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Heriberto Cuayáhuitl and Ivana Kruijff-Korbayová . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

MSR SPLAT, a language analysis toolkit
Chris Quirk, Pallavi Choudhury, Jianfeng Gao, Hisami Suzuki, Kristina Toutanova, Michael Ga-

mon, Wen-tau Yih, Colin Cherry and Lucy Vanderwende . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Incremental Speech Understanding in a Multi-Party Virtual Human Dialogue System
David DeVault and David Traum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Robust Shallow Temporal Reasoning System
Ran Zhao, Quang Do and Dan Roth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

AttitudeMiner: Mining Attitude from Online Discussions
Amjad Abu-Jbara, Ahmed Hassan and Dragomir Radev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v





Demonstrations Program

Monday, June 4, 2012

Poster and Demo Plenary Session

4:30–5:30 One-Minute Madness: Poster and Demo Previews

5:30–6:00 Break

6:00–9:00 Demonstration Session

DeSoCoRe: Detecting Source Code Re-Use across Programming Languages
Enrique Flores, Alberto Barrón-Cedeño, Paolo Rosso and Lidia Moreno

A Graphical User Interface for Feature-Based Opinion Mining
Pedro Paulo Balage Filho, Caroline Brun and Gilbert Rondeau

Navigating Large Comment Threads with CoFi
Christine Doran, Guido Zarrella and John C. Henderson

SurfShop: combing a product ontology with topic model results for online window-
shopping.
Zofia Stankiewicz and Satoshi Sekine

An Interactive Humanoid Robot Exhibiting Flexible Sub-Dialogues
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DeSoCoRe: Detecting Source Code Re-Use across Programming Languages∗
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Abstract

Source code re-use has become an important
problem in academia. The amount of code
available makes necessary to develop systems
supporting education that could address the
problem of detection of source code re-use.
We present the DeSoCoRe tool based on tech-
niques of Natural Language Processing (NLP)
applied to detect source code re-use. DeSo-
CoRe compares two source codes at the level
of methods or functions even when written in
different programming languages. The system
provides an understandable output to the hu-
man reviewer in order to help a teacher to de-
cide whether a source code is re-used.

1 Introduction

Identifying whether a work has been re-used has re-
ceived increasing interest in recent years. As for
documents in natural language, the amount of source
code on Internet is increasing; facilitating the re-use
of all or part of previously implemented programs.1

If no reference to the original work is included, pla-
giarism would be committed. The interest for detect-
ing software re-use is great discouraging academic
cheating.

Many online tools exist for detecting re-use in
text, such as Churnalism2. To the best of our knowl-
edge the unique online service to detecting re-use in

∗Screencast available at: http://vimeo.com/33148670. The
tool is available at: http://memex2.dsic.upv.es:8080/DeSoCoRe/

1Source code re-use is often allowed, thanks to licenses as
those of Creative Commons (http://creativecommons.org/ )

2http://churnalism.com/

source code is JPlag3. This tool can process different
programming languages, but at monolingual level.

This paper presents the DeSoCoRe tool for de-
tection source code re-use across programming lan-
guages. We estimate the similarity between two
source codes independently of the programming lan-
guage using NLP techniques. In fact, programming
languages are similar to natural languages; both can
be represented as strings of symbols (characters,
words, phrases, etc.).

DeSoCoRe aims at supporting a reviewer in the
process of detecting highly similar source code func-
tions. It allows to visualize the matches detected be-
tween two source codes d and dq. The programs are
represented as a graph. An edge exists between a
function in dq and a function in d if re-use between
them is suspected. The code chunks are displayed
to the user for further review. With the information
provided, the reviewer can decide whether a frag-
ment is re-used or not.

2 Related Work

In the previous section we mention only one online
tool but many research works for source code re-use
detection exist. Two main approaches have been ex-
plored: content-based and structure-based.

Content-based approaches are based on analysis
of strings within the source codes. The pioneering
work of (Halstead, 1972) is based on units count-
ings. He counts the total number of operands, total
number of different operands and number of opera-
tors, among others.

3https://www.ipd.uni-karlsruhe.de/jplag/
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Figure 1: Architecture of DeSoCoRe tool. The source code d has N functions, and dq has M functions. Each function
of d is compared against all the functions of dq .
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Figure 2: Levels of program modifications in a plagiarism
spectrum proposed by Faidhi and Robinson.

Structure-based approaches, the most used up to
date, focus the analysis on the code structure (ex-
ecution tree) in order to estimate the level of simi-
larity between two source codes. A seminal model
is the proposed by (Whale, 1990b). This approach
codifies branches, repeats, and statements in order
to estimate the similarity between two programs.
This model has inspired several other tools, such as
Plague (Whale, 1990a) and its further developments
YAP[1,2,3] (Wise, 1992).

JPlag (Prechelt et al., 2002) combines both ap-
proaches. In the first stage, it exploits syntax in order
to normalize variables and function names. In the
second stage, it looks for common strings between
programs. This work attempts to detect several lev-
els of obfuscation4. It achieves better results than
JPlag for highly obfuscated cases but worst results
with low degree of obfuscation.

JPlag is able to detect source code re-use in dif-
ferent programming languages although at monolin-
gual level; that is, one programming language at
a time. None of the reviewed approaches is able

4Obfuscation in re-use can be considered as reformulation,
which inserts noise.

to perform cross-language analysis. To the best of
our knowledge the only approach to analyze cross-
language source code re-use is the one of (Arwin and
Tahaghoghi, 2006). Instead of processing source
code, this approach compares intermediate code pro-
duced by a compiler which includes noise in the de-
tection process. The comparison is in fact mono-
lingual and compiler dependent. The resulting tool,
Xplag, allows to compute similarity between codes
in Java and C.

3 Architecture

As shown in Figure 1, DeSoCoRe consists of three
general modules. As input user gives a pair of source
codes (d, dq). The source code splitter is responsi-
ble for dividing the codes in functions. To split each
code into functions we have developed syntactic an-
alyzers for Python and for C syntax family language:
C, C++, Java, C#, etc.

The next module compares the functions of dq

against the functions of d. To make this comparison
we have divided the module into three sub-modules:
(a) Pre-processing: line breaks, tabs and spaces re-
moval as well as case folding; (b) Features extrac-
tion: character n-grams extraction, weighting based
on normalized term frequency (tf ); and (c) Compar-
ison: a cosine similarity estimation. As output, we
obtain a similarity value in the range [0-1] for all the
pairs of functions between the source codes.

We carried out several experiments in order to
find the best way to detect re-use in source codes.
These experiments were inspired by what proposed
in (Faidhi and Robinson, 1987). They describes the
modifications that a programmer makes to hide the
re-use of source code as Figure 2 shows. These lev-
els are: (i) changes in comments and indentation;
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(ii) changes in identifiers; (iii) changes in declara-
tions; (iv) changes in program modules; (v) changes
in the program statements; (vi) changes in the de-
cision logic. As result of these experiments we ob-
tained best configuration of our system to use the
entire source code and to apply 3-grams (Flores et
al., 2011).

Once the similarity value has been calculated for
all the possible pairs, the pair selector decides what
pairs are good source re-used candidates. This mod-
ule has to discard the pairs which have obtained a
similarity value lower than a threshold established
by the user. As output DeSoCoRe returns the suspi-
cious pairs that have been re-used.

4 Demonstration

In order to interact with our developed system, we
provide a Java applet interface. It is divided in two
interfaces: (i) input screen: which allows the user
for inserting two source codes, select their program-
ming language and additionally to select a value for
the similarity threshold;5 (ii) output screen: which
shows the results divided in two sections: (a) a
graphical visualization of the codes; and (b) a plain
text representation of the codes. In the first section
we have used the Prefuse Library6 in order to draw a
graph representing the similarity between the func-
tions of the source codes. The painted graph consists
of two red nodes which represent each source code.
Their functions are represented by purple nodes and
connected to the source code node with edges. If any
of these functions has been selected by the system as
re-used, its nodes will be connected to a node from
the other source code.

Finally, a node is marked in red if it composes a
potential case of reuse. When a function is pointed,
the plain text section displays the source code. Also,
if this function has any potential case of re-use, the
function and the potential re-used function will be
shown to perform a manual review of the codes. In
order to be introduced to DeSoCoRe an example is
provided and can be accessed clicking on the Ex-
ample button. Figure 3 shows an example of two
supicious source codes: one in C++ and one in Java.

5In agreement with (Flores et al., 2011), the default thresh-
old for C-like languages (C, C++, Java...) is 0.8.

6Software tools for creating rich interactive data visualiza-
tions (http://prefuse.org/ )

The user is able to start the estimation of similarity
clicking on Estimate! button.

After similarity estimation, the result is displayed
as in Figure 3(a). For exploratory purpouses, ex-
ample source codes are available through the Ex-
ample button. The user is able to start the estima-
tion of similarity clicking on Estimate! button. Fig-
ure 3(b) shows an example of potential cases of re-
use. The function crackHTTPAuth is selected in the
right source code node, and the selected as possi-
ble case of re-use is marked on orange. The plain
text representation of these two parts of source code
shows that they are practically identical.

5 Conclusions and Future Work

The main goal of this research work is to provide
a helpful tool for source code reviewers in order to
help them to decide wheter or not a source code
has been re-used. DeSoCoRe is the first online tool
which it can detect source code re-use across lan-
guages as far of our knowledge.

We have developed a methodology for detect-
ing source code re-use across languages, and have
shown their functionality by presenting DeSoCoRe
tool, which works between and within programming
languages. This makes our tool a valuable cross-
lingual source code detector. DeSoCoRe allows
comparing source codes written in Python, Java and
C syntax family languages: C, C++ or C#. We plan
in the next future to extend its functionality to other
common programming languages. As future work
we aim at allowing for the comparison at fragment
level, where a fragment is considered a part of a
function, a group of functions.

Acknowledgments

This work was done in the framework of the VLC/ CAMPUS

Microcluster on Multimodal Interaction in Intelligent Systems

and it has been partially funded by the European Commission

as part of the WiQ-Ei IRSES project (grant no. 269180) within

the FP 7 Marie Curie People Framework, and by MICINN as

part of the Text-Enterprise 2.0 project (TIN2009-13391-C04-

03) within the Plan I+D+i. The research work of the second

author is funded by the CONACyT-Mexico 192021 grant.

3



(a) Input screen: user have to select each language manually.

(b) Output screen: the re-used functions are connected using an edge and their codes
are shown in the text areas below.

Figure 3: Screenshot of the interface of DeSoCoRe.
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Abstract 

In this paper, we present XOpin, a graphical 
user interface that have been developed to 
provide a smart access to the results of a 
feature-based opinion detection system, build 
on top of a parser. 

1 Introduction 

Opinion mining (or sentiment analysis) arouses 
great interest in recent years both in academia and 
industry. Very broadly, sentiment analysis aims to 
detect the attitude of a person toward a specific 
topic expressed in natural language and to evaluate 
the polarity of what is been expressed, i.e., whether 
it is positive or negative. With the emergence of 
the Web 2.0, i.e., forums, blogs, web sites 
compiling consumer reviews on various subjects, 
there is a huge amount of documents containing 
information expressing opinions: the “user 
generated content”. This constitutes a very 
important data source for monitoring various 
applications (business intelligence, product and 
service benchmarking, technology watch). 
Numerous research works at the crossroads of NLP 
and data mining are focusing on the problem of 
opinion detection and mining. In this paper, we 
present the advanced research prototype we have 
designed: it consists in an integration of a feature-
based opinion detection system together with a 
graphical user interface providing to the end-user a 
smart access to the results of the opinion detection.  

We first present an overview of sentiment 
analysis. Then, we detail the system we have 
developed, in particular the graphical user 
interface, and conclude. 

2 Analyzing Sentiment in Texts 

Sentiment Analysis plays a very important role to 
help people to find better products or to compare 

product characteristics. For the consumer, a good 
interface allows to navigate, compare and identify 
the main characteristics of the products or 
companies. For the company, it is interesting to 
know the customer preferences. It is an essential 
step to optimize marketing campaigns and to 
develop new features in products.  

Despite the increase of interest in sentiment 
analysis, many tools do not pay much attention to 
the user interface aspects. These aspects are very 
important in order to satisfy the user needs. 

