
Proceedings of the NAACL-HLT 2012: Demonstration Session, pages 9–12,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Navigating Large Comment Threads With CoFi

Christine Doran, Guido Zarrella and John C. Henderson 
The MITRE Corporation 

Bedford, MA 
{cdoran,jzarrella,jhndrsn}@mitre.org 

 

Abstract 

Comment threads contain fascinating and use-
ful insights into public reactions, but are chal-
lenging to read and understand without 
computational assistance. We present a tool 
for exploring large, community-created com-
ments threads in an efficient manner. 

1 Introduction 
The comments made on blog posts and news arti-
cles provide both immediate and ongoing public 
reaction to the content of the post or article. When 
a given site allows users to respond to each other 
(“threaded” responses), the comment sets become 
a genuine public conversation. However, this in-
formation can be difficult to access. Comments are 
typically not indexed by search engines, the vol-
ume is often enormous, and threads may continue 
to be added to over months or even years. This 
makes it hard to find particular information of in-
terest (say, a mention of a particular company in a 
set of thousands of YouTube comments), or to un-
derstand the gist of the discussion at a high-level. 

Our goal in this work was to create a simple 
tool which would allow people to rapidly ingest 
useful information contained in large community-
created comment threads, where the volume of 
data precludes manual inspection. To this end, we 
created CoFi (Comment Filter), a language-
independent, web-based interactive browser for 
single comment threads. 

2 How CoFi works 
For a given set of comments, we create a distinct 
CoFi instance. Each instance is over a natural data 
set, e.g. all comments from a particular discussion 
group, comments attached to an individual news 
article, or tweets resulting from a topical search. 
Creating a CoFi instance has three steps: harvest-

ing the comments, clustering the comments, and 
responding to user interactions while they visualize 
and navigate (sorting and filtering) the dataset. 

2.1 Harvesting the data 

Our comments are harvested from individual web 
sites. These need not be in English, or even in a 
single language. Typically, sites use proprietary 
javascript to present comments. Each web site has 
a unique interface and formatting to serve the 
comments to web browsers, and there is no general 
purpose tool to gather comments everywhere. The 
CoFi approach has been to factor this part of the 
problem into one harvesting engine per web site. 
Some sites provide an API that simplifies the prob-
lem of harvesting comments that contain particular 
keywords. On other sites, there seems to be no re-
liable alternative to developer ingenuity when it 
comes to altering the harvesting engines to ac-
commodate data formats. Thus, we note that the 
harvesting activity is only semi-automated. 

2.2 Clustering the data 

Once harvesting is complete, the rest of the process 
is automatic. Clusters are generated and labeled 
using a pipeline of machine learning tools. The 
open source package MALLET provides many of 
our document ingestion and clustering components 
(McCallum, 2002). Our processing components are 
language-independent and can be used with non-
English or mixed language data sets. 

Specifically, we use a combination of Latent 
Dirichlet Allocation (LDA), K-Means clustering, 
and calculation of mutual information. LDA mod-
els each document (aka comment) as a mixture of 
latent topics, which are in turn comprised of a 
probability distribution over words (Chen, 2011, 
gives a good overview). It’s an unsupervised algo-
rithm that performs approximate inference. The 
topics it infers are the ones that best explain the 
statistical distributions of words observed in the 

9



data. It is highly parallelizable and so it scales well 
to very large data sets. In practice we ask LDA to 
search for 5k topics, where k is the number of clus-
ters we will eventually display to the user. 

The second step is to perform K-Means cluster-
ing on the documents, where the documents are 
represented as a mixture of LDA topics as de-
scribed above, and the clustering chooses k clusters 
that minimize the differences between documents 
in the cluster while maximizing the difference be-
tween documents that are not in the same clusters. 
This step is fast, in part because of the fact that we 
have already reduced the number of input features 
down to 5k (rather than having one feature for each 
word observed in the entire dataset.) 

