not titled in Wikipedia.

We then compare with three baselines TFIDF,
KEA, and SLD (supervised learning using decision
tree in Csomai’s (2008)) on the second dataset. For
SLD, we use all the features except the discourse
comprehension based ones which were too com-
plicate to implement. We choose a decision tree
because its training is much faster than the other
two models while its performance is quite close to
the best. We follow Csomai’s setting to choose
90%(192) books for training and the other 10%(21)
for test. We set two strategies to make the baselines
context-aware. First, we select the page of a term’s
first occurrence as its locator, denoted by “+FQO” in
Figure 1. Second, we apply the context weight to
them, denoted by “+CW”. “Cl-Indexer” denotes our
method. The results are shown in Figure 1a, 1b and
1c respectively. For all the three baselines, adding
context weight gives better performance than us-
ing the simple first occurrence guess, especially for
TFIDF. KEA benefits least from the context weights,
suggesting its first occurrence and node degree fea-
tures play a similar role as the context weight fea-
tures. SLD outperforms TFIDF and KEA under
both strategies probably because of the new fea-
tures of POS pattern and Wikipedia keyphraseness.
“SLD+CW?” is the closest to ours. Finally, we show
in Figure 1d that increasing the size of featured con-
text set for CTI from 5 to 20 can slightly improve



Dataset Open book dataset Gutenberg dataset

Index size 1 \ 2 \ 3 \ 4 \ 5 \ 1 \ 2 \ 3 \ 4 \ 5
Variance 24 | 48 | 75 | 104 | 134 | 1.1 | 29 | 53 | 80 | 11.0
Gain 29 | 64 | 102|143 | 182 | 49 | 9.0 14 | 18.6 | 23.0
Wikipedia keyphraseness | 5.3 95 | 135|164 | 205 | 92 | 14.1 | 185 | 21.4 | 243
Burstiness 6.0 | 114 | 16.6 | 21.4 | 258 | 10.0 | 15.8 | 20.2 | 23.1 | 26.2
RIDF 86 | 145|195 ] 239 | 28.0| 104 | 159 | 20.1 | 23.2 | 26.3
TF 9.8 | 169 | 233 | 29.0 | 31.7 | 104 | 17.6 | 23.5 | 28.1 | 30.7
TFIDF 103 | 17.3 | 23.8 | 293 | 33.6 | 11.8 | 199 | 24.7 | 289 | 329
CTI 124 | 19.2 | 25.1 | 31.5 | 355 | 149 | 22.3 | 269 | 29.3 | 34.5

Table 6: Average recall(%) comparisons as the output index size increases

performance in different index size settings.

4.4 Discussion

The three applications are (incrementally) designed
for different goals. The first is a toy applica-
tion to show the potential capability of this ap-
proach, regardless of syntactic or statistical informa-
tion. Clearly, there are simple heuristics that can
work very well for this task, e.g. the first term
of the context. TF or TFIDF also performs quite
well. We can rewrite each context (by reordering the
terms, changing sentence structures, or substituting
the core terms with pronouns) to make them inef-
fective. However, this will not effect our method,
because what it essentially measures is a term’s in-
formativeness among a list of terms appearing in the
same context. However, for keyword extraction, a
topic with a rich literature, to the best of our knowl-
edge, has no publicly available large scale datasets,
which makes SemEval2010 the best available. We
believe our application on back-of-the-book index
generation showed how CTI can scale real world
large corpora and will scale to millions of books
since each book can be processed separately.

Based on the applications we explored, we can
see that the practical utility of CTI used alone could
be limited, especially for context-oblivious tasks.
It seems reasonable that this method does not out-
perform supervised learning methods designed for
keyword extraction. However, our method shows
what simple but elegant methods can achieve with-
out the overhead of machine learning, especially for
context-aware scenarios such as finding book index
terms.
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5 Conclusion and Future Work

We developed a new web knowledge based method
for encoding informativeness of terms within a unit
of discourse. It is totally feature-free, corpus-free,
easy to implement, and inherently parallelizable.
Three typical applications on text snippets, scien-
tific papers and non-fiction books show its effec-
tiveness. The segmentation of context, the size of
featured context set, the semantic relatedness met-
ric k, and the knowledge base might more or less
affect the final performance of CTI in terms of ac-
curacy or efficiency. For all applications, we treat a
paragraph as an individual context, which is not nec-
essary a complete discourse unit. However, it may
not be fair to set the same number for all context
terms. In addition, selection of semantic relatedness
and knowledge bases need further investigation. The
Wikipedia-based implementation might be a good
choice for the definitional snippets, scientific arti-
cles and text books since they are all “educational”
resources sharing a similar concept space. However,
itis an open question as whether it works for corpora
such as tweets, online reviews, and forum posts.

Based on the proposed methods and encouraging
results, it would be interesting to build an online in-
dexing tool which automatically finds informative
terms in generic text and generates a back-of-the-
book index for a sets of papers, books, theses and
other collections.
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