In the literature, we find some different ways to 
aggregate and represent the summary information 
from a collection of texts annotated with sentiment. 
For instance, Gamon et al. (2005) use colors to 
display the general assessment of product features. 
The system shows the reviews as boxes, where the 
box size indicates the number of mentions of that 
topic and the color indicates the average sentiment 
it contains. This interface allows having a quick 
glance about the most important topics and the 
sentiment expressed. 

Another display idea is presented in the 
Opinion Observer (Liu et al., 2005). In this system, 
a bar shows the polarity related with each product 
and each feature. The portions of the bar above and 
below a horizontal line represent the amount of 
positive and negative reviews. For example, in a 
cell phone domain, the sentiment associated with 
features like LCD, battery, reception and speaker 
are used to compare the relevance of one product 
in opposite to another. 

Morinaga et al. (2002) present an interface 
where the sentiment information is represented by 
the degrees of association between products and 
opinion-indicative terms. The author uses principal 
component analysis to produce a two-dimensional 
visualization where the terms and products are 
plotted indicating the relatedness among the points. 

In the internet, we can find many systems and 
companies related with sentiment analysis. For 
example, the company Lexalytics has in its website 
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an available demo1 for sentiment detection. This 
demo shows an interface which highlights positive 
and negative words in the text. The interface also 
shows entities, categories associated, a summary 
and the top terms. 

The RankSpeed2  is a website for product 
comparison. The website includes in the search the 
sentiment associated with each product. In the 
interface, the user can input a list of sentiment 
words, like “excellent”, “cool”, “easy” or 
“powerful” that the system will organize the results 
according the frequency of those words in reviews 
related to the products.  

The Stock Sonar3 has a timeline chart as the 
main interface. In this timeline, both positive and 
negative sentiments are displayed throughout time. 
The sentiments are retrieved from real-time news 
associated with a particular company. In the same 
timeline, it is possible to follow-up the increase or 
decrease of the stock prices for that company in 
that period of time. In this application, the 
sentiment is used to forecast market actions such as 
buy and sell stocks. 

All those systems presented relevant 
components for a powerful opinion mining 
interface, but none of them deliver a full interface 
to explore the multi-aspects in opinion mining. For 
us, a complete system should provide both single 
and multi-document visualization, work on the 
feature level classification, and produce an 
integrated interface to browse, navigate, filter and 
visualize files, features and sentiment tendencies. 
In the following section, we present XOpin, a 
graphical user interface that have been developed 
to provide the characteristics described.  

3 The System and its Interface 

To detect opinions in texts, our system relies on a 
robust incremental parser, XIP, (Ait-Mokhtar and 
Chanod 2002), specifically adapted for opinion 
detection. The system extracts opinions related to 
the main concepts commented in reviews (e.g. 
products, movies, books...), but also on features 
associated to these products (such as certain 
characteristics of the products, their price, 
associated services, etc...). More precisely, we 
adopt the formal representation of an opinion 
                                                           
1http://www.lexalytics.com/webdemo 
2http://www.rankspeed.com/ 
3http://www.thestocksonar.com/ 

proposed by Liu (2010): an opinion is represented 
as a five place predicate of the form 
�o�,f��, so���	, h�, t	� , where:o�  is the target of the 
opinion (the main concept), f��  is a feature 
associated to the object o�, 	so���	  is the value 
(positive or negative) of the opinion expressed by 
the opinion holder h� about the feature f��, h� is the 
opinion holder, t	 is the time when the opinion is 
expressed.  
We use the robust parser to extract, using syntactic 
relations already extracted by a general 
dependency grammar, semantic relations 
instantiating this model. Other systems use 
syntactic dependencies to link source and target of 
the opinion, for example in Kim and Hovy (2006). 
Our system belongs to this family, as we believe 
that syntactic processing of complex phenomena 
(negation, comparison and anaphora) is a 
necessary step to perform feature-based opinion 
mining. Another specificity of our system is a two 
level architecture based on a generic level, 
applicable to any domain, and on a domain-
dependent level, adapted for each sub-domain of 
application. Regarding evaluation, the relations of 
opinion extracted by the system have been used to 
train a SVM classifier in order to assess the 
system’s ability to correctly classify user’s reviews 
as positive or negative. Results are quite satisfying, 
as they show 93% of accuracy to classify reviews 
about printers and 89% of accuracy to classify 
reviews about movies (Brun, 2011). 

The XOpin Interface was developed to provide 
an easy way to allow the user to explore the results 
of this sentiment analysis system. The interface 
provides a graphical environment that allows the 
user to browse, navigate, filter and visualize the 
necessary information in a collection of texts.  

The tool accepts as input pure text files or xml 
files. The xml files follow a specific format which 
allows the system to retrieve metadata information. 
It is also possible to retrieve web pages from the 
web. The tool offers the possibility to retrieve a 
single webpage, given the URL, or a collection of 
pages by crawling. To crawl, for example, reviews 
webpages, the user need to setup some crawling 
and information extraction rules defined by a 
template in the configuration file. The files 
retrieved from the web are converted in xml 
format, which allows preserving the metadata 
information. As an example, Figure 1 shows the 
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organization of this xml file from a review 
retrieved from the website epinions.com 
(http://www.epinions.com). 

 

 
Figure 1. Organization of the XML file 

 
The tag source keeps the URL from where the 

review was extracted. The tags domain, brand and 
product keep the specific data about to the product. 
The tag opinion_holder keeps the name of the user 
who wrote the review. The tag review_date keeps 
the date when the review was written. The tag 
opinion keeps the user general assessment about 
the product. In the website epinions.com, the user 
can assess the product as recommended (Yes) or 
not recommended (No). The tag review_stars 
contains the number of stars the user attributed to 
the product. The tag review_popularity keeps the 
number of positive evaluations (thumbsUp) of this 
particular review by the other users. In the reviews 
from the website epinions.com we don’t have this 
assessment, so this number represents how many 
users assigned to trust in this reviewer. The tags 
textblock contain the text for the sections title, 
summary and review. 

After loading a file or a corpus into the tool, the 
texts are showed in a tree structure in the left 
panel. A hierarchical structure allows the user to 
have the corpus organized as a conventional folder 
structure. In this way, it is possible to analyze the 

texts inside a specific folder and also to include the 
texts in the subfolders inside. 

To analyze this data, the tool presents three 
main views: text, timeline and comparison. In the 
text view, negative terms, positive terms and 
entities present in the text are highlighted. The 
purpose of this view is to provide a visual 
assessment about the sentiment expressed in the 
text. If the text was loaded by crawling or by an 
xml file, the metadata is also displayed. Figure 2 
shows an example of reviews collected from the 
website epinions.com, in the category printers.  

As said before, XOpin is able to identify the 
predicates associated with each sentiment and the 
category it belongs. For example, in the sentence 
“This printer gives excellent quality color”, the 
tool highlights the positive sentiment “excellent”, 
the predicate associated “color” and organize this 
predicate into the category color. This predicate 
categorization depends of the sub-domain 
architecture level. 

 This classification is very important to present 
an organized summary about which category is 
most positive and with is most negative in the text. 
The right panel shows this information. 

 
Figure 2. Text visualization in XOpin 

 
The timeline screen (Figure 3) offers the user 

the option to analyze a corpus of texts organized 
by time, for example, reviews crawled from the 
web. In this way, the user can create flexible and 
interesting views about the products and features 
found in the corpus.  

The timeline shows the total of positive and 
negative words in the texts for a given date. With 
this information and a larger enough corpus of 
reviews it is possible to have a big picture about 
the user preferences and dissatisfactions. 

The timeline also offers the possibility to show 
the positive and negative lines for specific brands, 

<review> 

<source value="http://..." /> 

<domain value="Printers"/> 

<brand value="Hewlett Packard"/> 

<product value=" Hewlett Packard 6500A"/> 

<opinion_holder value="user_name"/> 

<review_date value="01/Dec/2011"/> 

<opinion value="Yes"/> 

<review_stars value="5"/> 

<review_popularity value="10"/> 

<textblock layout="title"> 

 Review Title 

</textblock> 

<textblock layout="summary"> 

 Review Summary 

</textblock> 

<textblock layout="text"> 

 Review Free Comment 

</textblock> 

</review> 
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products and features in a determined timespan. 
Filters can remove anything that it is not useful and 
create a pure visualization about what the user 
need to see. The left and bottom panels offer 
options to create those views. 

These views can show an evolution in the 
user’s perspective in respect to some new 
improvement in the product. For example, in a 
marketing campaign, the company can evaluate the 
user behavior about the product price. 

 
Figure 3. Timeline visualization in XOpin 

 
The comparison view (Figure 4) allows the user 

to compare side by side different product features 
in a collection of texts. In this view, the user has 
the main predicate associated with each feature and 
the number of positive or negative occurrences. 
This is interesting in order to have a big picture 
about what the users are commenting in positive or 
negative aspects for each feature. 

 
Figure 4. Feature Comparison in XOpin 

4 Conclusion 

This paper presents an NLP-based opinion 
mining advanced prototype integrating a dedicated 
graphical user interface which provides a smart 

access to the results of the opinion detection. The 
interface has been build in order to ensure 
advanced functionalities such as opinion 
highlighting on text and features, timeline 
visualization and feature comparison. The system 
has been demonstrated to potential customers and 
it received a good feedback. In our assessment, the 
integrated features provided by the system 
increased the usability in the data exploration for a 
reviews corpus compared against other products. 
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Abstract 

Comment threads contain fascinating and use-
ful insights into public reactions, but are chal-
lenging to read and understand without 
computational assistance. We present a tool 
for exploring large, community-created com-
ments threads in an efficient manner. 

1 Introduction 
The comments made on blog posts and news arti-
cles provide both immediate and ongoing public 
reaction to the content of the post or article. When 
a given site allows users to respond to each other 
(“threaded” responses), the comment sets become 
a genuine public conversation. However, this in-
formation can be difficult to access. Comments are 
typically not indexed by search engines, the vol-
ume is often enormous, and threads may continue 
to be added to over months or even years. This 
makes it hard to find particular information of in-
terest (say, a mention of a particular company in a 
set of thousands of YouTube comments), or to un-
derstand the gist of the discussion at a high-level. 

Our goal in this work was to create a simple 
tool which would allow people to rapidly ingest 
useful information contained in large community-
created comment threads, where the volume of 
data precludes manual inspection. To this end, we 
created CoFi (Comment Filter), a language-
independent, web-based interactive browser for 
single comment threads. 

2 How CoFi works 
For a given set of comments, we create a distinct 
CoFi instance. Each instance is over a natural data 
set, e.g. all comments from a particular discussion 
group, comments attached to an individual news 
article, or tweets resulting from a topical search. 
Creating a CoFi instance has three steps: harvest-

ing the comments, clustering the comments, and 
responding to user interactions while they visualize 
and navigate (sorting and filtering) the dataset. 

2.1 Harvesting the data 

Our comments are harvested from individual web 
sites. These need not be in English, or even in a 
single language. Typically, sites use proprietary 
javascript to present comments. Each web site has 
a unique interface and formatting to serve the 
comments to web browsers, and there is no general 
purpose tool to gather comments everywhere. The 
CoFi approach has been to factor this part of the 
problem into one harvesting engine per web site. 
Some sites provide an API that simplifies the prob-
lem of harvesting comments that contain particular 
keywords. On other sites, there seems to be no re-
liable alternative to developer ingenuity when it 
comes to altering the harvesting engines to ac-
commodate data formats. Thus, we note that the 
harvesting activity is only semi-automated. 

2.2 Clustering the data 

Once harvesting is complete, the rest of the process 
is automatic. Clusters are generated and labeled 
using a pipeline of machine learning tools. The 
open source package MALLET provides many of 
our document ingestion and clustering components 
(McCallum, 2002). Our processing components are 
language-independent and can be used with non-
English or mixed language data sets. 

Specifically, we use a combination of Latent 
Dirichlet Allocation (LDA), K-Means clustering, 
and calculation of mutual information. LDA mod-
els each document (aka comment) as a mixture of 
latent topics, which are in turn comprised of a 
probability distribution over words (Chen, 2011, 
gives a good overview). It’s an unsupervised algo-
rithm that performs approximate inference. The 
topics it infers are the ones that best explain the 
statistical distributions of words observed in the 
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data. It is highly parallelizable and so it scales well 
to very large data sets. In practice we ask LDA to 
search for 5k topics, where k is the number of clus-
ters we will eventually display to the user. 

