
Proceedings of the NAACL-HLT 2012: Demonstration Session, pages 21–24,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

MSR SPLAT, a language analysis toolkit

Chris Quirk, Pallavi Choudhury, Jianfeng

Gao, Hisami Suzuki, Kristina Toutanova,

Michael Gamon, Wen-tau Yih, Lucy

Vanderwende

Colin Cherry

Microsoft Research National Research Council Canada

Redmond, WA 98052 USA 1200 Montreal Road

 Ottawa, Ontario K1A 0R6
{chrisq, pallavic, jfgao,

hisamis, kristout,

mgamon,scottyih,

lucyv@microsoft.com}

colin.cherry@nrccnrc.gc.ca

Abstract

We describe MSR SPLAT, a toolkit for lan-

guage analysis that allows easy access to the

linguistic analysis tools produced by the NLP

group at Microsoft Research. The tools in-

clude both traditional linguistic analysis tools

such as part-of-speech taggers, constituency

and dependency parsers, and more recent de-

velopments such as sentiment detection and

linguistically valid morphology. As we ex-

pand the tools we develop for our own re-

search, the set of tools available in MSR

SPLAT will be extended. The toolkit is acces-

sible as a web service, which can be used

from a broad set of programming languages.

1 Introduction

The availability of annotated data sets that have

become community standards, such as the Penn

TreeBank (Marcus et al., 1993) and PropBank

(Palmer et al., 2005), has enabled many research

institutions to build core natural language pro-

cessing components, including part-of-speech tag-

gers, chunkers, and parsers. There remain many

differences in how these components are built, re-

sulting in slight but noticeable variation in the

component output. In experimental settings, it has

proved sometimes difficult to distinguish between

improvements contributed by a specific component

feature from improvements due to using a differ-

ently-trained linguistic component, such as tokeni-

zation. The community recognizes this difficulty,

and shared task organizers are now providing ac-

companying parses and other analyses of the

shared task data. For instance, the BioNLP shared

task organizers have provided output from a num-

ber of parsers
1
, alleviating the need for participat-

ing systems to download and run unfamiliar tools.

On the other hand, many community members

provide downloads of NLP tools
2
 to increase ac-

cessibility and replicability of core components.

Our toolkit is offered in this same spirit. We

have created well-tested, efficient linguistic tools

in the course of our research, using commonly

available resources such as the PTB and PropBank.

We also have created some tools that are less

commonly available in the community, for exam-

ple linguistically valid base forms and semantic

role analyzers. These components are on par with

other state of the art systems.

We hope that sharing these tools will enable

some researchers to carry out their projects without

having to re-create or download commonly used

NLP components, or potentially allow researchers

to compare our results with those of their own

tools. The further advantage of designing MSR

SPLAT as a web service is that we can share new

components on an on-going basis.

2 Parsing Functionality

2.1 Constituency Parsing

1 See www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask for

the description of other resources made available in addition to

the shared task data.
2 See, for example, http://nlp.stanford.edu/software;

http://www.informatics.sussex.ac.uk/research/groups/nlp/rasp;

http://incubator.apache.org/opennlp

21

The syntactic parser in MSR SPLAT attempts to

reconstruct a parse tree according the Penn Tree-

Bank specification (Marcus et al., 1993). This rep-

resentation captures the notion of labeled syntactic

constituents using a parenthesized representation.

For instance, the sentence “Colorless green ideas

sleep furiously.” could be assigned the following

parse tree, written in the form of an S expression:

(TOP (S

 (NP (JJ Colorless) (JJ green) (NNS ideas))

 (VP (VB sleep) (ADVP (RB furiously)))

 (. .)))

For instance, this parse tree indicates that “Color-

less green ideas” is a noun phrase (NP), and “sleep

furiously” is a verb phrase (VP).

Using the Wall Street Journal portion of the

Penn TreeBank, we estimate a coarse grammar

over the given grammar symbols. Next, we per-

form a series of refinements to automatically learn

fine-grained categories that better capture the im-

plicit correlations in the tree using the split-merge

method of Petrov et al. (2006). Each input symbol

is split into two new symbols, both with a new

unique symbol label, and the grammar is updated

to include a copy of each original rule for each

such refinement, with a small amount of random

noise added to the probability of each production

to break ties. We estimate new grammar parame-

ters using an accelerated form of the EM algorithm

(Salakhutdinov and Roweis, 2003). Then the low-

est 50% of the split symbols (according to their

estimated contribution to the likelihood of the data)

are merged back into their original form and the

parameters are again re-estimated using AEM. We

found six split-merge iterations produced optimal

accuracy on the standard development set.

The best tree for a given input is selected ac-

cording to the max-rule approach (cf. Petrov et al.

