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Abstract

There have been many recent investigations
into methods to tune SMT systems using large
numbers of sparse features. However, there
have not been nearly so many examples of
helpful sparse features, especially for phrase-
based systems. We use sparse features to ad-
dress reordering, which is often considered a
weak point of phrase-based translation. Using
a hierarchical reordering model as our base-
line, we show that simple features coupling
phrase orientation to frequent words or word-
clusters can improve translation quality, with
boosts of up to 1.2 BLEU points in Chinese-
English and 1.8 in Arabic-English. We com-
pare this solution to a more traditional max-
imum entropy approach, where a probability
model with similar features is trained on word-
aligned bitext. We show that sparse decoder
features outperform maximum entropy hand-
ily, indicating that there are major advantages
to optimizing reordering features directly for
BLEU with the decoder in the loop.

1 Introduction

With the growing adoption of tuning algorithms that
can handle thousands of features (Chiang et al.,
2008; Hopkins and May, 2011), SMT system de-
signers now face a choice when incorporating new
ideas into their translation models. Maximum like-
lihood models can be estimated from large word-
aligned bitexts, creating a small number of highly
informative decoder features; or the same ideas can
be incorporated into the decoder’s linear model di-
rectly. There are trade-offs to each approach. Max-
imum likelihood models can be estimated from mil-
lions of sentences of bitext, but optimize a mis-
matched objective, predicting events observed in

word aligned bitext instead of optimizing translation
quality. Sparse decoder features have the opposite
problem; with the decoder in the loop, we can only
tune on small development sets,1 but a translation
error metric directly informs training.

We investigate this trade-off in the context of re-
ordering models for phrase-based decoding. Start-
ing with the intuition that most lexicalized reorder-
ing models do not smooth their orientation distri-
butions intelligently for low-frequency phrase-pairs,
we design features that track the first and last words
(or clusters) of the phrases in a pair. These features
are incorporated into a maximum entropy reorder-
ing model, as well as sparse decoder features, to see
which approach best complements the now-standard
relative-frequency lexicalized reordering model.

We also view our work as an example of strong
sparse features for phrase-based translation. Fea-
tures from hierarchical and syntax-based transla-
tion (Chiang et al., 2009) do not easily transfer
to the phrase-based paradigm, and most work that
has looked at large feature counts in the context of
phrase-based translation has focused on the learn-
ing method, and not the features themselves (Hop-
kins and May, 2011; Cherry and Foster, 2012; Gim-
pel and Smith, 2012). We show that by targeting
reordering, large gains can be made with relatively
simple features.

2 Background

Phrase-based machine translation constructs its tar-
get sentence from left-to-right, with each translation
operation selecting a source phrase and appending
its translation to the growing target sentence, until

1Some systems tune for BLEU on much larger sets (Simi-
aner et al., 2012; He and Deng, 2012), but these require excep-
tional commitments of resources and time.
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all source words have been covered exactly once.
The first phrase-based translation systems applied
only a distortion penalty to model reordering (Koehn
et al., 2003; Och and Ney, 2004). Any devia-
tion from monotone translation is penalized, with
a single linear weight determining how quickly the
penalty grows.

2.1 Lexicalized Reordering
Implemented in a number of phrase-based decoders,
the lexicalized reordering model (RM) uses word-
aligned data to determine how each phrase-pair
tends to be reordered during translation (Tillmann,
2004; Koehn et al., 2005; Koehn et al., 2007).

The core idea in this RM is to divide reordering
events into three orientations that can be easily deter-
mined both during decoding and from word-aligned
data. The orientations can be described in terms of
the previously translated source phrase (prev) and
the next source phrase to be translated (next):

• Monotone (M): next immediately follows prev.
• Swap (S): prev immediately follows next.
• Discontinuous (D): next and prev are not adja-

cent in the source.

Note that prev and next can be defined for construct-
ing a translation from left-to-right or from right-to-
left. Most decoders incorporate RMs for both direc-
tions; our discussion will generally only cover left-
to-right, with the right-to-left case being implicit and
symmetrical.