The second step is to perform K-Means cluster-
ing on the documents, where the documents are 
represented as a mixture of LDA topics as de-
scribed above, and the clustering chooses k clusters 
that minimize the differences between documents 
in the cluster while maximizing the difference be-
tween documents that are not in the same clusters. 
This step is fast, in part because of the fact that we 
have already reduced the number of input features 
down to 5k (rather than having one feature for each 
word observed in the entire dataset.) 

Finally, we give the clusters titles by perform-
ing a calculation of mutual information (MI) for 
each word or bigram in each cluster. Specifically, 
clustering terms (both words and bigrams) that oc-
cur frequently in one cluster but rarely in other 
clusters will receive high scores. The terms with 
the highest MI scores are used as cluster labels. 

One significant advantage of this completely 
unsupervised approach is that CoFi is more robust 
to the language of comment data, e.g. grammatical 
and spelling inconsistency, informal language, 
which are a challenge for rule-based and super-
vised NLP tools.  

In addition to the machine-generated topic clus-
ters, CoFi allows user-defined topics. These are 
search terms and topic labels hand-created by a 
domain expert. CoFi partitions the comments into 
machine-generated topics and also assigns each 
comment to any of the matching predefined topics. 
This approach is useful for domain experts, ena-
bling them to quickly find things they already 
know they want while allowing them to also take 
advantage of unexpected topics which emerge 
from the system clustering. 

2.3 Creating the visualizations 

CoFi uses the JQuery, Flot, and g.Raphael 
javascript libraries to provide a dynamic, respon-
sive interface. When the user visits a CoFi URL, 
the data is downloaded into their browser which 
then computes the visualization elements locally, 
allowing fast response times and offline access to 

the data. The JQuery library is central to all of 
the javascript processing that CoFi performs, and 
ensures that all features of the interface are cross-
compatible with major browser versions. 

The interface provides the ability to drill down 
further into any data, allowing the user to click on 
any aspect of the analysis to obtain more detail. 
Since the visualization is calculated locally, the 
software can create dynamically updated timelines 
that show the user how any subset of their data has 
changed over time. 

It is also important to prioritize all data present-
ed to the user, allowing them to focus on the most 
useful documents first. CoFi applies an automatic 
summarization technique to perform relevance 
sorting. We evaluated several state-of-the-art au-
tomatic document summarization techniques and 
settled on a Kullback-Leibler divergence inspired 
by techniques described in Kumar et al. (2009). 
The “relevance” sort relies on a measure of how 
representative each comment is relative to the en-
tire collection of comments that the user is viewing 
at the time. This allows us to rapidly rank tens of 
thousands of comments in the order of their rele-
vance to a summary. Several of the approaches we 
tested were chosen from among the leaders of 
NIST’s 2004 Document Understanding Conference 
(DUC) summarization evaluation. Many of them 
used slight variants of KL divergence for sentence 
scoring. We also implemented Lin & Bilmes’ 
(2010) Budgeted Maximization of Submodular 
Functions system, which performed best according 
to the DUC evaluation. However, even after apply-
ing a scaling optimization inspired by the “buck-
shot” technique of Cutting et al. (1992) the 
processing speed was still too slow for dealing 
with datasets containing more than 10000 small 
documents. The KL divergence approach scales 
linearly in the number of comments while still of-
fering cutting edge qualitative performance. This 
means that the calculation can be done on the fly in 
javascript in the browser when the user requests a 
relevance sort. This allows CoFi to tailor the re-
sults to whatever sub-selection of data is currently 
being displayed. For CoFi’s typical use cases this 
computation can be completed in under 2 seconds. 
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3 The CoFi Interface 
CoFi takes a set of comments and produces the 
interactive summary you see in Figure 1. CoFi 
works best when a user is operating with between 
200 and 10,000 comments. With small numbers of 
comments, there may not be enough data for CoFi 
to find interesting topic clusters. With very large 
numbers of comments, a user’s web browser may 
struggle to display all comments while maintaining 
sufficient responsiveness.  

The raw data is available for inspection in many 
ways. The summary screen in Figure 1 presents a 
list of automatically-discovered clusters on the left-
hand side (typically 10-30, this is a parameter of 
the clustering algorithm), the posting volume time-
line on the top, and some overall statistics and 
characteristic words and posters in the middle. The 
user can return to this view at any point using the 
Overview button. At the top of the page, CoFi pre-
sents the total number of comments and partici-
pants, and a summary of the level of threading, 
which is a good indicator of how interactive the 
data set is. Where community ratings appear on a 
site, we also present the highest and lowest rated 
comments (this is solely based on the community 
rating, and not on our relevance calculation). In the 

middle of the display are two hyperlinked word 
clouds containing the highest frequency words and 
users. Selecting one of the top words or users has 
the same effect as searching for that term in one of 
the Search boxes—both of these approaches will 
present the user with matching comments with the 
term highlighted, and color coding to indicate clus-
ter membership. The links from most popular 
words and most active users bring up a multi-graph 
view as in Figure 3.  

Each time a set of comments is selected, either 
via a cluster, full text search, or filtering on a par-
ticular commenter, the set is presented to the user 
in a sorted order with the comments most repre-
sentative of the set ordered above those that are 
less representative. In this way, the user can quick-
ly get a handle on what the set is about without 
reading all of the items in detail. The comments 
can also be sorted into the original temporal order, 
which can be useful to see how a comment thread 
evolves over time, or to view an original comment 
and threaded replies in a nested ordering. Figure 2 
shows a single cluster in CoFi. The full thread 
timeline now has a red overlay for the selected 
subset of comments. 

 

Figure 1: CoFi top level summary view 
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At the bottom of the cluster lists, there is a View 

All Comments option. Sorting the entire set by rel-
evance gives a good snapshot of most and least 
useful comments in the thread. From any of the 
views, clicking on a user name will display all 
comments from that user, and clicking on the 
comment ID will present that sub-thread; top-level 
comments are numbered X, while replies are la-
beled X.X.  The CoFi interface also allows the user 
to export individual comments, marking those 
comments as having been “handled” and routed to 
a particular person. This makes it easier to incre-
mentally process comments as they arrive. 

We have applied CoFi to 72 distinct data sets, 
including forum discussions, news article, blog and 
YouTube comments, Twitter and comments on 
regulatory changes submitted to government offic-
es via Regulations.gov. These last documents are 
much longer than those CoFi was intended to han-
dle, but CoFi was nonetheless able to support in-
teresting analysis. In one instance, we identified a 
clear case of “astroturfing” (fake grassroots 
movement) based on the CoFi clusters. 
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Abstract

At present, online shopping is typically a
search-oriented activity where a user gains ac-
cess to products which best match their query.
Instead, we propose a surf-oriented online
shopping paradigm, which links associated
products allowing users to ”wander around”
the online store and enjoy browsing a variety
of items. As an initial step in creating this ex-
perience, we constructed a prototype of an on-
line shopping interface which combines pro-
duct ontology information with topic model
results to allow users to explore items from the
food and kitchen domain. As a novel task for
topic model application, we also discuss pos-
sible approaches to the task of selecting the
best product categories to illustrate the hidden
topics discovered for our product domain.

1 Introduction

Query based search remains the primary method of
access to large collections of data. However, new in-
terfacing options offered by mobile and touchscreen
applications lead to decreased reliance on typed
search queries. This trend further fuels the need for
technologies which allow users to browse and ex-
plore large amounts of data from a variety of view-
points. Online store product databases are a repre-
sentative example of such a data source. At present,
online shopping is typically a search-oriented ac-
tivity. Aside from suggestions of closely matching
products from a recommender system, internet shop-
pers have little opportunity to look around an online
store and explore a variety of related items. This ob-
servation led us to define a novel task of creating a

surf-oriented online shopping interface which facil-
itates browsing and access to multiple types of prod-
ucts. We created the prototype SurfShop application
in order to test whether we can combine knowledge
from a product ontology with topic modeling for a
better browsing experience.

Our aim is to design an application which offers
access to a variety of products, while providing a co-
herent and interesting presentation. While the pro-
duct ontology provides information on product types
which are semantically close (for example spaghetti
and penne), it does not provide information about
associations such as pasta and tomato sauce, which
may be mentioned implicitly in product descrip-
tions. In order to obtain semantically varied product
groupings from the data we integrated topic model
results into the application to display products which
are related through hidden topics.

The data used for this project consists of a snap-
shot from the product database of a Japanese Inter-
net shopping mall Rakuten Ichiba obtained in April
20111. We limited our prototype application to
the food and kitchen domain consisting of approx-
imately 4 million products. The textual information
available for each product includes a title and a short
description. Furthermore, each product is assigned
to a leaf category in the product hierarchy tree.

We use standard LDA (Blei et al., 2003) as the
topic model and our prototype can be treated as
an example of applied topic modeling. Although
there exist browsers of document collections based

1For a version of Rakuten product data made available for
research purposes see http://rit.rakuten.co.jp/rdr/index en.html.
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on topic modeling 2, they have been constructed as
direct model result visualizations. In contrast, we
incorporate the LDA results into the output by com-
bining them with product category information and
search to produce a full blown application with a
topic model serving as one of its components. We
provide a more detailed overview of the entire sys-
tem in section 2.

In LDA literature, the topics discovered by the
model are typically represented by top n most prob-
able words for a given topic. In integrating topic
model results into our application we faced a chal-
lenge of creating theme pages which correspond
to hidden topics, and selecting product categories
which best illustrate a given topic. In section 3
we discuss a preliminary evaluation of the applica-
tion’s theme pages which suggests that combining
topic knowledge with ontology structure can lead to
more coherent product category groupings, and that
topic interpretation and labeling based solely on top
n words may not be sufficient for some applied tasks.
We conclude by summarizing plans for further de-
velopment of our prototype.

2 System overview

The initial input to the SurfShop system consists of a
product database and a product ontology with node
labels. All products were indexed for fast retrieval
by the application3. A chart of application compo-
nents is presented in Figure1.

Raw product descriptions from our data would
constitute a large corpus including meta-data such
as shipping or manufacturer information, which are
not relevant to our task. Thus, fitting a topic model
over this corpus is not guaranteed to provide use-
ful information about related product types. There-
fore, we decided to aggregate the product informa-
tion into a collection of product category documents,
where each document corresponds to a node in the
product ontology tree (1088 nodes total). Each doc-
ument consists of sentences extracted from product
descriptions which potentially describe its relation-
ship to other product categories (based on the oc-
currence of category name labels). We can then use

2For an example see http://www.sccs.swarthmore.edu/users/
08/ajb/tmve/wiki100k/browse/topic-list.html.

3We used an Apache Solr index and a JavaScript Ajax-Solr
library from https://github.com/evolvingweb/ajax-solr.

Figure 1: System overview

this artificially constructed corpus as input to LDA
to discover hidden topics in the collection4.

The topic model results, as well as product ontol-
ogy information are combined with product search
in order to build pages for our SurfShop application.
In the prototype the user can move between search,
browsing related categories, as well as browsing the-
matic product groupings. In the search mode, we use
the query and the top n search results to infer which
product category is most relevant to the query. This
allows us to display links to related category groups
next to the search results.

Given a product category, the users can also ex-
plore a related category map, such as the one shown
in Figure 2 for cheese. They can browse example
products in each related category by clicking on the
category to load product information into the right
column on the page. To provide example products, a
query is issued under the relevant ontology node us-
ing the product category label and topic keywords, to
ensure that we display items relevant to the current
page. The product browsing functionality is simi-
lar for theme pages which are discussed in the next
section.

4For LDA we used the Lingpipe package (http://alias-
i.com/lingpipe/).
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Figure 2: Related category page example. Category and
theme labels have been translated into English.

3 Theme pages

An example of a breakfast theme page view is shown
in Figure 3. It includes clusters of product categories
which exemplify the page theme, such as bread and
jam or cheese and dairy. Each theme page corre-
sponds to a hidden topic discovered by the LDA
model5. Human interpretation of topic models has
been a focus of some recent work (Chang et al.,
2009; Newman et al., 2010; Mimno et al., 2010).
However, previous approaches concentrate on repre-
senting a topic by its top n most probable words. In
contrast, our goal is to illustrate a topic by choosing
the most representative documents from the collec-
tion, which also correspond to product categories as-
sociated with the topic. Since this is a novel task, we
decided to concentrate on the issue of building and
evaluating theme pages before conducting broader
user studies of the prototype.