2006). Coarse-to-fine parsing with pruning at each

level helps increase speed; pruning thresholds are

picked for each level to have minimal impact on

development set accuracy. However, the initial

coarse pass still has runtime cubic in the length of

the sentence. Thus, we limit the search space of the

coarse parse by closing selected chart cells before

the parse begins (Roark and Hollingshead, 2008).

We train a classifier to determine if constituents

may start or end at each position in the sentence.

For instance, constituents seldom end at the word

“the” or begin at a comma. Closing a number of

chart cells can substantially improve runtime with

minimal impact on accuracy.

2.2 Dependency Parsing

The dependency parses produced by MSR SPLAT

are unlabeled, directed arcs indicating the syntactic

governor of each word.

These dependency trees are computed from the

output of the constituency parser. First, the head of

each non-terminal is computed according to a set

of rules (Collins, 1999). Then, the tree is flattened

into maximal projections of heads. Finally, we in-

troduce an arc from a parent word p to a child

word c if the non-terminal headed by p is a parent

of the non-terminal headed by c.

2.3 Semantic Role Labeling

The Semantic Role Labeling component of MSR

SPLAT labels the semantic roles of verbs accord-

ing to the PropBank specification (Palmer et al.,

2005). The semantic roles represent a level of

broad-coverage shallow semantic analysis which

goes beyond syntax, but does not handle phenome-

na like co-reference and quantification.

For example, in the two sentences “John broke

the window” and “The window broke”, the phrase

the window will be marked with a THEME label.

Note that the syntactic role of the phrase in the two

sentences is different but the semantic role is the

same. The actual labeling scheme makes use of

numbered argument labels, like ARG0, ARG1, …,

ARG5 for core arguments, and labels like ARGM-

TMP,ARGM-LOC, etc. for adjunct-like argu-

ments. The meaning of the numbered arguments is

verb-specific, with ARG0 typically representing an

agent-like role, and ARG1 a patient-like role.

This implementation of an SRL system follows

the approach described in (Xue and Palmer, 04),

and includes two log-linear models for argument

identification and classification. A single syntax

tree generated by the MSR SPLAT split-merge

parser is used as input. Non-overlapping arguments

are derived using the dynamic programming algo-

rithm by Toutanova et al. (2008).

3 Other Language Analysis Functionality

3.1 Sentence Boundary / Tokenization

22

This analyzer identifies sentence boundaries and

breaks the input into tokens. Both are represented

as offsets of character ranges. Each token has both

a raw form from the string and a normalized form

in the PTB specification, e.g., open and close pa-

rentheses are replaced by -LRB- and -RRB-, re-

spectively, to remove ambiguity with parentheses

indicating syntactic structure. A finite state ma-

chine using simple rules and abbreviations detects

sentence boundaries with high accuracy, and a set

of regular expressions tokenize the input.

3.2 Stemming / Lemmatization

We provide three types of stemming: Porter stem-

ming, inflectional morphology and derivational

morphology.

3.2.1 Stems

The stemmer analyzer indicates a stem form for

each input token, using the standard Porter stem-

ming algorithm (Porter, 1980). These forms are

known to be useful in applications such as cluster-

ing, as the algorithm assigns the same form “dai”

to “daily” and “day”, but as these forms are not

citation forms of these words, presentation to end

users is known to be problematic.

3.2.2 Lemmas

The lemma analyzer uses inflectional morphology

to indicate the dictionary lookup form of the word.

For example, the lemma of “daily” will be “daily”,

while the lemma of “children” will be “child”. We

have mined the lemma form of input tokens using

a broad-coverage grammar NLPwin (Heidorn,

2000) over very large corpora.

3.2.3 Bases

The base analyzer uses derivational morphology to

indicate the dictionary lookup form of the word; as

there can be more than one derivation for a given

word, the base type returns a list of forms. For ex-

ample, the base form of “daily” will be “day”,

while the base form of “additional” will be “addi-

tion” and “add”. We have generated a static list of

base forms of tokens using a broad-coverage

grammar NLPwin (Heidorn, 2000) over very large

corpora. If the token form has not been observed in

those corpora, we will not return a base form.

3.3 POS tagging

We train a maximum entropy Markov Model on

part-of-speech tags from the Penn TreeBank. This

optimized implementation has very high accuracy

(over 96% on the test set) and yet can tag tens of

thousands of words per second.

3.4 Chunking

The chunker (Gao et al., 2001) is based on a Cas-

caded Markov Model, and is trained on the Penn

TreeBank. With state-of-the-art chunking accuracy

as evaluated on the benchmark dataset, the chunker

is also robust and efficient, and has been used to

process very large corpora of web documents.

