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Abstract

We introduce the automatic annotation of
noun phrases in parsed sentences with tags
from a fine-grained semantic animacy hierar-
chy. This information is of interest within lex-
ical semantics and has potential value as a fea-
ture in several NLP tasks.

We train a discriminative classifier on an an-
notated corpus of spoken English, with fea-
tures capturing each noun phrase’s constituent
words, its internal structure, and its syntactic
relations with other key words in the sentence.
Only the first two of these three feature sets
have a substantial impact on performance, but
the resulting model is able to fairly accurately
classify new data from that corpus, and shows
promise for binary animacy classification and
for use on automatically parsed text.

1 Introduction

An animacy hierarchy, in the sense of Zaenen et al.
(2004), is a set of mutually exclusive categories de-
scribing noun phrases (NPs) in natural language sen-
tences. These classes capture the degree to which
the entity described by an NP is capable of human-
like volition: a key lexical semantic property which
has been shown to trigger a number of morphologi-
cal and syntactic phenomena across languages. An-
notating a corpus with this information can facili-
tate statistical semantic work, as well as providing a
potentially valuable feature—discussed in Zaenen et
al.—for tasks like relation extraction, parsing1, and

1Using our model in parsing would require bootstrapping
from c oarser parses, as our model makes use of some syntactic
features.

machine translation.

The handful of papers that we have found on
animacy annotation—centrally Ji and Lin (2009),
Øvrelid (2005), and Orasan and Evans (2001)—
classify only the basicANIMATE /INANIMATE con-
trast, but show some promise in doing so. Their
work shows success in automatically classifying in-
dividual words, and related work has shown that an-
imacy can be used to improve parsing performance
(Øvrelid and Nivre, 2007).

We adopt the class set presented in Zaenen et al.
(2004), and build our model around the annotated
corpus presented in that work. Their hierarchy con-
tains ten classes, meant to cover a range of cate-
gories known to influence animacy-related phenom-
ena cross-linguistically. They areHUMAN , ORG (or-
ganizations),ANIMAL , MAC (automata),VEH (vehi-
cles),PLACE, TIME, CONCRETE(other physical ob-
jects), NONCONC (abstract entities), andMIX (NPs
describing heterogeneous groups of entities). The
class definitions are straightforward—every NP de-
scribing a vehicle is aVEH—and Zaenen et al. of-
fer a detailed treatment of ambiguous cases. Unlike
the class sets used in named entity recognition work,
these classes are crucially meant to cover all NPs.
This includes freestanding nouns likepeople, as well
as pronominals likethat one, for which the choice of
class often depends on contextual information not
contained within the NP, or even the sentence.

In the typical case where the head of an NP be-
longs unambiguously to a single animacy class, the
phrase as a whole nearly always takes on the class
of its head: The Panama hat I gave to my uncle
on Tuesdaycontains numerous nominals of differ-
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ent animacy classes, buthat is the unique syntactic
head, and determines the phrase to beCONCRETE.
Heads can easily be ambiguous, though:My stereo
speakersand the speakers at the panel sessionbe-
long to different classes, but share a (polysemous)
head.

The corpus that we use is Zaenen et al.’s animacy-
annotated subset of the hand-parsed Switchboard
corpus of conversational American English. It is
built on, and now included in, Calhoun et al.’s
(2010) NXT version of Switchboard. This anno-
tated section consists of about 110,000 sentences
with about 300,000 NPs. We divide these sentences
into a training set (80%), a development set (10%),
and a test set (10%).2 Every NP in this section is ei-
ther assigned a class or marked as problematic, and
we train and test on all the NPs for which the an-
notators were able to agree (after discussion) on an
assignment.

2 Methods

We use a standard maximum entropy classifier
(Berger et al., 1996) to classify constituents: For
each labeled NP in the corpus, the model selects
the locally most probable class. Our features are de-
scribed in this section.

We considered features that required dependen-
cies between consecutively assigned classes, allow-
ing large NPs to depend on smaller NPs contained
within them, as in conjoined structures. These
achieved somewhat better coverage of the rareMIX

class, but did not yield any gains in overall perfor-
mance, and are not included in our results.

2.1 Bag-of-words features

Our simplest feature set,HASWORD-(tag-)word,
simply captures each word in the NP, both with and
without its accompanying part-of-speech (POS) tag.

2.2 Internal syntactic features

Motivated by the observation that syntactic heads
tend to determine animacy class, we introduce two
features:HEAD-tag-word contains the head word of
the phrase (extracted automatically from the parse)

2We inadvertently did some initial feature selection using
training data that included both our training and test sets.While
we have re-run all of those experiments, this introduces a possi-
ble bias towards features which perform well on our test set.

and its POS tag.HEADSHAPE-tag-shapeattempts
to cover unseen head words by replacing the word
string with its orthographic shape (substituting, for
example,Stanfordwith Ll and 3G-relatedwith dL-
l).

2.3 External syntactic features

The information captured by our tag set overlaps
considerably with the information that verbs use to
select their arguments.3 The subject ofsee, for ex-
ample, must be aHUMAN , MAC, ANIMAL , or ORG,
and the complement ofabovecannot be aTIME. As
such, we expect the verb or preposition that an NP
depends upon and the type of dependency involved
(subject, direct object, or prepositional complement)
to be powerful predictors of animacy, and introduce
the following features:SUBJ(-OF-verb), DOBJ(-OF-
verb) andPCOMP(-OF-prep)(-WITH-verb). We ex-
tract these dependency relations from our parses,
and mark an occurrence of each feature both with
and without each of its optional (parenthetical) pa-
rameters.

3 Results

The following table shows our model’s precision
and recall (as percentages) for each class and the
model’s overall accuracy (the percent of labeled
NPs which were labeled correctly), as well as the
number of instances of each class in the test set.