As the decoder extends its hypothesis by trans-
lating a source phrase, we can assess the implied
orientations to determine if the resulting reordering
makes sense. This is done using the probability of
an orientation given the phrase pair pp = [src, tgt ]
extending the hypothesis:2

P (o|pp) ≈ cnt(o, pp)∑
o cnt(o, pp)

(1)

where o ∈ {M,S,D}, cnt uses simple heuristics on
word-alignments to count phrase pairs and their ori-
entations, and the ≈ symbol allows for smoothing.
The log of this probability is easily folded into the
linear models that guide modern decoders. Better

2pp corresponds to the phrase pair translating next for the
left-to-right model, and prev for right-to-left.

performance is achieved by giving each orientation
its own log-linear weight (Koehn et al., 2005).

2.2 Hierarchical Reordering
Introduced by Galley and Manning (2008), the hier-
archical reordering model (HRM) also tracks statis-
tics over orientations, but attempts to increase the
consistency of orientation assignments. To do so,
they remove the emphasis on the previously trans-
lated phrase (prev ), and instead determine orienta-
tion using a compact representation of the full trans-
lation history, as represented by a shift-reduce stack.
Each source span is shifted onto the stack as it is
translated; if the new top is adjacent to the span be-
low it, then a reduction merges the two.

Orientations are determined in terms of the top
of this stack,3 rather than the previously translated
phrase prev. The resulting orientations are more
consistent across different phrasal decompositions
of the same translation, and more consistent with the
statistics extracted from word aligned data. This re-
sults in a general improvement in performance. We
assume the HRM as our baseline reordering model.

It is important to note that although our maximum
entropy and sparse reordering solutions build on the
HRM, the features in this paper can still be applied
without a shift-reduce stack, by using the previously
translated phrase where we use the top of the stack.

2.3 Maximum Entropy Reordering
One frequent observation regarding both the RM and
the HRM is that the statistics used to grade orien-
tations are very sparse. Each orientation predic-
tion P (o|pp) is conditioned on an entire phrase pair.
Koehn et al. (2005) experiment with alternatives,
such as conditioning on only the source or the tar-
get, but using the entire pair generally performs best.
The vast majority of phrase pairs found in bitext with
standard extraction heuristics are singletons (more
than 92% in our Arabic-English bitext), and the cor-
responding P (o|pp) estimates are based on a single
observation. Because of these heavy tails, there have
been several attempts to use maximum entropy to
create more flexible distributions.

One straight-forward way to do so is to continue
predicting orientations on phrases, but to use maxi-

3In the case of the right-to-left model, an approximation of
the top of the stack is used instead.
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mum entropy to consider features of the phrase pair.
This is the approach taken by Xiong et al. (2006);
their maximum entropy model chooses between M
and S orientations, which are the only two options
available in their chart-based ITG decoder. Nguyen
et al. (2009) build a similar model for a phrase-based
HRM, using syntactic heads and constituent labels
to create a rich feature set. They show gains over an
HRM baseline, albeit on a small training set.

A related approach is to build a reordering model
over words, which is evaluated at phrase bound-
aries at decoding time. Zens and Ney (2006) pro-
pose one such model, with jumps between words
binned very coarsely according to their direction
and distance, testing models that differentiate only
left jumps from right, as well as the cross-product
of {left, right} × {adjacent, discontinuous}. Their
features consider word identity and automatically-
induced clusters. Green et al. (2010) present a sim-
ilar approach, with finer-grained distance bins, us-
ing word-identity and part-of-speech for features.
Yahyaei and Monz (2010) also predict distance bins,
but use much more context, opting to look at both
sides of a reordering jump; they also experiment
with hard constraints based on their model.

Tracking word-level reordering simplifies the ex-
traction of complex models from word alignments;
however, it is not clear if it is possible to enhance
a word reordering model with the stack-based his-
tories used by HRMs. In this work, we construct a
phrase orientation maximum entropy model.