Finally, we give the clusters titles by perform-
ing a calculation of mutual information (MI) for 
each word or bigram in each cluster. Specifically, 
clustering terms (both words and bigrams) that oc-
cur frequently in one cluster but rarely in other 
clusters will receive high scores. The terms with 
the highest MI scores are used as cluster labels. 

One significant advantage of this completely 
unsupervised approach is that CoFi is more robust 
to the language of comment data, e.g. grammatical 
and spelling inconsistency, informal language, 
which are a challenge for rule-based and super-
vised NLP tools.  

In addition to the machine-generated topic clus-
ters, CoFi allows user-defined topics. These are 
search terms and topic labels hand-created by a 
domain expert. CoFi partitions the comments into 
machine-generated topics and also assigns each 
comment to any of the matching predefined topics. 
This approach is useful for domain experts, ena-
bling them to quickly find things they already 
know they want while allowing them to also take 
advantage of unexpected topics which emerge 
from the system clustering. 

2.3 Creating the visualizations 

CoFi uses the JQuery, Flot, and g.Raphael 
javascript libraries to provide a dynamic, respon-
sive interface. When the user visits a CoFi URL, 
the data is downloaded into their browser which 
then computes the visualization elements locally, 
allowing fast response times and offline access to 

the data. The JQuery library is central to all of 
the javascript processing that CoFi performs, and 
ensures that all features of the interface are cross-
compatible with major browser versions. 

The interface provides the ability to drill down 
further into any data, allowing the user to click on 
any aspect of the analysis to obtain more detail. 
Since the visualization is calculated locally, the 
software can create dynamically updated timelines 
that show the user how any subset of their data has 
changed over time. 

It is also important to prioritize all data present-
ed to the user, allowing them to focus on the most 
useful documents first. CoFi applies an automatic 
summarization technique to perform relevance 
sorting. We evaluated several state-of-the-art au-
tomatic document summarization techniques and 
settled on a Kullback-Leibler divergence inspired 
by techniques described in Kumar et al. (2009). 
The “relevance” sort relies on a measure of how 
representative each comment is relative to the en-
tire collection of comments that the user is viewing 
at the time. This allows us to rapidly rank tens of 
thousands of comments in the order of their rele-
vance to a summary. Several of the approaches we 
tested were chosen from among the leaders of 
NIST’s 2004 Document Understanding Conference 
(DUC) summarization evaluation. Many of them 
used slight variants of KL divergence for sentence 
scoring. We also implemented Lin & Bilmes’ 
(2010) Budgeted Maximization of Submodular 
Functions system, which performed best according 
to the DUC evaluation. However, even after apply-
ing a scaling optimization inspired by the “buck-
shot” technique of Cutting et al. (1992) the 
processing speed was still too slow for dealing 
with datasets containing more than 10000 small 
documents. The KL divergence approach scales 
linearly in the number of comments while still of-
fering cutting edge qualitative performance. This 
means that the calculation can be done on the fly in 
javascript in the browser when the user requests a 
relevance sort. This allows CoFi to tailor the re-
sults to whatever sub-selection of data is currently 
being displayed. For CoFi’s typical use cases this 
computation can be completed in under 2 seconds. 

10



3 The CoFi Interface 
CoFi takes a set of comments and produces the 
interactive summary you see in Figure 1. CoFi 
works best when a user is operating with between 
200 and 10,000 comments. With small numbers of 
comments, there may not be enough data for CoFi 
to find interesting topic clusters. With very large 
numbers of comments, a user’s web browser may 
struggle to display all comments while maintaining 
sufficient responsiveness.  

The raw data is available for inspection in many 
ways. The summary screen in Figure 1 presents a 
list of automatically-discovered clusters on the left-
hand side (typically 10-30, this is a parameter of 
the clustering algorithm), the posting volume time-
line on the top, and some overall statistics and 
characteristic words and posters in the middle. The 
user can return to this view at any point using the 
Overview button. At the top of the page, CoFi pre-
sents the total number of comments and partici-
pants, and a summary of the level of threading, 
which is a good indicator of how interactive the 
data set is. Where community ratings appear on a 
site, we also present the highest and lowest rated 
comments (this is solely based on the community 
rating, and not on our relevance calculation). In the 

middle of the display are two hyperlinked word 
clouds containing the highest frequency words and 
users. Selecting one of the top words or users has 
the same effect as searching for that term in one of 
the Search boxes—both of these approaches will 
present the user with matching comments with the 
term highlighted, and color coding to indicate clus-
ter membership. The links from most popular 
words and most active users bring up a multi-graph 
view as in Figure 3.  