There are a few possible ways to select documents
which best represent a topic. The simplest would be
to consider the rank of this topic in the document.
Alternatively, since the model provides an estimate
of topic probability given a document, the proba-
bility that a product category document belongs to
a topic could be calculated straightforwardly using
the Bayes rule6. Yet another option for finding cat-

5We empirically set the number of topics to 100. We re-
moved top 10% most general topics, as defined by the number
of documents which include the topic in its top 10.

6We made an additional simplifying assumption that all doc-
uments are equiprobable.

Figure 3: Theme page fragment. Category and theme
labels have been translated into English.

egories related to a given topic would be to assign
a score based on KL divergence between the topic
word multinomial and a product category multino-
mial, with the probability of each word w in the vo-
cabulary defined as follows for a given category:

P (w) =
∑

t

(P (w|ti) ∗ P (ti|cj)) (1)

Finally, we hypothesized that product ontology
structure may be helpful in creating the theme pages,
since if one product category is representative of
the topic, its sibling categories are also likely to be.
Conversely, if a category is the only candidate for a
given topic among its neighbors in the tree, it is less
likely to be relevant. Therefore, we clustered the
topic category candidates based on their distance in
the ontology, and retained only the clusters with the
highest average scores.

To evaluate which of the above methods is more
effective, we gave the following task to a group of
three Japanese annotators. For each topic we created
a list of category candidates which included product
categories where the topic ranked 1-3 (methods 1-3
in Table 1), top 25 Bayes score and KL divergence
score categories (methods 4 and 5), as well as the
categories based on ontology distance clusters com-
bined with the Bayes score averages for cluster reli-
ability (method 6). Each annotator was given a list
of top ten keywords for each of the topics and asked
to choose a suitable label based on the keywords.
Subsequently, they were asked to select product cat-
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Scoring method Precision Recall F-score
1.Rank1 73.83% 43.21% 54.16%
2.Rank1+2 50.91% 59.56% 54.54%
3.Rank1+2+3 41.71% 73.08% 52.77%
4.Top25 KL 53.54% 70.44% 60.45%
5.Top25 Bayes 53.56% 71.25% 60.76%
6.Bayes+Ont 66.71% 69.17% 67.48%

Table 1: Result average for three annotators on Task 1.

egories from the candidate list which fit the topic
label they decided on.

In this manner, each annotator created their own
”golden standard” of best categories which allowed
us to compare the performance of different ap-
proaches to category selection. The amount of ac-
cepted categories varied, however a performance
comparison of candidate sets showed consistent
trends across annotators, which allows us to present
averages over annotator scores in Table 1. Rank
based selection increases in recall as lower ranks
are included but the precision of the results de-
creases. KL divergence and Bayes rule based scores
are comparable. Finally, combining the ontology
information with Bayes scoring improves the pre-
cision, while retaining the recall similar to that of
the top 25 Bayes score approach. We chose this last
method to create theme pages.

We also wanted to verify how the presence of top
topic words affects topic interpretation. In another
task, shown in Table 2, the same group of annota-
tors was presented only with product category lists
which combined method 5 and method 6 candidates
from the previous task. They were asked to assign a
topic label which summarized the majority of those
categories, as well as mark the categories which did
not fit the topic. Even though the annotators had
previously seen the same data, they tended to as-
sign broader labels than those based on the top topic
words, and included more categories as suitable for
a given topic. For example, for the breakfast theme
shown in Figure 3, one annotator labeled the topic
dairy products based on topic words, and bread and
dairy products based on the product category exam-
ples. The results of Task 2 led us to use manually
assigned theme page labels based on the product cat-
egory groupings rather than the topic keywords.

Scoring method Precision Recall F-score
5.Top25 Bayes 71.28% 81.83% 76.03%
6.Bayes+Ont 84.11% 75.46% 79.38%

Table 2: Result average for three annotators on Task 2.

The differences in results between Task 1 and
Task 2 indicate that, while top topic keywords aid
interpretation, they may suggest a narrower theme
than the documents selected to represent the topic
and thus may not be optimal for some applications.
This underscores the need for further research on hu-
man evaluation methods for topic models.

4 Future work

We demonstrated a prototype SurfShop system
which employs product ontology structure and LDA
model results to link associated product types and
provide an entertaining browsing experience.

In the future we plan to replace the LDA compo-
nent with a model which can directly account for the
links found through the product ontology tree, such
a version of the relational topic model (Chang and
Blei, 2009). In addition, we hope that further explo-
ration of theme page construction can contribute to
the development of topic visualization and evalua-
tion methods.
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Abstract

We demonstrate a conversational humanoid
robot that allows users to follow their own
dialogue structures. Our system uses a hi-
erarchy of reinforcement learning dialogue
agents, which support transitions across
sub-dialogues in order to relax the strict-
ness of hierarchical control and therefore
support flexible interactions. We demon-
strate our system with the Nao robot play-
ing two versions of a Quiz game. Whilst
language input and dialogue control is au-
tonomous or wizarded, language output is
provided by the robot combining verbal and
non-verbal contributions. The novel fea-
tures in our system are (a) the flexibility
given to users to navigate flexibly in the in-
teraction; and (b) a framework for investi-
gating adaptive and flexible dialogues.

1 Introduction

Hierarchical Dialogue Control (HDC) consists of
behaviours or discourse segments at different lev-
els of granularity executed from higher to lower
level. For example, a dialogue agent can invoke a
sub-dialogue agent, which can also invoke a sub-
sub-dialogue agent, and so on. Task-oriented di-
alogues have shown evidence of following hierar-
chical structures (Grosz and Sidner, 1986; Litman
and Allen, 1987; Clark, 1996). Practically speak-
ing, HDC offers the following benefits. First,
modularity helps to specify sub-dialogues that
may be easier to specify than the entire full dia-
logues. Second, sub-dialogues may include only
relevant dialogue knowledge (e.g. subsets of dia-
logue acts), thus reducing significantly their com-

∗*Funding by the EU-FP7 project ALIZ-E (ICT-248116)
is gratefully acknowledged.

(a) strict hierachical 

     dialogue control

Dialogue

Sub-dialogue1 Sub-dialogue2

(b) flexible hierachical 

  dialogue control

Dialogue

Sub-dialogue1 Sub-dialogue2

Figure 1: Hierarchies of dialogue agents with strict
(top down) and flexible control (partial top down).

plexity. Third, sub-dialogues can be reused when
dealing with new behaviours. In this paper we dis-
tinguish two types of hierarchical dialogue con-
trol: strict and flexible. These two forms of dia-
logue control are shown in Figure 1. It can be ob-
served that strict HDC is based on a pure top down
execution, and flexible HDC is based on a com-
bined hierarchical and graph-based execution.

The main limitation of strict HDC is that
human-machine interactions are rigid, i.e. the
user cannot change the imposed dialogue struc-
ture. A more natural way of interaction is by re-
laxing the dialogue structure imposed by the con-
versational machine. The advantage offlexible
HDC is that interactions become less rigid be-
cause it follows a partially specified hierarchical
control, i.e. the user is allowed to navigate across
the available sub-dialogues. In addition, another
important property of the latter form of HDC is
that we can model flexible dialogue structures not
only driven by the user but also by the machine.
The latter requires the machine to learn the dia-
logue structure in order to behave in an adaptive
way. The rest of the paper describes a demo sys-
tem exhibiting both types of behaviour, based on
a reinforcement learning dialogue framework.
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2 Hierarchical Reinforcement Learning
Dialogue Agents with Flexible Control

Our dialogue controllers use hierarchical rein-
forcement learning as in (Cuayáhuitl et al., 2010).
We extend such a formalization through a hierar-
chy of dialogue agents defined with the following
tuples: M i

j = <Si
j , A

i
j , T

i
j , R

i
j , L

i
j , U

i
j , γ

i
j , δ

i
j>,

whereSi
j is a set of states,Ai

j is a set of actions,
T i

j is a stochastic state transition function,Ri
j is

a reward function,Li
j is a grammar that specifies

tree-based state representations,U i
j is a finite set

of user actions (e.g. user dialogue acts),γi
j is a

finite set of models that subtaskM i
j is being al-

lowed to transition to, andδi
j = P (m′ ∈ γi

j |m ∈

γi
j , u ∈ U i

j) is a stochastic model transition func-
tion1 that specifies the next modelm′ given model
m and user actionu. Although the hierarchy of
agents can be fully-connected when all models
are allowed to transition from a given particu-
lar model (avoiding self-transitions), in practice,
we may want our hierarchy of agents partially-
connected, i.e. whenγi

j is a subset of subtasks
that agentM i

j is allowed to transition to.
We implemented a modified version of the

HSMQ-Learningalgorithm (Dietterich, 2000) to
simultaneously learn a hierarchy of policiesπi

j.
This algorithm uses astack of subtasks and op-
erates as illustrated in Figure 2. If during the ex-
ecution of a subtask the user decides to jump to
another subtask, i.e. to change to another sub-
dialogue, the flexible execution of subtasks allows
each subtask to be interrupted in two ways. In the
first case, we check whether the new (active) sub-
task is already on the stack of subtasks to execute.
This would be the case if it was a parent of the
current subtask. In this case, we terminate exe-
cution of all intervening subtasks until we reach
the parent subtask, which would be the new ac-
tive subtask. Notice that termination of all inter-
vening subtasks prevents the stack from growing
infinitely. In the second case, the current subtask
is put on hold, and if the new active subtask is
not already on the stack of subtasks to execute, it
is pushed onto the stack and control is passed to
it. Once the new subtask terminates its execution,
control is transferred back to the subtask on hold.

1This is a very relevant feature in dialogue agents in order
to allow users to say and/or do anything at anytime, and the
learning agents have to behave accordingly.

Initial
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'sub-dialogue1'
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'sub-dialogue2'
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'sub-dialogue1'
Popping

'dialogue'

dialogue dialogue dialogue dialogue dialogue

sub-

dialogue1
sub-

dialogue1

sub-

dialogue2

sub-

dialogue1

Figure 2: Hypothetical operations of stack-based hier-
archical dialogue controllers. Whilst the fourth opera-
tion from left to right is not allowed in strict HDC, all
stack operations are allowed in flexible HDC.

These kinds of transitions can be seen as high-
level transitions in the state space. They can also
be seen as the mechanism to transition from any
state to any other in the hierarchy. To do that we
maintain an activity status for each subtaskM i

j ,
where only one subtask is allowed to be active at
a time. We maintain a knowledge-rich state that
keeps the dialogue history in order to initialize
or reinitialize states of each subtask accordingly.
Since there is learning when new subtasks are in-
voked and no learning when they are interrupted,
this algorithm maintains its convergence proper-
ties to optimal context-independent policies.

3 A Hierarchy of Dialogue Agents for
Playing Quiz Games

We use a small hierarchy of dialogue agents—
for illustration purposes—with one parent agent
and two children agents (‘robot asks’ and ‘user
asks’). Thus, the hierarchy of agents can ask the
user questions, and vice-versa, the user can ask
the robot questions (described in the next section).
Both conversants can play multiple rounds with a
predefined number of questions.

Due to space restrictions, we describe the hi-
erarchy of agents only briefly. The set of states
and actions use relational representations (they
can be seen as trees) in order to specify the
state-action space compactly, which can grow as
more features or games are integrated. Dialogue
and game features are included so as to inform
the agents of possible situations in the interac-
tion. The action sets use constrained spaces, i.e.
only a subset of actions is available at each state
based on the relational representations. For ex-
ample, the actionRequest(PlayGame) ← x0

is valid for the dialogue statex0 expressed as
Salutation(greeting)∧UserName(known)∧
PlayGame(unknown). The sets of primitive
actions (80 in total) assume verbal behaviours
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with a mapping to non-verbal ones, some sam-
ple dialogue act types are as follows: requests,
apologies, confirmations, provide information,
acknowledgements, feedback, non-verbal expres-
sions, game-related actions. The transition func-
tions use pre-defined parameters, their training
from data is left as future work. The reward func-
tion addresses efficient and effective interactions
by penalizing dialogue length and encouraging to
continue playing. The dialogue agents learnt their
behaviour by interacting with a stochastic simu-
lated user, where the user responses eventually
required transitions across agents. A sample dia-
logue with flexible interaction is shown in Fig. 3.