3 Methods

Our primary contribution is a comparison between
the standard HRM and two feature-based alterna-
tives. Since a major motivating concern is smooth-
ing, we begin with a detailed description of our
HRM baseline, followed by our maximum entropy
HRM and our novel sparse reordering features.

3.1 Relative Frequency Model

The standard HRM uses relative frequencies to build
smoothed maximum likelihood estimates of orien-
tation probabilities. Orientation counts for phrase
pairs are collected from bitext, using the method de-
scribed by Galley and Manning (2008). The proba-
bility model P (o|pp = [src, tgt ]) is estimated using

recursive MAP smoothing:

P (o|pp) =
cnt(o, pp) + αsPs(o|src) + αtPt(o|tgt)∑

o cnt(o, pp) + αs + αt

Ps(o|src) =

∑
tgt cnt(o, src, tgt) + αgPg(o)∑

o,tgt cnt(o, src, tgt) + αg

Pt(o|tgt) =

∑
src cnt(o, src, tgt) + αgPg(o)∑

o,src cnt(o, src, tgt) + αg

Pg(o) =

∑
pp cnt(o, pp) + αu/3∑
o,pp cnt(o, pp) + αu

(2)

where the various α parameters can be tuned em-
pirically. In practice, the model is not particularly
sensitive to these parameters.4

3.2 Maximum Entropy Model

Next, we describe our implementation of a maxi-
mum entropy HRM. Our goal with this system is
to benefit from modeling features of a phrase pair,
while keeping the system architecture as simple and
replicable as possible. To simplify training, we learn
our model from the same orientation counts that
power the relative-frequency HRM. To simplify de-
coder integration, we limit our feature space to in-
formation from a single phrase pair.

In a maximum entropy model, the probability of
an orientation o given a phrase pair pp is given by a
log-linear model:

P (o|pp) =
exp(w · f(o, pp))∑
o′ exp(w · f(o′, pp))

(3)

where f(o, pp) returns features of a phrase-pair, and
w is the learned weight vector. We build two models,
one for left-to-right translation, and one for right-
to-left. As with the relative frequency model, we
limit our discussion to the left-to-right model, with
the other direction being symmetrical.

We construct a training example for each unique
phrase-pair type (as opposed to token) found in our
bitext. We use the orientation counts observed for
a phrase pair ppi to construct its example weight:
ci =

∑
o cnt(o, ppi). The same counts are used to

construct a target distribution P̃ (o|ppi), using the

4We use a historically good setting of α∗ = 10 throughout.
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Base:
bias; src ∧ tgt ; src; tgt
src.first ; src.last ; tgt .first ; tgt .last
clust50(src.first); clust50(src.last)
clust50(tgt .first); clust50(tgt .last)

× Orientation {M,S,D}

Table 1: Features for the Maximum Entropy HRM.

unsmoothed relative frequency estimate in Equa-
tion 1. We then train our weight vector to minimize:

1

2
||w||2+C

∑
i

ci

[
log

∑
o exp (w · f(o, ppi))

−
∑

o P̃ (o|ppi) (w · f(o, ppi))

]
(4)

where C is a hyper-parameter that controls the
amount of emphasis placed on minimizing loss ver-
sus regularizing w.5 Note that this objective is a de-
parture from previous work, which tends to create an
example for each phrase-pair token, effectively as-
signing P̃ (o|pp) = 1 to a single gold-standard ori-
entation. Instead, our model attempts to reproduce
the target distribution P̃ for the entire type, where
the penalty ci for missing this target is determined
by the frequency of the phrase pair. The resulting
model will tend to match unsmoothed relative fre-
quency estimates for very frequent phrase pairs, and
will smooth intelligently using features for less fre-
quent phrase pairs.