4 The Flexibility of a Web Service

By making the MSR SPLAT toolkit available as a

web service, we can provide access to new tools,

e.g. sentiment analysis. We are in the process of

building out the tools to provide language analysis

for languages other than English. One step in this

direction is a tool for transliterating between Eng-

lish and Katakana words. Following Cherry and

Suzuki (2009), the toolkit currently outputs the 10-

best transliteration candidates with probabilities for

both directions.

Another included service is the Triples analyz-

er, which returns the head of the subject, the verb,

and the head of the object, whenever such a triple

is encountered. We found this functionality to be

useful as we were exploring features for our sys-

tem submitted to the BioNLP shared task.

5 Programmatic Access

5.1 Web service reference

We have designed a web service that accepts a

batch of text and applies a series of analysis tools

to that text, returning a bag of analyses. This main

web service call, named “Analyze”, requires four

parameters: the language of the text (such as “en”

for English), the raw text to be analyzed, the set of

analyzers to apply, and an access key to monitor

and, if necessary, constrain usage. It returns a list

of analyses, one from each requested analyzer, in a

23

simple JSON (JavaScript Object Notation) format

easy to parse in many programming languages.

In addition, there is a web service call “Lan-

guages” that enumerates the list of available lan-

guages, and “Analyzers” to discover the set of

analyzers available in a given language.

5.2 Data Formats

We use a relatively standard set of data representa-

tions for each component. Parse trees are returned

as S expressions, part-of-speech tags are returned

as lists, dependency trees are returned as lists of

parent indices, and so on. The website contains an

authoritative description of each analysis format.

5.3 Speed

Speed of analysis is heavily dependent on the

component involved. Analyzers for sentence sepa-

ration, tokenization, and part-of-speech tagging

process thousands of sentences per second; our

fastest constituency parser handles tens of sentenc-

es per second. Where possible, the user is encour-

aged to send moderate sized requests (perhaps a

paragraph at a time) to minimize the impact of

network latency.

6 Conclusion

We hope that others will find the tools that we

have made available as useful as we have. We en-

courage people to send us their feedback so that we

can improve our tools and increase collaboration in

the community.

7 Script Outline

The interactive UI (Figure 1) allows an arbitrary

sentence to be entered and the desired levels of

analysis to be selected as output. As there exist

other such toolkits, the demonstration is primarily

aimed at allowing participants to assess the quality,

utility and speed of the MSR SPLAT tools.
http://research.microsoft.com/en-us/projects/msrsplat/

References

Colin Cherry and Hisami Suzuki. 2009. Discriminative sub-

string decoding for transliteration. In Proceedings of

EMNLP.

Michael Collins. 1999. Head-driven statistical models for

natural language parsing. PhD Dissertation, University of

Pennsylvania.

Jianfeng Gao, Jian-Yun Nie, Jian Zhang, Endong Xun, Ming

Zhou and Chang-Ning Huang. 2001. Improving query

translation for CLIR using statistical Models. In Proceed-

ings of SIGIR.

George Heidorn. 2000. Intelligent writing assistance. In R.

Dale, H. Moisl and H. Somers (eds.), A Handbook of Natu-

ral Language Processing: Techniques and Applications for

the Processing of Text. New York: Marcel Dekker.

Mitchell Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. 1993. Building a Large Annotated Corpus

of English: The Penn Treebank. Computational Linguistics

19(2): 313-330.

Martha Palmer, Dan Gildea, Paul Kingsbury. 2005. The Prop-

osition Bank: An Annotated Corpus of Semantic Roles.

Computational Linguistics, 31(1): 71-105

Martin Porter. 1980. An algorithm for suffix stripping. Pro-

gram, 14(3): 130-137.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein.

2006. Learning Accurate, Compact, and Interpretable Tree

Annotation. In Proceedings of ACL.

Brian Roark and Kristy Hollingshead. 2008. Classifying chart

cells for quadratic complexity context-free inference. In

Proceedings of COLING.

Ruslan Salakhutdinov and Sam Roweis. 2003. Adaptive Over-

relaxed Bound Optimization Methods. In Proceedings of

ICML.

Kristina Toutanova, Aria Haghighi, and Christopher D. Man-

ning. 2008. A global joint model for semantic role labeling,

Computational Linguistics, 34(2): 161-191.

Nianwen Xue and Martha Palmer. 2004. Calibrating Features

for Semantic Role Labeling. In Proceedings of EMNLP.

Munmun de Choudhury, Scott Counts, Michael Gamon. Not

All Moods are Created Equal! Exploring Human Emotional

States in Social Media. Accepted for presentation in

ICWSM 2012

Munmun de Choudhury, Scott Counts, Michael Gamon. Hap-

py, Nervous, Surprised? Classification of Human Affective

States in Social Media. Accepted for presentation (short

paper) in ICWSM 2012

Figure 1. Screenshot of the MSR SPLAT interactive UI

showing selected functionalities which can be toggled

on and off. This is the interface that we propose to

demo at NAACL.

24

