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Abstract 

We describe MSR SPLAT, a toolkit for lan-

guage analysis that allows easy access to the 

linguistic analysis tools produced by the NLP 

group at Microsoft Research. The tools in-

clude both traditional linguistic analysis tools 

such as part-of-speech taggers, constituency 

and dependency parsers, and more recent de-

velopments such as sentiment detection and 

linguistically valid morphology. As we ex-

pand the tools we develop for our own re-

search, the set of tools available in MSR 

SPLAT will be extended. The toolkit is acces-

sible as a web service, which can be used 

from a broad set of programming languages. 

1 Introduction 

The availability of annotated data sets that have 

become community standards, such as the Penn 

TreeBank (Marcus et al., 1993) and PropBank 

(Palmer et al., 2005), has enabled many research 

institutions to build core natural language pro-

cessing components, including part-of-speech tag-

gers, chunkers, and parsers. There remain many 

differences in how these components are built, re-

sulting in slight but noticeable variation in the 

component output. In experimental settings, it has 

proved sometimes difficult to distinguish between 

improvements contributed by a specific component 

feature from improvements due to using a differ-

ently-trained linguistic component, such as tokeni-

zation. The community recognizes this difficulty, 

and shared task organizers are now providing ac-

companying parses and other analyses of the 

shared task data. For instance, the BioNLP shared 

task organizers have provided output from a num-

ber of parsers
1
, alleviating the need for participat-

ing systems to download and run unfamiliar tools. 

On the other hand, many community members 

provide downloads of NLP tools
2
 to increase ac-

cessibility and replicability of core components.  

Our toolkit is offered in this same spirit. We 

have created well-tested, efficient linguistic tools 

in the course of our research, using commonly 

available resources such as the PTB and PropBank. 

We also have created some tools that are less 

commonly available in the community, for exam-

ple linguistically valid base forms and semantic 

role analyzers. These components are on par with 

other state of the art systems. 

We hope that sharing these tools will enable 

some researchers to carry out their projects without 

having to re-create or download commonly used 

NLP components, or potentially allow researchers 

to compare our results with those of their own 

tools. The further advantage of designing MSR 

SPLAT as a web service is that we can share new 

components on an on-going basis. 

2 Parsing Functionality 

2.1 Constituency Parsing 

                                                           
1 See www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask  for 

the description of other resources made available in addition to 

the shared task data. 
2 See, for example, http://nlp.stanford.edu/software; 

http://www.informatics.sussex.ac.uk/research/groups/nlp/rasp; 

http://incubator.apache.org/opennlp 
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The syntactic parser in MSR SPLAT attempts to 

reconstruct a parse tree according the Penn Tree-

Bank specification (Marcus et al., 1993). This rep-

resentation captures the notion of labeled syntactic 

constituents using a parenthesized representation. 

For instance, the sentence “Colorless green ideas 

sleep furiously.” could be assigned the following 

parse tree, written in the form of an S expression: 

(TOP (S 

   (NP (JJ Colorless) (JJ green) (NNS ideas)) 

   (VP (VB sleep) (ADVP (RB furiously))) 

   (. .))) 

For instance, this parse tree indicates that “Color-

less green ideas” is a noun phrase (NP), and “sleep 

furiously” is a verb phrase (VP). 

Using the Wall Street Journal portion of the 

Penn TreeBank, we estimate a coarse grammar 

over the given grammar symbols. Next, we per-

form a series of refinements to automatically learn 

fine-grained categories that better capture the im-

plicit correlations in the tree using the split-merge 

method of Petrov et al. (2006). Each input symbol 

is split into two new symbols, both with a new 

unique symbol label, and the grammar is updated 

to include a copy of each original rule for each 

such refinement, with a small amount of random 

noise added to the probability of each production 

to break ties. We estimate new grammar parame-

ters using an accelerated form of the EM algorithm 

(Salakhutdinov and Roweis, 2003). Then the low-

est 50% of the split symbols (according to their 

estimated contribution to the likelihood of the data) 

are merged back into their original form and the 

parameters are again re-estimated using AEM. We 

found six split-merge iterations produced optimal 

accuracy on the standard development set. 