All of the features returned by f(o|pp) are derived
from the phrase pair pp = [src, tgt ], with the goal
of describing the phrase pair at a variety of granu-
larities. Our features are described in Table 1, using
the following notation: the operators first and last
return the first and last words of phrases,6 while the
operator clust50 maps a word onto its corresponding
cluster from an automatically-induced, determinis-
tic 50-word clustering provided by mkcls (Och,
1999). Our use of words at the corners of phrases
(as opposed to the syntactic head, or the last aligned
word) follows Xiong et al. (2006), while our use of
word clusters follows Zens and Ney (2006). Each
feature has the orientation o appended onto it.

To help scale and to encourage smoothing, we
only allow features that occur in at least 5 phrase pair

5Preliminary experiments indicated that the model is robust
to the choice of C; we use C = 0.1 throughout.

6first = last for a single-word phrase

Base:
src.first ; src.last ; tgt .first ; tgt .last
top.src.first ; top.src.last ; top.tgt .last
between words

× Representation
{80-words, 50-clusters, 20-clusters}
× Orientation
{M,S,D}

Table 2: Features for the Sparse Feature HRM.

tokens. Furthermore, to deal with the huge number
of extracted phrase pairs (our Arabic system extracts
roughly 88M distinct phrase pair types), we subsam-
ple pairs that have been observed only once, keeping
only 10% of them. This reduces the number of train-
ing examples from 88M to 19M.

3.3 Sparse Reordering Features
The maximum entropy approach uses features to
model the distribution of orientations found in word
alignments. Alternatively, a number of recent tun-
ing methods, such as MIRA (Chiang et al., 2008)
or PRO (Hopkins and May, 2011), can handle thou-
sands of features. These could be used to tune simi-
lar features to maximize BLEU directly.

Given the appropriate tuning architecture, the
sparse feature approach is actually simpler in many
ways than the maximum entropy approach. There
is no need to scale to millions of training exam-
ples, and there is no question of how to integrate the
trained model into the decoder. Instead, one simply
implements the desired features in the decoder’s fea-
ture API and then tunes as normal. The challenge is
to design features so that the model can be learned
from small tuning sets.

The standard approach for sparse feature design
in SMT is to lexicalize only on extremely fre-
quent words, such as the top-80 words from each
language (Chiang et al., 2009; Hopkins and May,
2011). We take that approach here, but we also
use deterministic clusters to represent words from
both languages, as provided by mkcls. These clus-
ters mirror parts-of-speech quite effectively (Blun-
som and Cohn, 2011), without requiring linguistic
resources. They should provide useful generaliza-
tion for reordering decisions. Inspired by recent suc-
cesses in semi-supervised learning (Koo et al., 2008;
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corpus sentences words (ar) words (en)
train 1,490,514 46,403,734 47,109,486
dev 1,663 45,243 50,550
mt08 1,360 45,002 51,341
mt09 1,313 40,684 46,813

Table 3: Arabic-English Corpus. For English dev and test
sets, word counts are averaged across 4 references.

Lin and Wu, 2009), we cluster at two granularities
(20 clusters and 50 clusters), and allow the discrim-
inative tuner to determine how to best employ the
various representations.

We add the sparse features in Table 2 to our
decoder to help assess reordering decisions. As
with the maximum entropy model, orientation is ap-
pended to each feature. Furthermore, each feature
has a different version for each of our three word
representations. Like the maximum entropy model,
we describe the phrase pair being added to the hy-
pothesis in terms of the first and last words of its
phrases. Unlike the maximum entropy model, we
make no attempt to use entire phrases or phrase-
pairs as features, as they would be far too sparse for
our small tuning sets. However, due to the sparse
features’ direct decoder integration, we have access
to a fair amount of extra context. We represent the
current top of the stack (top) using its first and last
source words (accessible from the HRM stack), and
its last target word (accessible using language model
context). Furthermore, for discontinuous (D) orien-
tations, we can include an indicator for each source
word between the current top of the stack and the
phrase being added.

Because the sparse feature HRM has no access
to phrase-pair or monolingual phrase features, and
because it completely ignores our large supply of
word-aligned training data, we view it as compli-
mentary to the relative frequency HRM. We always
include both when tuning and decoding. Further-
more, we only include sparse features in the left-
to-right translation direction, as the features already
consider context (top) as well as the next phrase.