4 A Humanoid Robot Integrated System

Figure 4 shows the robot’s integrated system,
which equips the robot with the following capa-
bilities: listening, talking, seeing and moving.2 A
sample interaction assuming wizarded behaviour
is as follows. The user says something to the robot
(e.g. ‘ask me a question’) and the wizard selects
a user dialogue act for the corresponding utter-
ance such as ‘Request(Question)’. Then the di-
alogue manager selects and executes the learned
action by querying/updating the game move gen-
erator and user model components, and by pass-
ing a dialogue act to the language generation and
motor control components. The former provides
the corresponding text to the speech synthesizer
and the latter provides the corresponding non-
verbal behaviour. Then the dialogue manager ob-
serves its new dialogue state, and suggests the
next actions—based on its dialogue policies and
user simulations—in the wizard-of-Oz GUI, see
Figure 5. From this setting, if we remove the
wizard then the system can behave autonomously,
where user inputs are derived from the language
and gesture understanding components.

The attractiveness of this kind of set-up is the
smooth transition from purely wizarded conver-
sational behaviour to fully autonomous behaviour,
where the dialogue policies can be tested and eval-

2We use off-the-shelf technologies such as Sphinx /
Julius / HTK for speech recognition, OpenCV for ges-
ture recognition, Acapela and Mary for speech synthe-
sis, HRL-based dialogue management (as described above),
OpenCCG for language parsing and language generation,
Weka and JavaBayes for maintaining a probabilistic and per-
sonalized user profile of asked and answered questions, the
URBI middleware (www.gostai.com), and the NAO hu-
manoid robot (www.aldebaran-robotics.com).

SYS Hi, my name is NAO, and you?
USR I am Peter
SYS Nice to meet you Peter

Do you want to Play a Quiz game?
USR Ask me questions [jump to ‘robot asks’]
SYS The first question is.

What is a typical magic instrument?
Your choices are: One, guitar. Two, drums.
Three ,violin. Four, flute. What is your choice?

USR Number two
SYS That is not quite right. Do you have another choice?
USR Maybe number three
SYS The correct answer is number four, flute.

The next question is: which one of these is
an important artificial channel of the central America?
Your choices are: One, channel five. Two, Panama canal.
Three, Suez canal. Four, English channel.
What is your choice?

USR Now I want to ask you questions [jump to ‘user asks’]
SYS Ask me the first question.
USR What does water become at the temperature of

zero degrees?
SYS What are my choices?
USR Your choices are:

One, condensation. Two, ice. Three, steam.
SYS I choose number one
USR That is incorrect.
SYS So what is the right answer?
USR The correct answer is number two.
SYS Okay, ask me another question.
USR The next question is: through which breach did

the Italian army entered into Rome in 1870?
Your choices are: One, porta venezia. Two, porta pia.
Three, porta pazienza. Four, porta nuova.
What is your choice?

SYS Paris
USR Let’s stop playing. [jump to ‘root’]
SYS Did you like playing the Quiz Game?
USR Yes
SYS I am glad to hear that.
SYS It was nice playing with you, see you soon. Bye!

Figure 3: Sample dialogue with non-strict hierarchical
control. The groups of utterances represent activity
in different sub-dialogues in the hierarchy of agents.
Note that the user is allowed to override the imposed
dialogue structure. For instance, when the user says
‘Ask me questions’ the agent interrupts the execution
of the root subtask and transitions to the subtask ‘robot
asks’. Similarly, the sub-dialogues do not need to follow
their imposed structure and the user is allowed to talk
about previous and unadressed sub-dialogues such as
the sudden switch from ‘robot asks’ to ‘user asks’.
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Figure 4: High-level architecture of our talking robot.
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Figure 5: Screen shot of the wizard-of-Oz GUI, where
the dialogue policies and user simulations suggest
highlighted actions to the wizard. This setting allows
fully-wizarded and (semi-) autonomous behaviour.

Figure 6: The Nao robot greeting a user prior to play-
ing a Quiz game. The pieces of paper on the table are
the Quiz questions the child asks the robot.

uated with (semi-) autonomous behaviour. We use
this framework to investigate long-term human-
robot interaction, in particular child-robot inter-
actions for educational purposes. Figure 6 shows
a scene from a pilot evaluation, where the robot
and a child are visibly engaged with each other. A
complete evaluation with simulated and real dia-
logues will be reported in a forthcoming paper.

5 Discussion and Summary

Typically, conversational interfaces impose a di-
alogue structure on the user. Even in dialogue
systems with mixed-initiative interaction that give
flexibility to the user in terms of providing more
than one piece of information at a time, the
user is hardly allowed to navigate flexibly during
the interaction. Notable exceptions without dia-
logue optimization are (Rudnicky and Wu, 1999;
Lemon et al., 2001; Larsson, 2002; Foster et al.,
2006). We believe that Hierarchical Reinforce-
ment Learning with global state transitions is an

interesting method to optimize (sub-) dialogues at
different levels of granularity, where the design of
action selection might not be easy to hand-craft.
On the one hand, our HDCs can be applied to
dialogues with user-driven topic shift, where the
user can take control of the interaction by navigat-
ing across sub-dialogues and the system has to re-
spond accordingly. On the other hand, our HDCs
can be applied to dialogues with system-driven
topic shift, where the system can itself terminate a
sub-dialogue, perhaps by inferring the user’s emo-
tional and/or situational state, and the system has
to switch itself to another sub-dialogue.

We have described a conversational humanoid
robot that allows users to follow their own dia-
logue structures. The novelty in our system is
its flexible hierarchical dialogue controller, which
extends strict hierarchical control with transitions
across sub-controllers. Suggested future work
consists in training and evaluating our humanoid
robot from real interactions using either partially
specified or fully learnt dialogue structures.
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Abstract 

We describe MSR SPLAT, a toolkit for lan-

guage analysis that allows easy access to the 

linguistic analysis tools produced by the NLP 

group at Microsoft Research. The tools in-

clude both traditional linguistic analysis tools 

such as part-of-speech taggers, constituency 

and dependency parsers, and more recent de-

velopments such as sentiment detection and 

linguistically valid morphology. As we ex-

pand the tools we develop for our own re-

search, the set of tools available in MSR 

SPLAT will be extended. The toolkit is acces-

sible as a web service, which can be used 

from a broad set of programming languages. 

1 Introduction 

The availability of annotated data sets that have 

become community standards, such as the Penn 

TreeBank (Marcus et al., 1993) and PropBank 

(Palmer et al., 2005), has enabled many research 

institutions to build core natural language pro-

cessing components, including part-of-speech tag-

gers, chunkers, and parsers. There remain many 

differences in how these components are built, re-

sulting in slight but noticeable variation in the 

component output. In experimental settings, it has 

proved sometimes difficult to distinguish between 

improvements contributed by a specific component 

feature from improvements due to using a differ-

ently-trained linguistic component, such as tokeni-

zation. The community recognizes this difficulty, 

and shared task organizers are now providing ac-

companying parses and other analyses of the 

shared task data. For instance, the BioNLP shared 

task organizers have provided output from a num-

ber of parsers
1
, alleviating the need for participat-

ing systems to download and run unfamiliar tools. 

On the other hand, many community members 

provide downloads of NLP tools
2
 to increase ac-

cessibility and replicability of core components.  

Our toolkit is offered in this same spirit. We 

have created well-tested, efficient linguistic tools 

in the course of our research, using commonly 

available resources such as the PTB and PropBank. 

We also have created some tools that are less 

commonly available in the community, for exam-

ple linguistically valid base forms and semantic 

role analyzers. These components are on par with 

other state of the art systems. 

We hope that sharing these tools will enable 

some researchers to carry out their projects without 

having to re-create or download commonly used 

NLP components, or potentially allow researchers 

to compare our results with those of their own 

tools. The further advantage of designing MSR 

SPLAT as a web service is that we can share new 

components on an on-going basis. 

2 Parsing Functionality 

2.1 Constituency Parsing 

                                                           
1 See www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask  for 

the description of other resources made available in addition to 

the shared task data. 
2 See, for example, http://nlp.stanford.edu/software; 

http://www.informatics.sussex.ac.uk/research/groups/nlp/rasp; 

http://incubator.apache.org/opennlp 
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The syntactic parser in MSR SPLAT attempts to 

reconstruct a parse tree according the Penn Tree-

Bank specification (Marcus et al., 1993). This rep-

resentation captures the notion of labeled syntactic 

constituents using a parenthesized representation. 

For instance, the sentence “Colorless green ideas 

sleep furiously.” could be assigned the following 

parse tree, written in the form of an S expression: 

(TOP (S 

   (NP (JJ Colorless) (JJ green) (NNS ideas)) 

   (VP (VB sleep) (ADVP (RB furiously))) 

   (. .))) 

For instance, this parse tree indicates that “Color-

less green ideas” is a noun phrase (NP), and “sleep 

furiously” is a verb phrase (VP). 

Using the Wall Street Journal portion of the 

Penn TreeBank, we estimate a coarse grammar 

over the given grammar symbols. Next, we per-

form a series of refinements to automatically learn 

fine-grained categories that better capture the im-

plicit correlations in the tree using the split-merge 

method of Petrov et al. (2006). Each input symbol 

is split into two new symbols, both with a new 

unique symbol label, and the grammar is updated 

to include a copy of each original rule for each 

such refinement, with a small amount of random 

noise added to the probability of each production 

to break ties. We estimate new grammar parame-

ters using an accelerated form of the EM algorithm 

(Salakhutdinov and Roweis, 2003). Then the low-

est 50% of the split symbols (according to their 

estimated contribution to the likelihood of the data) 

are merged back into their original form and the 

parameters are again re-estimated using AEM. We 

found six split-merge iterations produced optimal 

accuracy on the standard development set. 

The best tree for a given input is selected ac-

cording to the max-rule approach (cf. Petrov et al. 

2006). Coarse-to-fine parsing with pruning at each 

level helps increase speed; pruning thresholds are 

picked for each level to have minimal impact on 

development set accuracy. However, the initial 

coarse pass still has runtime cubic in the length of 

the sentence. Thus, we limit the search space of the 

coarse parse by closing selected chart cells before 

the parse begins (Roark and Hollingshead, 2008). 

We train a classifier to determine if constituents 

may start or end at each position in the sentence. 

For instance, constituents seldom end at the word 

“the” or begin at a comma. Closing a number of 

chart cells can substantially improve runtime with 

minimal impact on accuracy. 

2.2 Dependency Parsing 

The dependency parses produced by MSR SPLAT 

are unlabeled, directed arcs indicating the syntactic 

governor of each word. 

These dependency trees are computed from the 

output of the constituency parser. First, the head of 

each non-terminal is computed according to a set 

of rules (Collins, 1999). Then, the tree is flattened 

into maximal projections of heads. Finally, we in-

troduce an arc from a parent word p to a child 

word c if the non-terminal headed by p is a parent 

of the non-terminal headed by c. 

2.3 Semantic Role Labeling 

The Semantic Role Labeling component of MSR 

SPLAT labels the semantic roles of verbs accord-

ing to the PropBank specification (Palmer et al., 

2005). The semantic roles represent a level of 

broad-coverage shallow semantic analysis which 

goes beyond syntax, but does not handle phenome-

na like co-reference and quantification.  

For example, in the two sentences “John broke 

the window” and “The window broke”, the phrase 

the window will be marked with a THEME label. 

Note that the syntactic role of the phrase in the two 

sentences is different but the semantic role is the 

same. The actual labeling scheme makes use of 

numbered argument labels, like ARG0, ARG1, …, 

ARG5 for core arguments, and labels like ARGM-

TMP,ARGM-LOC, etc. for adjunct-like argu-

ments. The meaning of the numbered arguments is 

verb-specific, with ARG0 typically representing an 

agent-like role, and ARG1 a patient-like role. 

This implementation of an SRL system follows 

the approach described in (Xue and Palmer, 04), 

and includes two log-linear models for argument 

identification and classification. A single syntax 

tree generated by the MSR SPLAT split-merge 

parser is used as input. Non-overlapping arguments 

are derived using the dynamic programming algo-

rithm by Toutanova et al. (2008).  

