
Proceedings of the NAACL-HLT 2012: Demonstration Session, pages 1–4,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

DeSoCoRe: Detecting Source Code Re-Use across Programming Languages∗

Enrique Flores, Alberto Barrón-Cedeño, Paolo Rosso, and Lidia Moreno
ELiRF, Departament of Information Systems and Computation

Universidad Politécnica de Valencia, Spain
{eflores,lbarron,prosso,lmoreno}@dsic.upv.es

Abstract

Source code re-use has become an important
problem in academia. The amount of code
available makes necessary to develop systems
supporting education that could address the
problem of detection of source code re-use.
We present the DeSoCoRe tool based on tech-
niques of Natural Language Processing (NLP)
applied to detect source code re-use. DeSo-
CoRe compares two source codes at the level
of methods or functions even when written in
different programming languages. The system
provides an understandable output to the hu-
man reviewer in order to help a teacher to de-
cide whether a source code is re-used.

1 Introduction

Identifying whether a work has been re-used has re-
ceived increasing interest in recent years. As for
documents in natural language, the amount of source
code on Internet is increasing; facilitating the re-use
of all or part of previously implemented programs.1

If no reference to the original work is included, pla-
giarism would be committed. The interest for detect-
ing software re-use is great discouraging academic
cheating.

Many online tools exist for detecting re-use in
text, such as Churnalism2. To the best of our knowl-
edge the unique online service to detecting re-use in

∗Screencast available at: http://vimeo.com/33148670. The
tool is available at: http://memex2.dsic.upv.es:8080/DeSoCoRe/

1Source code re-use is often allowed, thanks to licenses as
those of Creative Commons (http://creativecommons.org/ )

2http://churnalism.com/

source code is JPlag3. This tool can process different
programming languages, but at monolingual level.

This paper presents the DeSoCoRe tool for de-
tection source code re-use across programming lan-
guages. We estimate the similarity between two
source codes independently of the programming lan-
guage using NLP techniques. In fact, programming
languages are similar to natural languages; both can
be represented as strings of symbols (characters,
words, phrases, etc.).

DeSoCoRe aims at supporting a reviewer in the
process of detecting highly similar source code func-
tions. It allows to visualize the matches detected be-
tween two source codes d and dq. The programs are
represented as a graph. An edge exists between a
function in dq and a function in d if re-use between
them is suspected. The code chunks are displayed
to the user for further review. With the information
provided, the reviewer can decide whether a frag-
ment is re-used or not.

2 Related Work

In the previous section we mention only one online
tool but many research works for source code re-use
detection exist. Two main approaches have been ex-
plored: content-based and structure-based.

Content-based approaches are based on analysis
of strings within the source codes. The pioneering
work of (Halstead, 1972) is based on units count-
ings. He counts the total number of operands, total
number of different operands and number of opera-
tors, among others.

3https://www.ipd.uni-karlsruhe.de/jplag/

1



Figure 1: Architecture of DeSoCoRe tool. The source code d has N functions, and dq has M functions. Each function
of d is compared against all the functions of dq .

No
changes

Comments
Identifiers

Variable position
Procedure combination

Program statements
Control logic

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6

Figure 2: Levels of program modifications in a plagiarism
spectrum proposed by Faidhi and Robinson.

Structure-based approaches, the most used up to
date, focus the analysis on the code structure (ex-
ecution tree) in order to estimate the level of simi-
larity between two source codes. A seminal model
is the proposed by (Whale, 1990b). This approach
codifies branches, repeats, and statements in order
to estimate the similarity between two programs.
This model has inspired several other tools, such as
Plague (Whale, 1990a) and its further developments
YAP[1,2,3] (Wise, 1992).

JPlag (Prechelt et al., 2002) combines both ap-
proaches. In the first stage, it exploits syntax in order
to normalize variables and function names. In the
second stage, it looks for common strings between
programs. This work attempts to detect several lev-
els of obfuscation4. It achieves better results than
JPlag for highly obfuscated cases but worst results
with low degree of obfuscation.

JPlag is able to detect source code re-use in dif-
ferent programming languages although at monolin-
gual level; that is, one programming language at
a time. None of the reviewed approaches is able

4Obfuscation in re-use can be considered as reformulation,
which inserts noise.

to perform cross-language analysis. To the best of
our knowledge the only approach to analyze cross-
language source code re-use is the one of (Arwin and
Tahaghoghi, 2006). Instead of processing source
code, this approach compares intermediate code pro-
duced by a compiler which includes noise in the de-
tection process. The comparison is in fact mono-
lingual and compiler dependent. The resulting tool,
Xplag, allows to compute similarity between codes
in Java and C.

3 Architecture

As shown in Figure 1, DeSoCoRe consists of three
general modules. As input user gives a pair of source
codes (d, dq). The source code splitter is responsi-
ble for dividing the codes in functions. To split each
code into functions we have developed syntactic an-
alyzers for Python and for C syntax family language:
C, C++, Java, C#, etc.

The next module compares the functions of dq

against the functions of d. To make this comparison
we have divided the module into three sub-modules:
(a) Pre-processing: line breaks, tabs and spaces re-
moval as well as case folding; (b) Features extrac-
tion: character n-grams extraction, weighting based
on normalized term frequency (tf ); and (c) Compar-
ison: a cosine similarity estimation. As output, we
obtain a similarity value in the range [0-1] for all the
pairs of functions between the source codes.