4 Experimental Design

We test our reordering models in Arabic to English
and Chinese to English translation tasks. Both sys-
tems are trained on data from the NIST 2012 MT

corpus sentences words (ch) words (en)
train 3,505,529 65,917,610 69,453,695
dev 1,894 48,384 53,584
mt06 1,664 39,694 47,143
mt08 1,357 33,701 40,893

Table 4: Chinese-English Corpus. For English dev and
test sets, word counts are averaged across 4 references.

evaluation; the Arabic system is summarized in Ta-
ble 3 and the Chinese in Table 4. The Arabic sys-
tem’s development set is the NIST mt06 test set, and
its test sets are mt08 and mt09. The Chinese sys-
tem’s development set is taken from the NIST mt05
evaluation set, augmented with some material re-
served from our NIST training corpora in order to
better cover newsgroup and weblog domains. Its test
sets are mt06 and mt08.

4.1 Baseline System

For both language pairs, word alignment is per-
formed by GIZA++ (Och and Ney, 2003), with
5 iterations of Model 1, HMM, Model 3 and
Model 4. Phrases are extracted with a length limit
of 7 from alignments symmetrized using grow-
diag-final-and (Koehn et al., 2003). Conditional
phrase probabilities in both directions are estimated
from relative frequencies, and from lexical probabil-
ities (Zens and Ney, 2004). 4-gram language mod-
els are estimated from the target side of the bitext
with Kneser-Ney smoothing. Relative frequency
and maximum entropy RMs are represented with six
features, with separate weights for M, S and D in
both directions (Koehn et al., 2007). HRM orien-
tations are determined using an unrestricted shift-
reduce parser (Cherry et al., 2012). We also em-
ploy a standard distortion penalty incorporating the
minimum completion cost described by Moore and
Quirk (2007). Our multi-stack phrase-based decoder
is quite similar to Moses (Koehn et al., 2007).

For all systems, parameters are tuned with a
batch-lattice variant of hope-fear MIRA (Chiang et
al., 2008; Cherry and Foster, 2012). Preliminary ex-
periments suggested that the sparse reordering fea-
tures have a larger impact when tuned with lattices
as opposed to n-best lists.
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4.2 Evaluation

We report lower-cased BLEU (Papineni et al., 2002),
evaluated using the same English tokenization used
in training. For our primary results, we perform ran-
dom replications of parameter tuning, as suggested
by Clark et al. (2011). Each replication uses a dif-
ferent random seed to determine the order in which
MIRA visits tuning sentences. We test for signifi-
cance using Clark et al.’s MultEval tool, which uses
a stratified approximate randomization test to ac-
count for multiple replications.

5 Results

We begin with a comparison of the reordering mod-
els described in this paper: the hierarchical reorder-
ing model (HRM), the maximum entropy HRM
(Maxent HRM) and our sparse reordering features
(Sparse HRM). Results are shown in Table 5.

Our three primary points of comparison have been
tested with 5 replications. We report BLEU scores
averaged across replications as well as standard de-
viations, which indicate optimizer stability. We also
provide unreplicated results for two systems, one us-
ing only the distortion penalty (No RM), and one
using a non-hierarchical reordering model (RM).
These demonstrate that our baseline already has
quite mature reordering capabilities.

The Maxent HRM has very little effect on trans-
lation performance. We found this surprising; we
expected large gains from improving the reorder-
ing distributions of low-frequency phrase-pairs. See
§5.1 for further exploration of this result.

The Sparse HRM, on the other hand, performs
very well. It produces significant BLEU score im-
provements on all test sets, with improvements rang-
ing between 1 and 1.8 BLEU points. Even with
millions of training sentences for our HRM, there
is a large benefit in building HRM-like features that
are tuned to optimize the decoder’s BLEU score on
small tuning sets. We examine the impact of subsets
of these features in §5.2.