3 Other Language Analysis Functionality 

3.1 Sentence Boundary / Tokenization 
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This analyzer identifies sentence boundaries and 

breaks the input into tokens. Both are represented 

as offsets of character ranges. Each token has both 

a raw form from the string and a normalized form 

in the PTB specification, e.g., open and close pa-

rentheses are replaced by -LRB- and -RRB-, re-

spectively, to remove ambiguity with parentheses 

indicating syntactic structure. A finite state ma-

chine using simple rules and abbreviations detects 

sentence boundaries with high accuracy, and a set 

of regular expressions tokenize the input. 

3.2 Stemming / Lemmatization 

We provide three types of stemming: Porter stem-

ming, inflectional morphology and derivational 

morphology. 

3.2.1 Stems  

The stemmer analyzer indicates a stem form for 

each input token, using the standard Porter stem-

ming algorithm (Porter, 1980). These forms are 

known to be useful in applications such as cluster-

ing, as the algorithm assigns the same form “dai” 

to “daily” and “day”, but as these forms are not 

citation forms of these words, presentation to end 

users is known to be problematic. 

3.2.2 Lemmas 

The lemma analyzer uses inflectional morphology 

to indicate the dictionary lookup form of the word. 

For example, the lemma of “daily” will be “daily”, 

while the lemma of “children” will be “child”. We 

have mined the lemma form of input tokens using 

a broad-coverage grammar NLPwin (Heidorn, 

2000) over very large corpora. 

3.2.3 Bases  

The base analyzer uses derivational morphology to 

indicate the dictionary lookup form of the word; as 

there can be more than one derivation for a given 

word, the base type returns a list of forms. For ex-

ample, the base form of “daily” will be “day”, 

while the base form of “additional” will be “addi-

tion” and “add”. We have generated a static list of 

base forms of tokens using a broad-coverage 

grammar NLPwin (Heidorn, 2000) over very large 

corpora. If the token form has not been observed in 

those corpora, we will not return a base form. 

3.3 POS tagging 

We train a maximum entropy Markov Model on 

part-of-speech tags from the Penn TreeBank. This 

optimized implementation has very high accuracy 

(over 96% on the test set) and yet can tag tens of 

thousands of words per second. 

3.4 Chunking 

The chunker (Gao et al., 2001) is based on a Cas-

caded Markov Model, and is trained on the Penn 

TreeBank. With state-of-the-art chunking accuracy 

as evaluated on the benchmark dataset, the chunker 

is also robust and efficient, and has been used to 

process very large corpora of web documents. 

4 The Flexibility of a Web Service 

By making the MSR SPLAT toolkit available as a 

web service, we can provide access to new tools, 

e.g. sentiment analysis. We are in the process of 

building out the tools to provide language analysis 

for languages other than English. One step in this 

direction is a tool for transliterating between Eng-

lish and Katakana words. Following Cherry and 

Suzuki (2009), the toolkit currently outputs the 10-

best transliteration candidates with probabilities for 

both directions.  

Another included service is the Triples analyz-

er, which returns the head of the subject, the verb, 

and the head of the object, whenever such a triple 

is encountered. We found this functionality to be 

useful as we were exploring features for our sys-

tem submitted to the BioNLP shared task. 

5 Programmatic Access 

5.1 Web service reference 

We have designed a web service that accepts a 

batch of text and applies a series of analysis tools 

to that text, returning a bag of analyses. This main 

web service call, named “Analyze”, requires four 

parameters: the language of the text (such as “en” 

for English), the raw text to be analyzed, the set of 

analyzers to apply, and an access key to monitor 

and, if necessary, constrain usage. It returns a list 

of analyses, one from each requested analyzer, in a 
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simple JSON (JavaScript Object Notation) format 

easy to parse in many programming languages. 

In addition, there is a web service call “Lan-

guages” that enumerates the list of available lan-

guages, and “Analyzers” to discover the set of 

analyzers available in a given language.  

5.2 Data Formats 

We use a relatively standard set of data representa-

tions for each component. Parse trees are returned 

as S expressions, part-of-speech tags are returned 

as lists, dependency trees are returned as lists of 

parent indices, and so on. The website contains an 

authoritative description of each analysis format. 

5.3 Speed 

Speed of analysis is heavily dependent on the 

component involved. Analyzers for sentence sepa-

ration, tokenization, and part-of-speech tagging 

process thousands of sentences per second; our 

fastest constituency parser handles tens of sentenc-

es per second. Where possible, the user is encour-

aged to send moderate sized requests (perhaps a 

paragraph at a time) to minimize the impact of 

network latency. 

6 Conclusion 

We hope that others will find the tools that we 

have made available as useful as we have. We en-

courage people to send us their feedback so that we 

can improve our tools and increase collaboration in 

the community. 

7 Script Outline 

The interactive UI (Figure 1) allows an arbitrary 

sentence to be entered and the desired levels of 

analysis to be selected as output. As there exist 

other such toolkits, the demonstration is primarily 

aimed at allowing participants to assess the quality, 

utility and speed of the MSR SPLAT tools. 
http://research.microsoft.com/en-us/projects/msrsplat/ 
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1 Extended Abstract

This demonstration highlights some emerging ca-
pabilities for incremental speech understanding and
processing in virtual human dialogue systems. This
work is part of an ongoing effort that aims to en-
able realistic spoken dialogue with virtual humans in
multi-party negotiation scenarios (Plüss et al., 2011;
Traum et al., 2008b). These scenarios are designed
to allow trainees to practice their negotiation skills
by engaging in face-to-face spoken negotiation with
one or more virtual humans.

An important component in achieving naturalistic
behavior in these negotiation scenarios, which ide-
ally should have the virtual humans demonstrating
fluid turn-taking, complex reasoning, and respond-
ing to factors like trust and emotions, is for the vir-
tual humans to begin to understand and in some
cases respond in real time to users’ speech, as the
users are speaking (DeVault et al., 2011b). These re-
sponses could range from relatively straightforward
turn management behaviors, like having a virtual hu-
man recognize when it is being addressed by a user
utterance, and possibly turn to look at the user who
has started speaking, to more complex responses
such as emotional reactions to the content of what
users are saying.

The current demonstration extends our previous
demonstration of incremental processing (Sagae et
al., 2010) in several important respects. First, it
includes additional indicators, as described in (De-
Vault et al., 2011a). Second, it is applied to a new
domain, an extension of that presented in (Plüss et
al., 2011). Finally, it is integrated with the dialogue

Figure 1: SASO negotiation in the saloon: Utah (left)
looking at Harmony (right).

models (Traum et al., 2008a), such that each par-
tial interpretation is given a full pragmatic interpre-
tation by each virtual character, which can be used
to generate real-time incremental non-verbal feed-
back (Wang et al., 2011).

Our demonstration is set in an implemented multi-
party negotiation domain (Plüss et al., 2011) in
which two virtual humans, Utah and Harmony (pic-
tured in Figure 1), talk with two human negotiation
trainees, who play the roles of Ranger and Deputy.
The dialogue takes place inside a saloon in an Amer-
ican town in the Old West. In this negotiation sce-
nario, the goal of the two human role players is to
convince Utah and Harmony that Utah, who is cur-
rently employed as the local bartender, should take
on the job of town sheriff.

One of the research aims for this work is to
support natural dialogue interaction, an example of
which is the excerpt of human role play dialogue
shown in Figure 2. One of the key features of immer-
sive role plays is that people often react in multiple
ways to the utterances of others as they are speaking.
For example, in this excerpt, the beginning of the
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Ranger We can’t leave this place and have it overrun by outlaws.
Uh there’s no way that’s gonna happen so we’re gonna
make sure we’ve got a properly deputized and equipped
sheriff ready to maintain order in this area.
00:03:56.660 - 00:04:08.830

Deputy Yeah and you know and and we’re willing to
00:04:06.370 - 00:04:09.850

Utah And I don’t have to leave the bar completely. I can still
uh be here part time and I can um we can hire someone to
do the like day to day work and I’ll do the I’ll supervise
them and I’ll teach them.
00:04:09.090 - 00:04:22.880

Figure 2: Dialogue excerpt from one of the role plays.
Timestamps indicate the start and end of each utterance.

Deputy’s utterance overlaps the end of the Ranger’s,
and then Utah interrupts the Deputy and takes the
floor a few seconds later.

Our prediction approach to incremental speech
understanding utilizes a corpus of in-domain spo-
ken utterances, including both paraphrases selected
and spoken by system developers, as well as spo-
ken utterances from user testing sessions (DeVault
et al., 2011b). An example of a corpus element is
shown in Figure 3. In previous negotiation domains,
we have found a fairly high word error rate in au-
tomatic speech recognition results for such sponta-
neous multi-party dialogue data; for example, our
average word error rate was 0.39 in the SASO-EN
negotiation domain (Traum et al., 2008b) with many
(15%) out of domain utterances. Our speech un-
derstanding framework is robust to these kinds of
problems (DeVault et al., 2011b), partly through
approximating the meaning of utterances. Utter-
ance meanings are represented using an attribute-
value matrix (AVM), where the attributes and val-
ues represent semantic information that is linked to
a domain-specific ontology and task model (Traum,
2003; Hartholt et al., 2008; Plüss et al., 2011). The
AVMs are linearized, using a path-value notation, as
seen in Figure 3. In our framework, we use this data
to train two data-driven models, one for incremen-
tal natural language understanding, and a second for
incremental confidence modeling.

The first step is to train a predictive incremental
understanding model. This model is based on maxi-
mum entropy classification, and treats entire individ-
ual frames as output classes, with input features ex-
tracted from partial ASR results, calculated in incre-
ments of 200 milliseconds (DeVault et al., 2011b).

• Utterance (speech): i’ve come here today to talk to you
about whether you’d like to become the sheriff of this town

• ASR (NLU input): have come here today to talk to you
about would the like to become the sheriff of this town

• Frame (NLU output):
<S>.mood interrogative

<S>.sem.modal.desire want

<S>.sem.prop.agent utah

<S>.sem.prop.event providePublicServices

<S>.sem.prop.location town

<S>.sem.prop.theme sheriff-job

<S>.sem.prop.type event

<S>.sem.q-slot polarity

<S>.sem.speechact.type info-req

<S>.sem.type question

Figure 3: Example of a corpus training example.

Each partial ASR result then serves as an incremen-
tal input to NLU, which is specially trained for par-
tial input as discussed in (Sagae et al., 2009). NLU
is predictive in the sense that, for each partial ASR
result, the NLU module produces as output the com-
plete frame that has been associated by a human an-
notator with the user’s complete utterance, even if
that utterance has not yet been fully processed by
the ASR. For a detailed analysis of the performance
of the predictive NLU, see (DeVault et al., 2011b).

The second step in our framework is to train a set
of incremental confidence models (DeVault et al.,
2011a), which allow the agents to assess in real time,
while a user is speaking, how well the understand-
ing process is proceeding. The incremental confi-
dence models build on the notion of NLU F-score,
which we use to quantify the quality of a predicted
NLU frame in relation to the hand-annotated correct
frame. The NLU F-score is the harmonic mean of
the precision and recall of the attribute-value pairs
(or frame elements) that compose the predicted and
correct frames for each partial ASR result. By using
precision and recall of frame elements, rather than
simply looking at frame accuracy, we take into ac-
count that certain frames are more similar than oth-
ers, and allow for cases when the correct frame is
not in the training set.

Each of our incremental confidence models
makes a binary prediction for each partial NLU re-
sult as an utterance proceeds. At each time t dur-
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Figure 4: Visualization of Incremental Speech Processing.

ing an utterance, we consider the current NLU F-
Score Ft as well as the final NLU F-Score Ffinal

that will be achieved at the conclusion of the ut-
terance. In (DeVault et al., 2009) and (DeVault
et al., 2011a), we explored the use of data-driven
decision tree classifiers to make predictions about
these values, for example whether Ft ≥ 1

2 (cur-
rent level of understanding is “high”), Ft ≥ Ffinal

(current level of understanding will not improve),
or Ffinal ≥ 1

2 (final level of understanding will be
“high”). In this demonstration, we focus on the
first and third of these incremental confidence met-
rics, which we summarize as “Now Understanding”
and “Will Understand”, respectively. In an evalua-
tion over all partial ASR results for 990 utterances
in this new scenario, we found the Now Under-
standing model to have precision/recall/F-Score of
.92/.75/.82, and the Will Understand model to have
precision/recall/F-Score of .93/.85/.89. These incre-
mental confidence models therefore provide poten-
tially useful real-time information to Utah and Har-
mony about whether they are currently understand-
ing a user utterance, and whether they will ever un-
derstand a user utterance.