The best tree for a given input is selected ac-

cording to the max-rule approach (cf. Petrov et al. 

2006). Coarse-to-fine parsing with pruning at each 

level helps increase speed; pruning thresholds are 

picked for each level to have minimal impact on 

development set accuracy. However, the initial 

coarse pass still has runtime cubic in the length of 

the sentence. Thus, we limit the search space of the 

coarse parse by closing selected chart cells before 

the parse begins (Roark and Hollingshead, 2008). 

We train a classifier to determine if constituents 

may start or end at each position in the sentence. 

For instance, constituents seldom end at the word 

“the” or begin at a comma. Closing a number of 

chart cells can substantially improve runtime with 

minimal impact on accuracy. 

2.2 Dependency Parsing 

The dependency parses produced by MSR SPLAT 

are unlabeled, directed arcs indicating the syntactic 

governor of each word. 

These dependency trees are computed from the 

output of the constituency parser. First, the head of 

each non-terminal is computed according to a set 

of rules (Collins, 1999). Then, the tree is flattened 

into maximal projections of heads. Finally, we in-

troduce an arc from a parent word p to a child 

word c if the non-terminal headed by p is a parent 

of the non-terminal headed by c. 

2.3 Semantic Role Labeling 

The Semantic Role Labeling component of MSR 

SPLAT labels the semantic roles of verbs accord-

ing to the PropBank specification (Palmer et al., 

2005). The semantic roles represent a level of 

broad-coverage shallow semantic analysis which 

goes beyond syntax, but does not handle phenome-

na like co-reference and quantification.  

For example, in the two sentences “John broke 

the window” and “The window broke”, the phrase 

the window will be marked with a THEME label. 

Note that the syntactic role of the phrase in the two 

sentences is different but the semantic role is the 

same. The actual labeling scheme makes use of 

numbered argument labels, like ARG0, ARG1, …, 

ARG5 for core arguments, and labels like ARGM-

TMP,ARGM-LOC, etc. for adjunct-like argu-

ments. The meaning of the numbered arguments is 

verb-specific, with ARG0 typically representing an 

agent-like role, and ARG1 a patient-like role. 

This implementation of an SRL system follows 

the approach described in (Xue and Palmer, 04), 

and includes two log-linear models for argument 

identification and classification. A single syntax 

tree generated by the MSR SPLAT split-merge 

parser is used as input. Non-overlapping arguments 

are derived using the dynamic programming algo-

rithm by Toutanova et al. (2008).  

3 Other Language Analysis Functionality 

3.1 Sentence Boundary / Tokenization 
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This analyzer identifies sentence boundaries and 

breaks the input into tokens. Both are represented 

as offsets of character ranges. Each token has both 

a raw form from the string and a normalized form 

in the PTB specification, e.g., open and close pa-

rentheses are replaced by -LRB- and -RRB-, re-

spectively, to remove ambiguity with parentheses 

indicating syntactic structure. A finite state ma-

chine using simple rules and abbreviations detects 

sentence boundaries with high accuracy, and a set 

of regular expressions tokenize the input. 

3.2 Stemming / Lemmatization 

We provide three types of stemming: Porter stem-

ming, inflectional morphology and derivational 

morphology. 

3.2.1 Stems  

The stemmer analyzer indicates a stem form for 

each input token, using the standard Porter stem-

ming algorithm (Porter, 1980). These forms are 

known to be useful in applications such as cluster-

ing, as the algorithm assigns the same form “dai” 

to “daily” and “day”, but as these forms are not 

citation forms of these words, presentation to end 

users is known to be problematic. 

3.2.2 Lemmas 

The lemma analyzer uses inflectional morphology 

to indicate the dictionary lookup form of the word. 

For example, the lemma of “daily” will be “daily”, 

while the lemma of “children” will be “child”. We 

have mined the lemma form of input tokens using 

a broad-coverage grammar NLPwin (Heidorn, 

2000) over very large corpora. 