The test sets’ standard deviations increase from
0.1 under the baseline to 0.3 under the Sparse HRM
for Chinese-English, indicating a decrease in opti-
mizer stability. With so many features trained on
so few sentences, this is not necessarily surprising.
Fortunately, looking at the actual replications (not

Base:
src.first ; src.last ; tgt .first ; tgt .last

× Representation
{80-words, 50-clusters}
× Orientation
{M,S,D}

Table 6: Intersection of Maxent & Sparse HRM features.

shown), we confirmed that if a replication produced
low scores in one test, it also produced low scores
in the other. This means that one should be able to
outperform the average case by using a dev-test set
to select among replications.

5.1 Maximum Entropy Analysis
The next two sections examine our two solutions
in detail, starting with the Maxent HRM. To avoid
excessive demands on our computing resources, all
experiments report tuning with a single replication
with the same seed. We select Arabic-English for
our analysis, as this pair has high optimizer stability
and fast decoding speeds.

Why does the Maxent HRM help so little? We
begin by investigating some design decisions. One
possibility is that our subsampling of frequency-1
training pairs (see §3.2) harmed performance. To
test the impact of this decision, we train a Max-
ent HRM without subsampling, taking substantially
longer. The resulting BLEU scores (not shown) are
well within the projected standard deviations for op-
timizer instability (0.1 BLEU from Table 5). This
indicates that subsampling is not the problem. To
confirm our choice of hyperparameters, we conduct
a grid search over the Maxent HRM’s regulariza-
tion parameter C (see Equation 4), covering the set
{1, 0.1, 0.01, 0.001}, where C = 0.1 is the value
used throughout this paper. Again, the resulting
BLEU scores (not shown) are all within 0.1 of the
means reported in Table 5.

Another possibility is that the Maxent HRM has
an inferior feature set. We selected features for our
Maxent and Sparse HRMs to be similar, but also to
play to the strengths of each method. To level the
playing field, we train and test both systems with the
feature set shown in Table 6, which is the intersec-
tion of the features from Tables 1 and 2. The result-
ing average BLEU scores are shown in Table 7. With
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Chinese-English Arabic-English
Method n tune std mt06 std mt08 std tune std mt08 std mt09 std
No RM 1 24.3 – 32.0 – 26.4 – 41.7 – 41.4 – 44.1 –
RM 1 25.2 – 33.3 – 27.4 – 42.4 – 42.6 – 45.2 –
HRM (baseline) 5 25.6 0.0 34.2 0.1 28.0 0.1 42.9 0.0 42.9 0.1 45.5 0.0
HRM + Maxent HRM 5 25.6 0.0 34.3 0.1 28.1 0.1 43.0 0.0 42.9 0.0 45.6 0.1
HRM + Sparse HRM 5 28.0 0.1 35.4 0.3 29.0 0.3 47.0 0.1 44.6 0.1 47.3 0.1

Table 5: Comparing reordering methods according to BLEU score. n indicates the number of tuning replications,
while standard deviations (std) indicate optimizer stability. Test scores that are significantly higher (p < 0.01) than
the HRM baseline are highlighted in bold.

Method −HRM +HRM
HRM (baseline) – 44.2

Original
Maxent HRM 44.2 44.2
Sparse HRM 45.4 46.0

Intersection
Maxent HRM 43.8 44.2
Sparse HRM 45.2 46.0

Table 7: Arabic-English BLEU scores with each system’s
original feature set versus the intersection of the two fea-
ture sets, with and without the relative frequency HRM.
BLEU is averaged across mt08 and mt09.

the baseline HRM included, performance does not
change for either system with the intersected feature
set. Sparse features continue to help, while the max-
imum entropy model does not. Without the HRM,
both systems degrade under the intersection, though
the Sparse HRM still improves over the baseline.