The incremental ASR, NLU, and confidence
models are passed to the dialogue managers for each

of the agents, Harmony and Utah. These agents then
relate these inputs to their own models of dialogue
context, plans, and emotions, to calculate pragmatic
interpretations, including speech acts, reference res-
olution, participant status, and how they feel about
what is being discussed. A subset of this informa-
tion is passed to the non-verbal behavior generation
module to produce incremental non-verbal listening
behaviors (Wang et al., 2011).

In support of this demonstration, we have ex-
tended the implementation to include a real-time vi-
sualization of incremental speech processing results,
which will allow attendees to track the virtual hu-
mans’ understanding as an utterance progresses. An
example of this visualization is shown in Figure 4.

2 Demo script

The demonstration begins with the demo operator
providing a brief overview of the system design, ne-
gotiation scenario, and incremental processing capa-
bilities. The virtual humans Utah and Harmony (see
Figure 1) are running and ready to begin a dialogue
with the user, who will play the role of the Ranger.
As the user speaks to Utah or Harmony, attendees
can observe the real time visualization of speech
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processing to observe changes in the incremental
processing results as the utterance progresses. Fur-
ther, the visualization interface enables the demo op-
erator to “rewind” an utterance and step through the
incremental processing results that arrived each 200
milliseconds, highlighting how specific partial ASR
results can change the virtual humans’ understand-
ing or confidence.

For example, Figure 4 shows the incremental
speech processing state at a moment 4.8 seconds into
a user’s 7.4 second long utterance, i’ve come here
today to talk to you about whether you’d like to be-
come the sheriff of this town. At this point in time,
the visualization shows (at top left) that the virtual
humans are confident that they are both Now Under-
standing and Will Understand this utterance. Next,
the graph (in white) shows the history of the agents’
expected NLU F-Score for this utterance (ranging
from 0 to 1). Beneath the graph, the partial ASR re-
sult (HAVE COME HERE TODAY TO TALK TO
YOU ABOUT...) is displayed (in white), along
with the currently predicted NLU frame (in blue).
For ease of comprehension, an English gloss (utah
do you want to be the sheriff?) for the NLU frame is
also shown (in blue) above the frame.

To the right, in pink, we show some of Utah and
Harmony’s agent state that is based on the current in-
cremental NLU results. The display shows that both
of the virtual humans believe that Utah is being ad-
dressed by this utterance, that utah has a positive at-
titude toward the content of the utterance while har-
mony does not, and that both have comprehension
and participation goals. Further, Harmony believes
she is a side participant at this moment. The demo
operator will explain and discuss this agent state in-
formation, including possible uses for this informa-
tion in response policies.
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Abstract
This paper presents a demonstration of a tem-
poral reasoning system that addresses three
fundamental tasks related to temporal expres-
sions in text: extraction, normalization to time
intervals and comparison. Our system makes
use of an existing state-of-the-art temporal ex-
traction system, on top of which we add sev-
eral important novel contributions. In addi-
tion, we demonstrate that our system can per-
form temporal reasoning by comparing nor-
malized temporal expressions with respect
to several temporal relations. Experimental
study shows that the system achieves excellent
performance on all the tasks we address.

1 Introduction

Performing temporal reasoning with respect to tem-
poral expressions is important in many NLP tasks
such as text summarization, information extraction,
discourse understanding and information retrieval.
Recently, the Knowledge Base Population track (Ji
et al., 2011) introduced the temporal slot filling task
that requires identifying and extracting temporal in-
formation for a limited set of binary relations such as
(person, employee of), (person, spouse). In the work
of (Wang et al., 2010), the authors presented the
Timely Yago ontology, which extracted and incorpo-
rated temporal information as part of the description
of the events and relations in the ontology. Temporal
reasoning is also essential in supporting the emerg-
ing temporal information retrieval research direction
(Alonso et al., 2011).

In this paper, we present a system that addresses
three fundamental tasks in temporal reasoning:

• Extraction: Capturing the extent of time expres-
sions in a given text. This task is based on task A in
the TempEval-2 challenge (Verhagen et al., 2010).
Consider the following sentence:

Seventy-five million copies of the rifle have been
built since it entered production in February 1947.

In this sentence, February 1947 is a basic temporal
expression that should be extracted by the extraction
module. More importantly, we further extend the
task to support also the extraction of complex tem-
poral expressions that are not addressed by existing
systems. In the example above, it is important to rec-
ognize and capture the phrase since it entered pro-
duction in February 1947 as another temporal ex-
pression that expresses the time period of the manu-
facturing event (triggered by built.) For the best of
our knowledge, this extension is novel.
• Normalization: Normalizing temporal expres-
sions, which are extracted by the extraction module,
to a canonical form. Our system normalizes tem-
poral expressions (including complex ones) to time
intervals of the form [start point, end point]. The
endpoints follow a standard date and time format:
YYYY-MM-DD hh:mm:ss. Our system accounts for
an input reference date when performing the normal-
ization. For example, given March 20th, 1947 as a
reference date, our system normalizes the temporal
expressions extracted in the example above as fol-
lows: [1947-02-01 00:00:00, 1947-02-28 23:59:59]
and [1947-02-01 00:00:00, 1947-03-20 23:59:59],
respectively.
• Comparison: Comparing two time intervals
(i.e. normalized temporal expressions). This mod-
ule identifies the temporal relation that holds be-
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tween intervals, including the before, before-and-
overlap, containing, equal, inside , after and after-
and-overlap relations. For example, when compar-
ing the two normalized time intervals above, we get
the following result: [1947-02-01 00:00:00, 1947-
02-28 23:59:59] is inside [1947-02-01 00:00:00,
1947-03-20 23:59:59].

There has been much work addressing the prob-
lems of temporal expression extraction and normal-
ization, i.e. the systems developed in TempEval-2
challenge (Verhagen et al., 2010). However, our sys-
tem is different from them in several aspects. First,
we extend the extraction task to capture complex
temporal expressions. Second, our system normal-
izes temporal expressions (including complex ones)
to time intervals instead of time points. Finally, our
system performs temporal comparison of time inter-
vals with respect to multiple relations. We believe
that with the rapid progress in NLP and IR, more
tasks will require temporal information and reason-
ing, and a system that addresses these three funda-
mental tasks well will be able to support and facili-
tate temporal reasoning systems efficiently.

2 The System

2.1 Temporal Expression Extraction

We built the temporal expression extraction module
on top of the Heideltime system (Strötgen and Gertz,
2010) to take advantage of a state-of-the-art tempo-
ral extraction system in capturing basic expressions.
We use the Illinois POS tagger1 (Roth and Zelenko,
1998) to provide part-of-speech tags for the input
text before passing it to HeidelTime. Below is an
example of the HeidelTime output of the example in
the previous section:

Seventy-five million copies of the rifle have been
built since it entered production in <TIMEX3
tid=”t2” type=”DATE” value=”1947-02”>February
1947</TIMEX3>

In this example, HeidelTime captures a basic tem-
poral expression: February 1947. However, Heidel-
Time cannot capture the complex temporal expres-
sion since it entered production in February 1947,
which expresses a period of time from February
1947 until the document creation time. This is ac-
tually the time period of the manufacturing event

1http://cogcomp.cs.illinois.edu/page/software view/POS

NP PP

VP

  SBAR

Seventy-five million copies of the rifle have been built   since it entered production in Feburary 1947

VP

NP

S

Figure 1: The SBAR constituent in the parse tree de-
termines an extended temporal expression given that in
February 1947 is already captured by HeidelTime.

(triggered by built). To capture complex phrases, we
make use of a syntactic parse tree2 as illustrated in
Figure 1. A complex temporal expression is recog-
nized if it satisfies the following conditions:
• It is covered by a PP or SBAR constituent
in the parse tree.
• The constituent starts with a temporal con-
nective. In this work, we focus on an impor-
tant subset of temporal connectives, consist-
ing of since, between, from, before and after.
• It contains at least one basic temporal ex-
pression extracted by HeidelTime.

In addition, our extraction module also handles
holidays in several countries. For example, in
the sentence “The gas price increased rapidly after
Christmas.”, we are able to extract two temporal ex-
pressions Christmas and after Christmas, which re-
fer to different time intervals.

2.2 Normalization to Time Intervals

Our system normalizes a temporal expression to a
time interval of the form [start point, end point],
where start point≤ end point. Each time endpoint of
an interval follows a standard date and time format:
YYYY-MM-DD hh:mm:ss. It is worth noting that this
format augments the date format in TimeML, used
by HeidelTime and other existing systems. Our date
and time format of each time endpoint refer to an
absolute time point on a universal timeline, making
our time intervals absolute as well. Furthermore, we
take advantage of the predicted temporal value of
each temporal expression from the HeidelTime out-
put. For instance, in the HeidelTime output example
above, we extract 1947-02 as the normalized date
of February 1947 and then convert it to the inter-
val [1947-02-01 00:00:00, 1947-02-28 23:59:59]. If
HeidelTime cannot identify an exact date, month or
year, we then resort to our own temporal normalizer,

2We use nlparser (Charniak and Johnson, 2005)
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which consists of a set of conversion rules, regard-
ing to the document creation time of the input text.
An interval endpoint can get infinity value if its tem-
poral boundary cannot be specified.

2.3 Comparison

To compare two time intervals (i.e. normalized
temporal expressions), we define six temporal rela-
tions: before, before-and-overlap, contains, equals,
inside, after and after-and-overlap. The temporal
relation between two normalized intervals is deter-
mined by a set of comparison rules that take the four
interval endpoints into consideration. For example,
A = [sA, eA] contains B = [sB, eB] if and only if
(sA < sB)∧ (eA > eB), where s and e are intervals
start and end points, respectively.

3 Experimental Study

In this section, we present an evaluation of our ex-
tended temporal extractor, the normalizer and the
comparator. We do not evaluate the HeidelTime
temporal extractor again because its performance
was reported in the TempEval-2 challenge (Verha-
gen et al., 2010), where it achieved 0.86 F1 score on
the TimeBank data sets (Pustejovsky et al., 2003).

3.1 Data Preparation

We focus on scaling up temporal systems to deal
with complex expressions. Therefore, we prepared
an evaluation data set that consists of a list of sen-
tences containing at least one of the five temporal
connectives since, betwen, from, before and after.
To do this, we extract all sentences that satisfy the
condition from 183 articles in the TimeBank 1.2
corpus3. This results in a total of 486 sentences.
Each sentence in the data set comes with the doc-
ument creation time (DCT) of its corresponding ar-
ticle. The second and the third columns of Table
1 summarize the number of sentences and appear-
ances of each temporal connective.

We use this data set to evaluate the extended tem-
poral extractor, the normalizer and also the com-
parator of our system. We note that although this
data set is driven by our focused temporal connec-
tives, it does not lose the generality of evaluating

3http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?
catalogId=LDC2006T08

Connective # sent. # appear. Prec Rec F1

since 31 31 1.0 1.0 1.0
between 32 33 1.0 1.0 1.0

from 340 366 0.8 1.0 0.89
before 33 33 0.8 1.0 0.89
after 78 81 0.72 1.0 0.84
Avg. 0.86 1.0 0.92

Table 1: The performance of our extended temporal ex-
tractor on complex expressions which contain at least one
of the connectives shown in the first column. These ex-
pressions cannot be identified by existing systems.

Module Correct Incorrect Acc
Normalizer 191 16 0.92
Comparator 191 0 1.0

Table 2: The performance of the normalization and com-
parison modules. We only compare the 191 correctly
identified time intervals with their corresponding docu-
ment creation time.

the normalization and comparison modules because
the sentences in this data set also contain many ba-
sic temporal expressions. Moreover, there are many
cases where the connectives in our data are not actu-
ally temporal connectives. Our system is supposed
to not capture them as temporal expressions. This is
also reflected in the experimental results.