3.2.3 Bases  

The base analyzer uses derivational morphology to 

indicate the dictionary lookup form of the word; as 

there can be more than one derivation for a given 

word, the base type returns a list of forms. For ex-

ample, the base form of “daily” will be “day”, 

while the base form of “additional” will be “addi-

tion” and “add”. We have generated a static list of 

base forms of tokens using a broad-coverage 

grammar NLPwin (Heidorn, 2000) over very large 

corpora. If the token form has not been observed in 

those corpora, we will not return a base form. 

3.3 POS tagging 

We train a maximum entropy Markov Model on 

part-of-speech tags from the Penn TreeBank. This 

optimized implementation has very high accuracy 

(over 96% on the test set) and yet can tag tens of 

thousands of words per second. 

3.4 Chunking 

The chunker (Gao et al., 2001) is based on a Cas-

caded Markov Model, and is trained on the Penn 

TreeBank. With state-of-the-art chunking accuracy 

as evaluated on the benchmark dataset, the chunker 

is also robust and efficient, and has been used to 

process very large corpora of web documents. 

4 The Flexibility of a Web Service 

By making the MSR SPLAT toolkit available as a 

web service, we can provide access to new tools, 

e.g. sentiment analysis. We are in the process of 

building out the tools to provide language analysis 

for languages other than English. One step in this 

direction is a tool for transliterating between Eng-

lish and Katakana words. Following Cherry and 

Suzuki (2009), the toolkit currently outputs the 10-

best transliteration candidates with probabilities for 

both directions.  

Another included service is the Triples analyz-

er, which returns the head of the subject, the verb, 

and the head of the object, whenever such a triple 

is encountered. We found this functionality to be 

useful as we were exploring features for our sys-

tem submitted to the BioNLP shared task. 

5 Programmatic Access 

5.1 Web service reference 

We have designed a web service that accepts a 

batch of text and applies a series of analysis tools 

to that text, returning a bag of analyses. This main 

web service call, named “Analyze”, requires four 

parameters: the language of the text (such as “en” 

for English), the raw text to be analyzed, the set of 

analyzers to apply, and an access key to monitor 

and, if necessary, constrain usage. It returns a list 

of analyses, one from each requested analyzer, in a 
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simple JSON (JavaScript Object Notation) format 

easy to parse in many programming languages. 

In addition, there is a web service call “Lan-

guages” that enumerates the list of available lan-

guages, and “Analyzers” to discover the set of 

analyzers available in a given language.  

5.2 Data Formats 

We use a relatively standard set of data representa-

tions for each component. Parse trees are returned 

as S expressions, part-of-speech tags are returned 

as lists, dependency trees are returned as lists of 

parent indices, and so on. The website contains an 

authoritative description of each analysis format. 

5.3 Speed 

Speed of analysis is heavily dependent on the 

component involved. Analyzers for sentence sepa-

ration, tokenization, and part-of-speech tagging 

process thousands of sentences per second; our 

fastest constituency parser handles tens of sentenc-

es per second. Where possible, the user is encour-

aged to send moderate sized requests (perhaps a 

paragraph at a time) to minimize the impact of 

network latency. 

6 Conclusion 

We hope that others will find the tools that we 

have made available as useful as we have. We en-

courage people to send us their feedback so that we 

can improve our tools and increase collaboration in 

the community. 

7 Script Outline 

The interactive UI (Figure 1) allows an arbitrary 

sentence to be entered and the desired levels of 

analysis to be selected as output. As there exist 

other such toolkits, the demonstration is primarily 

aimed at allowing participants to assess the quality, 

utility and speed of the MSR SPLAT tools. 
http://research.microsoft.com/en-us/projects/msrsplat/ 
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Figure 1. Screenshot of the MSR SPLAT interactive UI 

showing selected functionalities which can be toggled 

on and off. This is the interface that we propose to 

demo at NAACL. 
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