Finally, we examine Maxent HRM performance
as a function of the amount of word-aligned train-
ing data. To do so, we hold all aspects of our sys-
tem constant, except for the amount of bitext used to
train either the baseline HRM or the Maxent HRM.
Importantly, the phrase table always uses the com-
plete bitext. For our reordering training set, we hold
out the final two thousand sentences of bitext to cal-
culate perplexity. This measures the model’s sur-
prise at reordering events drawn from previously un-
seen alignments; lower values are better. We pro-
ceed to subsample sentence pairs from the remain-
ing bitext, in order to produce a series of training
bitexts of increasing size. We subsample with the
probability of accepting a sentence pair, Pa, set to
{0.001, 0.01, 0.1, 1}. It is important to not confuse
this subsampling of sentence pairs with the sub-
sampling of low-frequency phrase pairs (see §3.2),

which is still carried out by the Maxent HRM for
each training scenario.

Figure 1 shows how BLEU (averaged across both
test sets) and perplexity vary as training data in-
creases from 1.5K sentences to the full 1.5M. At
Pa < 0.1, corresponding to less than 150K sen-
tences, the maximum entropy model actually makes
a substantial difference in terms of BLEU. However,
these deltas narrow to nothing as we reach millions
of training sentences. This is consistent with the re-
sults of Nguyen et al. (2009), who report that maxi-
mum entropy reordering outperforms a similar base-
line, but using only 50K sentence pairs.

A related observation is that held-out perplexity
does not seem to predict BLEU in any useful way.
In particular, perplexity does not predict that the two
systems will become similar as data grows, nor does
it predict that maxent’s performance will level off.
Predicting the orientations of unseen alignments is
not the same task as predicting the orientation for a
phrase during translation. We suspect that perplexity
places too much emphasis on rare or previously un-
seen phrase pairs, due to phrase extraction’s heavy
tails. Preliminary attempts to correct for this us-
ing absolute discounting on the test counts did not
resolve these issues. Unfortunately, in maximizing
(regularized or smoothed) likelihood, both maxent
and relative frequency HRMs are chasing the per-
plexity objective, not the BLEU objective.

5.2 Sparse Feature Analysis

The results in Table 7 from §5.1 already provide
us with a number of insights regarding the Sparse
HRM. First, note that the intersected feature set uses
only information found within a single phrase. The
fact that the Sparse HRM performs so well with
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Figure 1: Learning curves for Relative Frequency and Maximum Entropy reordering models on Arabic-English.

Feature Group Count BLEU
No Sparse HRM 0 44.2
Between 312 44.4
Stack 1404 45.2
Phrase 1872 45.9
20 Clusters 506 45.4
50 Clusters 1196 45.8
80 Words 1886 45.8
Full Sparse HRM 3588 46.0

Table 8: Versions of the Sparse HRM built using or-
ganized subsets of the complete feature set for Arabic-
English. Count is the number of distinct features, while
BLEU is averaged over mt08 and mt09.

intersected features indicates that modeling context
outside a phrase is not essential for strong perfor-
mance. Furthermore, the −HRM portion of the ta-
ble indicates that the sparse HRM does not require
the baseline HRM to be present in order to outper-
form it. This is remarkable when one considers that
the Sparse HRM uses less than 4k features to model
phrase orientations, compared to the 530M proba-
bilities7 maintained by the baseline HRM’s relative
frequency model.

To determine which feature groups are most im-
portant, we tested the Sparse HRM on Arabic-
English with a number of feature subsets. We report
BLEU scores averaged over both test sets in Table 8.
First, we break our features into three groups accord-
ing to what part of the hypothesis is used to assess
orientation. For each of these location groups, all
forms of word representation (clusters or frequent
words) are employed. The groups consist of Be-

788.4M phrase pairs × 3 orientations (M, S and D) × 2
translation directions (left-to-right and right-to-left).

tween: the words between the top of the stack and
the phrase to be added; Stack: words describing
the current top of the stack; and Phrase: words de-
scribing the phrase pair being added to the hypothe-
sis. Each group was tested alone to measure its use-
fulness. This results in a clear hierarchy, with the
phrase features being the most useful (nearly as use-
ful as the complete system), and the between fea-
tures being the least. Second, we break our features
into three groups according to how words are rep-
resented. For each of these representation groups,
all location groups (Between, Stack and Phrase) are
employed. The groups are quite intuitive: 20 Clus-
ters, 50 Clusters or 80 Words. The differences be-
tween representations are much less dramatic than
the location groups. All representations perform
well on their own, with the finer-grained ones per-
forming better. Including multiple representations
provides a slight boost, but these experiments sug-
gest that a leaner model could certainly drop one or
two representations with little impact.