Class Count Precision Recall
VEH 534 88.56 39.14

TIME 1,101 88.24 80.38
NONCONC 12,173 83.39 93.32

MAC 79 63.33 24.05
PLACE 754 64.89 63.00

ORG 1,208 58.26 27.73
MIX 29 7.14 3.45

CONCRETE 1402 58.82 37.58
ANIMAL 137 69.44 18.25
HUMAN 11,320 91.19 93.30
Overall 28,737 Accuracy: 84.90

The next table shows the performance of each
feature bundle when it alone is used in classification,
as well as the performance of the model when each

3See Levin and Rappaport Hovav (2005) for a survey of ar-
gument selection criteria, including animacy.
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feature bundle is excluded. We offer for comparison
a baseline model that always chooses the most
frequent class,NONCONC.

Only these features: Accuracy (%)
Bag of words 83.04

Internal Syntactic 75.85
External Syntactic 50.35

All but these features: —
Bag of words 77.02

Internal syntactic 83.36
External syntactic 84.58

Most frequent class 42.36
Full model 84.90

3.1 Binary classification

We test our model’s performance on the
somewhat better-known task of binary
(ANIMATE /INANIMATE ) classification by merging
the model’s class assignments into two sets after
classification, following the grouping defined in Za-
enen et al.4 While none of our architectural choices
were made with binary classification in mind, it is
heartening to know that the model performs well on
this easier task.

Overall accuracy is 93.50%, while a baseline
model that labels each NPANIMATE achieves only
53.79%. All of the feature sets contribute mea-
surably to the binary model, and external syntactic
features do much better on this task than on fine-
grained classification, despite remaining the worst
of the three sets: They achieve 78.66% when used
alone. We have found no study on animacy in spo-
ken English with which to compare these results.

3.2 Automatically parsed data

In order to test the robustness of our model to the
errors introduced by an automatic parser, we train
an instance of the Stanford parser (Klein and Man-
ning, 2002) on our training data (which is relatively
small by parsing standards), re-parse the linearized
test data, and then train and test our classifier on the
resulting trees.

Since we can only confidently evaluate classifi-
cation choices for correctly parsed constituents, we

4HUMAN , VEH, MAC , ORG, ANIMAL , andHUMAN are con-
sidered animate, and the remaining classes inanimate.

consider accuracy measured only over those hypoth-
esized NPs which encompass the same string of
words as an NP in the gold standard data. Our
parser generated correct (evaluable) NPs with preci-
sion 88.63% and recall 73.51%, but for these evalu-
able NPs, accuracy was marginallybetter than on
hand-parsed data: 85.43% using all features. The
parser likely tended to misparse those NPs which
were hardest for our model to classify.

3.3 Error analysis

A number of the errors made by the model pre-
sented above stem from ambiguous cases where
head words, often pronouns, can take on referents of
multiple animacy classes, and where there is no clear
evidence within the bounds of the sentence of which
one is correct. In the following example the model
incorrectly assignsmine the classCONCRETE, and
nothing in the sentence provides evidence for the
surprising correct class,HUMAN .

Well, I’ve usedmine on concrete treated
wood.

For a model to correctly treat cases like this, it would
be necessary to draw on a simple co-reference reso-
lution system and incorporate features dependent on
plausibly co-referent sentences elsewhere in the text.

The distinction between an organization (ORG)
and a non-organized group of people (HUMAN ) in
this corpus is troublesome for our model. It hinges
on whether the group shares a voice or purpose,
which requires considerable insight into the mean-
ing of a sentence to assess. For example,peoplein
the below is anORG, but no simple lexical or syntac-
tic cues distinguish it from the more common class
HUMAN .

The only problem is, of course, that, uh,
that requires significant commitment from
peopleto actually decide they want to put
things like that up there.

Our performance on the classMIX , which marks
NPs describing multiple heterogeneous entities, was
very poor. The highlighted NP in the sentence below
was incorrectly classifiedNONCONC:

But the same money could probably be far
better spent on, uh, uh,lunar bases and
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solar power satellite researchand, you
know, so forth.

It is quite plausible that some more sophisticated
approaches to modeling this unique class might be
successful, but no simple feature that we tried had
any success, and the effect of missingMIX on overall
performance is negligible.

There are finally some cases where our attempts
to rely on the heads of NPs were thwarted by the rel-
atively flat structure of the parses. Under any main-
stream theory of syntax,home is more prominent
thannursing in the phrasea nursing home: It is the
unique head of the NP. However, the parse provided
does not attribute any internal structure to this con-
stituent, making it impossible for the model to deter-
mine the relative prominence of the two nouns. Had
the model known that the unique head of the phrase
washome, it would have likely have correctly clas-
sified it as aPLACE, rather than the a priori more
probableNONCONC.

4 Conclusion and future work

We succeeded in developing a classifier capable of
annotating texts with a potentially valuable feature,
with a high tolerance for automatically generated
parses, and using no external or language-specific
sources of knowledge.

We were somewhat surprised, though, by the rel-
atively poor performance of the external syntactic
features in this model: When tested alone, they
achieved an accuracy of only about 50%. This sig-
nals one possible site for further development.

Should this model be used in a setting where ex-
ternal knowledge sources are available, two seem
especially promising. Synonyms and hypernyms
from WordNet (Fellbaum, 2010) or a similar lexi-
con could be used to improve the model’s handling
of unknown words—demonstrated successfully with
the aid of a word sense disambiguation system
in Orasan and Evans (2001) for binary animacy
classification on single words. A lexical-semantic
database like FrameNet (Baker et al., 1998) could
also be used to introduce semantic role labels (which
are tied to animacy restrictions) as features, poten-
tially rescuing the intuition that governing verbs and
prepositions carry animacy information.
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