Each time a set of comments is selected, either 
via a cluster, full text search, or filtering on a par-
ticular commenter, the set is presented to the user 
in a sorted order with the comments most repre-
sentative of the set ordered above those that are 
less representative. In this way, the user can quick-
ly get a handle on what the set is about without 
reading all of the items in detail. The comments 
can also be sorted into the original temporal order, 
which can be useful to see how a comment thread 
evolves over time, or to view an original comment 
and threaded replies in a nested ordering. Figure 2 
shows a single cluster in CoFi. The full thread 
timeline now has a red overlay for the selected 
subset of comments. 

 

Figure 1: CoFi top level summary view 

11



 
At the bottom of the cluster lists, there is a View 

All Comments option. Sorting the entire set by rel-
evance gives a good snapshot of most and least 
useful comments in the thread. From any of the 
views, clicking on a user name will display all 
comments from that user, and clicking on the 
comment ID will present that sub-thread; top-level 
comments are numbered X, while replies are la-
beled X.X.  The CoFi interface also allows the user 
to export individual comments, marking those 
comments as having been “handled” and routed to 
a particular person. This makes it easier to incre-
mentally process comments as they arrive. 

We have applied CoFi to 72 distinct data sets, 
including forum discussions, news article, blog and 
YouTube comments, Twitter and comments on 
regulatory changes submitted to government offic-
es via Regulations.gov. These last documents are 
much longer than those CoFi was intended to han-
dle, but CoFi was nonetheless able to support in-
teresting analysis. In one instance, we identified a 
clear case of “astroturfing” (fake grassroots 
movement) based on the CoFi clusters. 

Acknowledgements 
Over the course of this project, many people have 
supported our work. We’d particularly like to 
thank Mark Maybury, Robert Peller at 
USSOUTHCOM, and Marty Ryan, Robert Battle 
and Nathan Vuong at the MITRE Miami site.  This  

 
technical data was produced for the U. S. Govern-
ment under Contract No. W15P7T-11-C-F600, and 
is subject to the Rights in Technical Data-
Noncommercial Items clause at DFARS 252.227-
7013 (NOV 1995).  2012 The MITRE Corpora-
tion. All Rights Reserved. Approved for Public 
Release: 12-1507. Distribution Unlimited. MITRE 
Document number MP120212. 

References 
Chen, Edwin (2011). Introduction to Latent Direchlet 

Allocation, http://blog.echen.me/2011/08/22/ 
introduction-to-latent-dirichlet-allocation/#comments 

Cutting, D., Karger, D., Pedersen, J., and Tukey, J. 
(1992). Scatter/Gather: a cluster-based approach to 
browsing large document collections. Proceedings of 
15th Annual International ACM SIGIR conference, 
New York, NY, USA, 318-329 

Kumar, C., P. Pingali, and V. Verma (2009). Estimating 
Risk Of Picking a Sentence for Document Summari-
zation. Proceedings of CICLing 2009, LNCS 5449, 
571-581. 

Lin, H. and Bilmes, J. (2010). Multi-document summa-
rization via budgeted maximization of submodular 
functions. Proceedings of Human Language Tech-
nologies 2010, Los Angeles, CA, USA, 912-920. 

McCallum, Andrew Kachites (2002). MALLET: A Ma-
chine Learning for Language Toolkit. 

Mishne, Gilard and Natalie Glance (2006). Leave a re-
ply: An Analysis of Weblog Comments. In Workshop 
on the Weblogging Ecosystem, 15th International 
World Wide Web Conference, May. 

Figure 3: The "small multiples" view of frequent contributors 

Figure 2: Single cluster view 

12