In its current implementation, the Sparse HRM is
roughly 4 times slower than the baseline decoder.
Our sparse feature infrastructure is designed for flex-
ibility, not speed. To affect reordering, each sparse
feature template is re-applied with each hypothesis
extension. However, the intersected feature set from
§5.1 is only 2 times slower, and could be made faster
still. That feature set uses only within-phrase fea-
tures to asses orientations; therefore, the total weight
for each orientation for each phrase-pair could be
pre-calculated, making its cost comparable to the
baseline.
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Chinese-English tune mt06 mt08
Base 27.7 39.9 33.7
+Sparse HRM 29.2 41.0 34.1

Arabic-English tune mt08 mt09
Base 49.6 49.1 51.6
+Sparse HRM 51.7 49.9 52.2

Table 9: The effect of Sparse HRMs on complex systems.

5.3 Impact on Competition-Grade SMT

Thus far, we have employed a baseline that has been
designed for both translation quality and replicabil-
ity. We now investigate the impact of our Sparse
HRM on a far more complex baseline: our internal
system used for MT competitions such as NIST.

The Arabic system uses roughly the same bilin-
gual data as our original baseline, but also includes
a 5-gram language model learned from the English
Gigaword. The Chinese system adds the UN bitext
as well as the English Gigaword. Both systems make
heavy use of linear mixtures to create refined transla-
tion and language models, mixing across sources of
corpora, genre and translation direction (Foster and
Kuhn, 2007; Goutte et al., 2009). They also mix
many different sources of word alignments, with
the system adapting across alignment sources us-
ing either binary indicators or linear mixtures. Im-
portantly, these systems already incorporate thou-
sands of sparse features as described by Hopkins and
May (2011). These provide additional information
for each phrase pair through frequency bins, phrase-
length bins, and indicators for frequent alignment
pairs. Both systems include a standard HRM.

The result of adding the Sparse HRM to these sys-
tems is shown in Table 9. Improvements range from
0.4 to 1.1 BLEU, but importantly, all four test sets
improve. The impact of these reordering features is
reduced slightly in the presence of more carefully
tuned translation and language models, but they re-
main a strong contributor to translation quality.

6 Conclusion

We have shown that sparse reordering features can
improve the quality of phrase-based translations,
even in the presence of lexicalized reordering mod-
els that track the same orientations. We have com-

pared this solution to a maximum entropy model,
which does not improve our HRM baseline. Our
analysis of the maximum entropy solution indicates
that smoothing the orientation estimates is not a ma-
jor concern in the presence of millions of sentences
of bitext. This implies that our sparse features are
achieving their improvement because they optimize
BLEU with the decoder in the loop, side-stepping
the objective mismatch that can occur when train-
ing on word-aligned data. The fact that this is possi-
ble with such small tuning corpora is both surprising
and encouraging.

In the future, we would like to investigate how
to incorporate useful future cost estimates for our
sparse reordering features. Previous work has shown
future distortion penalty estimates to be important
for both translation speed and quality (Moore and
Quirk, 2007; Green et al., 2010), but we have ig-
nored future costs in this work. We would also like
to investigate features inspired by transition-based
parsing, such as features that look further down the
reordering stack. Finally, as there is evidence that
ideas from lexicalized reordering can help hierarchi-
cal phrase-based SMT (Huck et al., 2012), it would
be interesting to explore the use of sparse RMs in
that setting.
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