3.2 Experimental Results

We report the performance of our extended tem-
poral extraction module using precision, recall and
F1 score as shown in the last three columns of Ta-
ble 1. We evaluate the normalization module on
the correctly extracted temporal expressions, includ-
ing basic expressions captured by HeidelTime and
the extended expressions identified by our extrac-
tor. A normalization is correct if and only if both
time interval endpoints are correctly identified. We
study the comparison module by evaluating it on
the comparisons of the correctly normalized expres-
sions against the corresponding DCT of the sen-
tences from which they are extracted. Because the
normalization and comparison outputs are judged as
correct or incorrect, we report the performance of
these modules in accuracy (Acc) as shown in Ta-
ble 2. Overall, the experimental study shows that
all modules in our system are robust and achieve ex-
cellent performance.
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Figure 2: A screenshot of the input panel.

Figure 3: A screenshot of the output panel.

4 The Demonstration

4.1 Visualization
We have implemented our system in a web-based
demo4. Figure 2 shows a screenshot of the input
panel of the system. The input panel includes a main
text box that allows users to input the text, and some
other input fields that allow users to customize the
system’s outputs. Among the fields, the reference
date serves as the document creation time (DCT) of
the input text. All temporal expressions captured
from the text will be normalized based on the ref-
erence date and compared also to the reference date
as illustrated in Figure 3.

4.2 Script Outline
First, we will give an overview of existing temporal
reasoning systems. Then we will introduce the novel
contributions of our system. After that, we will go
over our web-based demonstration, including (i) the
input panel: reference date and the text to be ana-
lyzed, and (ii) the output panel: the extracted basic
and extended temporal expressions, the normalized
intervals, and the comparison results.

5 Conclusions

In this demonstration paper, we introduced a tempo-
ral reasoning system that addresses three fundamen-
tal problems related to temporal expressions in text,

4http://cogcomp.cs.illinois.edu/page/demo view/TempSys

including extraction, normalization and comparison.
Our system consists of a temporal expression ex-
tractor capable of dealing with complex temporal
phrases, a time interval normalizer and a time inter-
val comparator. The experimental study shows that
our system achieves a high level of performance,
which will allow it to support other systems that re-
quire complicated temporal reasoning.
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Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

AttitudeMiner: Mining Attitude from Online Discussions

Amjad Abu-Jbara
EECS Department

University of Michigan
Ann Arbor, MI, USA

amjbara@umich.edu

Ahmed Hassan
Microsoft Research

Redmond, WA, USA
hassanam@microsoft.com

Dragomir Radev
EECS Department

University of Michigan
Ann Arbor, MI, USA
radev@umich.edu

Abstract

This demonstration presents AttitudeMiner, a
system for mining attitude from online dis-
cussions. AttitudeMiner uses linguistic tech-
niques to analyze the text exchanged between
participants of online discussion threads at dif-
ferent levels of granularity: the word level, the
sentence level, the post level, and the thread
level. The goal of this analysis is to iden-
tify the polarity of the attitude the discussants
carry towards one another. Attitude predic-
tions are used to construct a signed network
representation of the discussion thread. In this
network, each discussant is represented by a
node. An edge connects two discussants if
they exchanged posts. The sign (positive or
negative) of the edge is set based on the po-
larity of the attitude identified in the text asso-
ciated with the edge. The system can be used
in different applications such as: word polar-
ity identification, identifying attitudinal sen-
tences and their signs, signed social network
extraction from text, subgroup detect in dis-
cussion. The system is publicly available for
download and has an online demonstration at
http://clair.eecs.umich.edu/AttitudeMiner/.

1 Introduction

The rapid growth of social media has encouraged
people to interact with each other and get involved
in discussions more than anytime before. The most
common form of interaction on the web uses text
as the main communication medium. When people
discuss a topic, especially when it is a controversial
one, it is normal to see situations of both agreement
and disagreement among the discussants. It is even
not uncommon that the big group of discussants split
into two or more smaller subgroups. The members
of each subgroup mostly agree and show positive
attitude toward each other, while they mostly dis-
agree with the members of opposing subgroups and
possibly show negative attitude toward them. These
forms of sentiment are expressed in text by using
certain language constructs (e.g. use insult or nega-
tive slang to express negative attitude).

In this demonstration, we present a system that
applies linguistic analysis techniques to the text of
online discussions to predict the polarity of relations
that develop between discussants. This analysis is
done on words to identify their polarities, then on
sentences to identify attitudinal sentences and the
sign of attitude, then on the post level to identify the
sign of an interaction, and finally on the entire thread
level to identify the overall polarity of the relation.
Once the polarity of the pairwise relations that de-
velop between interacting discussants is identified,
this information is then used to construct a signed
network representation of the discussion thread.

The system also implements two signed network
partitioning techniques that can be used to detect
how the discussants split into subgroups regarding
the discussion topic.

The functionality of the system is based on
our previous research on word polarity identifica-
tion (Hassan and Radev, 2010) and attitude identifi-
cation (Hassan et al., 2010). The system is publicly
available for download and has a web interface to try
online1.

This work is related to previous work in the areas
of sentiment analysis and online discussion mining.
Many previous systems studied the problem of iden-
tifying the polarity of individual words (Hatzivas-
siloglou and McKeown, 1997; Turney and Littman,
2003). Opinionfinder (Wilson et al., 2005a) is a sys-
tem for mining opinions from text. Another research
line focused on analyzing online discussions. For
example, Lin et al. (2009) proposed a sparse coding-
based model that simultaneously models the seman-
tics and the structure of threaded discussions and
Shen et al. (2006) proposed a method for exploit-
ing the temporal information in discussion streams
to identify the reply structure of the dialog. Many
systems addressed the problem of extracting social
networks from data (Elson et al., 2010; McCallum
et al., 2007), but none of them considered both pos-
itive and negative relations.

In the rest of the paper, we describe the system
architecture, implementation, usage, and its perfor-

1http://clair.eecs.umich.edu/AttitudeMiner/
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Figure 1: Overview of the system processing pipeline

mance evaluation.

2 System Overview

Figure 1 shows a block diagram of the system com-
ponents and the processing pipeline. The first com-
ponent in the system is the thread parsing com-
ponent which takes as input a discussion thread
and parses it to identify the posts, the participants,
and the reply structure of the thread. This compo-
nent uses a module from CLAIRLib (Abu-Jbara and
Radev, 2011) to tokenize the posts and split them
into sentences.

The second component in the pipeline processes
the text of the posts to identify polarized words and
tag them with their polarity. This component uses
the publicly available tool, opinionfinder (Wilson et
al., 2005a), as a framework for polarity identifica-
tion. This component uses an extended polarity lex-
icon created by applying a random walk model to
WordNet (Miller, 1995) and a set of seed polarized
words. This approach is described in detail in our
previous work (Hassan and Radev, 2010). The con-
text of words is taken into consideration by running
a contextual word classifier that determines whether
the word is used in a polarized sense given the con-
text (Wilson et al., 2005b). For example, a positive
word appearing in a negated scope is used in a neg-
ative, rather than a positive sense.

The next component is the attitude identification
component. Given a sentence, our model predicts
whether it carries an attitude from the text writer to-
ward the text recipient or not. As we are only in-
terested in attitudes between participants, we limit
our analysis to sentences that use mentions of a dis-
cussion participants (i.e. names or second person
pronouns). We also discard all sentences that do
not contain polarized expressions as detected by the
previous component. We extract several patterns at
different levels of generalization representing any
given sentence. We use words, part-of-speech tags,

and dependency relations. We use those patterns to
build two Markov models for every kind of patterns.
The first model characterizes the relation between
different tokens for all patterns that correspond to
sentences that have an attitude. The second model
is similar to the first one, but it uses all patterns that
correspond to sentences that do not have an attitude.
Given a new sentence, we extract the corresponding
patterns and estimate the likelihood of every pattern
being generated from the two corresponding mod-
els. We then compute the likelihood ratio of the sen-
tence under every pair of models. Notice that we
have a pair of models corresponding to every type of
patterns. The likelihood ratios are combined using a
linear model, the parameters of which are estimated
using a development dataset. Please refer to (Hassan
et al., 2010) for more details about this component.

The next component works on the post level. It
assigns a sign to each post based on the signs of the
sentences it contains. A post is classified as negative
if it has at least Ns negative sentences, otherwise it is
classified as positive. The value of Ns can be chosen
by the user or set to default which was estimated
using a small labeled development set. The default
value for Ns is 1 (i.e. if the post contains at least one
negative sentence, the whole post is considered to be
negative).

The next component in the pipeline uses the atti-
tude predictions from posts to construct a signed net-
work representation of the discussion thread. Each
participant is represented by a node. An edge is
created between two participants if they interacted
with each other. A sign (positive or negative) is as-
signed to an edge based on the signs of the posts
the two participants connected by the edge have ex-
changed. This is done by comparing the number of
positive and negative posts. A negative sign is given
if the two participants exchanged at least Np nega-
tive posts. The value of Np can be set using a devel-
opment set. The default value is 1.

The last component is the subgroup identifica-
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Figure 2: The web interface for detecting subgroups in discussions

tion component. This component provides imple-
mentations for two signed network partitioning algo-
rithms. The first one is a greedy optimization algo-
rithm that is based on the principals of the structural
balance theory. The algorithm uses a criterion func-
tion for a local optimization partitioning such that
positive links are dense within groups and negative
links are dense between groups. The algorithm is de-
scribed in detail in (Doreian and Mrvar, 1996). The
second algorithm is FEC (Yang et al., 2007). FEC
is based on an agent-based random walk model. It
starts by finding a sink community, and then extract-
ing it from the entire network based on a graph cut
criteria that Yang et al. (2007) proposed. The same
process is then applied recursively to the extracted
community and the rest of the network.

3 Implementation Details

The system is implemented in Perl. Some of the
components in the processing pipeline use external
tools that are implemented in either Perl, Java, or
Python. All the external tools come bundled with the
system. The system is compatible with all the ma-
jor platforms including windows, Mac OS, and all
Linux distributions. The installation process is very
straightforward. There is a single installation script
that will install the system, install all the dependen-
cies, and do all the required configurations. The in-
stallation requires that Java JRE, Perl, and Python be
installed on the machine.

The system has a command-line interface that
provides full access to the system functionality. The
command-line interface can be used to run the whole
pipeline or any portion of it. It can also be used to ac-
cess any component directly. Each component has a
corresponding script that can be run separately. The
input and output specifications of each component
are described in the accompanying documentation.
All the parameters that control the performance of
the system can also be passed through the command-
line interface.

The system can process any discussion thread that
is input to it in a specific XML format. The fi-
nal output of the system is also in XML format.
The XML schema of the input/output is described
in the documentation. It is the user responsibil-
ity to write a parser that converts an online discus-
sion thread to the expected XML format. The sys-
tem package comes with three such parsers for three
different discussion sites: www.politicalforum.com,
groups.google.com, and www.createdebate.com.

The distribution also comes with three datasets
(from three different sources) comprising a total of
300 discussion threads. The datasets are annotated
with the subgroup labels of discussants. Included in
the distribution as well, a script for generating a vi-
sualization of the extracted signed network and the
identified subgroups.

AttitudeMiner also has a web interface that
demonstrates most of its functionality. The web in-
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Figure 3: The web interface for identifying attitudinal
sentences and their polarity

terface is intended for demonstration purposes only.
No webservice is provided. Figure 2 and Figrue 3
show two screenshots for the web interface.

4 System Performance

In this section, we give a brief summary of the sys-
tem performance. The method that generates the
extended polarity lexicon that is used for word po-
larity identification achieves 88.8% accuracy as re-
ported in (Hassan and Radev, 2010). The attitude
identification component distinguishes between at-
titudinal and non-attitudinal sentences with 80.3%
accuracy, and predicts the signs of attitudinal sen-
tences with 97% accuracy as reported in (Hassan et
al., 2010). Our evaluation for the signed network
extraction component on a large annotated dataset
showed that it achieves 83.5% accuracy. Finally, our
experiments on an annotated discussion showed that
the system can detect subgroups with 77.8% purity.
The system was evaluated using a dataset with thou-
sands of posts labeled by human annotators.

5 Conclusion

We presented of a demonstration of a social me-
dia mining system that used linguistic analysis tech-
niques to understand the relations that develop be-
tween users in online communities. The system is
capable of analyzing the text exchanged during dis-
cussions and identifying positive and negative atti-
tudes. Positive attitude reflects a friendly relation
while negative attitude is a sign of an antagonistic
relation. The system can also use the attitude infor-
mation to identify subgroups with a homogeneous
and common focus among the discussants. The sys-
tem predicts attitudes and identifies subgroups with
high accuracy.
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