We carried out several experiments in order to
find the best way to detect re-use in source codes.
These experiments were inspired by what proposed
in (Faidhi and Robinson, 1987). They describes the
modifications that a programmer makes to hide the
re-use of source code as Figure 2 shows. These lev-
els are: (i) changes in comments and indentation;

2



(ii) changes in identifiers; (iii) changes in declara-
tions; (iv) changes in program modules; (v) changes
in the program statements; (vi) changes in the de-
cision logic. As result of these experiments we ob-
tained best configuration of our system to use the
entire source code and to apply 3-grams (Flores et
al., 2011).

Once the similarity value has been calculated for
all the possible pairs, the pair selector decides what
pairs are good source re-used candidates. This mod-
ule has to discard the pairs which have obtained a
similarity value lower than a threshold established
by the user. As output DeSoCoRe returns the suspi-
cious pairs that have been re-used.

4 Demonstration

In order to interact with our developed system, we
provide a Java applet interface. It is divided in two
interfaces: (i) input screen: which allows the user
for inserting two source codes, select their program-
ming language and additionally to select a value for
the similarity threshold;5 (ii) output screen: which
shows the results divided in two sections: (a) a
graphical visualization of the codes; and (b) a plain
text representation of the codes. In the first section
we have used the Prefuse Library6 in order to draw a
graph representing the similarity between the func-
tions of the source codes. The painted graph consists
of two red nodes which represent each source code.
Their functions are represented by purple nodes and
connected to the source code node with edges. If any
of these functions has been selected by the system as
re-used, its nodes will be connected to a node from
the other source code.

Finally, a node is marked in red if it composes a
potential case of reuse. When a function is pointed,
the plain text section displays the source code. Also,
if this function has any potential case of re-use, the
function and the potential re-used function will be
shown to perform a manual review of the codes. In
order to be introduced to DeSoCoRe an example is
provided and can be accessed clicking on the Ex-
ample button. Figure 3 shows an example of two
supicious source codes: one in C++ and one in Java.

5In agreement with (Flores et al., 2011), the default thresh-
old for C-like languages (C, C++, Java...) is 0.8.

6Software tools for creating rich interactive data visualiza-
tions (http://prefuse.org/ )

The user is able to start the estimation of similarity
clicking on Estimate! button.

After similarity estimation, the result is displayed
as in Figure 3(a). For exploratory purpouses, ex-
ample source codes are available through the Ex-
ample button. The user is able to start the estima-
tion of similarity clicking on Estimate! button. Fig-
ure 3(b) shows an example of potential cases of re-
use. The function crackHTTPAuth is selected in the
right source code node, and the selected as possi-
ble case of re-use is marked on orange. The plain
text representation of these two parts of source code
shows that they are practically identical.

5 Conclusions and Future Work

The main goal of this research work is to provide
a helpful tool for source code reviewers in order to
help them to decide wheter or not a source code
has been re-used. DeSoCoRe is the first online tool
which it can detect source code re-use across lan-
guages as far of our knowledge.

We have developed a methodology for detect-
ing source code re-use across languages, and have
shown their functionality by presenting DeSoCoRe
tool, which works between and within programming
languages. This makes our tool a valuable cross-
lingual source code detector. DeSoCoRe allows
comparing source codes written in Python, Java and
C syntax family languages: C, C++ or C#. We plan
in the next future to extend its functionality to other
common programming languages. As future work
we aim at allowing for the comparison at fragment
level, where a fragment is considered a part of a
function, a group of functions.

Acknowledgments

This work was done in the framework of the VLC/ CAMPUS

Microcluster on Multimodal Interaction in Intelligent Systems

and it has been partially funded by the European Commission

as part of the WiQ-Ei IRSES project (grant no. 269180) within

the FP 7 Marie Curie People Framework, and by MICINN as

part of the Text-Enterprise 2.0 project (TIN2009-13391-C04-

03) within the Plan I+D+i. The research work of the second

author is funded by the CONACyT-Mexico 192021 grant.

3



(a) Input screen: user have to select each language manually.

(b) Output screen: the re-used functions are connected using an edge and their codes
are shown in the text areas below.

Figure 3: Screenshot of the interface of DeSoCoRe.

References

C. Arwin and S. Tahaghoghi. 2006. Plagiarism de-
tection across programming languages. Proceedings
of the 29th Australian Computer Science Conference,
48:277–286.

J. Faidhi and S. Robinson. 1987. An empirical approach
for detecting program similarity and plagiarism within
a university programming enviroment. Computers and
Education, 11:11–19.

E. Flores, A. Barrón-Cedeño, P. Rosso and L. Moreno.
2011. Towards the Detection of Cross-Language
Source Code Reuse. Proceedings 16th International
Conference on Applications of Natural Language to

Information Systems, NLDB-2011, Springer-Verlag,
LNCS(6716), pp. 250–253.

M. Halstead. 1972. Naturals laws controlling algorithm
structure?. SIGPLAN Noticies, 7(2).

L. Prechelt, G. Malpohl and M. Philippsen. 2002. Find-
ing plagiarisms among a set of programs with JPlag.
Journal of Universal Computer Science, 8(11):1016–
1038.

G. Whale. 1990. Identification of program similarity in
large populations. The Computer Journal, 33(2).

G. Whale. 1990. Software metrics and plagiarism detec-
tion. Journal of Systems and Software, 13:131–138.

M. Wise. 1992. Detection of similarities in student pro-
grams: Yaping may be preferable to Plagueing. ”Pro-
ceedings of the 23th SIGCSE Technical Symposium.

4


