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Abstract

Concept-to-text generation refers to the task of
automatically producing textual output from
non-linguistic input. We present a joint model
that captures content selection (“what to say”)
and surface realization (“how to say”) in
an unsupervised domain-independent fashion.
Rather than breaking up the generation pro-
cess into a sequence of local decisions, we de-
fine a probabilistic context-free grammar that
globally describes the inherent structure of the
input (a corpus of database records and text
describing some of them). We represent our
grammar compactly as a weighted hypergraph
and recast generation as the task of finding the
best derivation tree for a given input. Experi-
mental evaluation on several domains achieves
competitive results with state-of-the-art sys-
tems that use domain specific constraints, ex-
plicit feature engineering or labeled data.

1 Introduction

Concept-to-text generation broadly refers to the task
of automatically producing textual output from non-
linguistic input (Reiter and Dale, 2000). Depend-
ing on the application and the domain at hand, the
input may assume various representations includ-
ing databases of records, expert system knowledge
bases, simulations of physical systems and so on.
Figure 1 shows input examples and their correspond-
ing text for three domains, air travel, sportscasting
and weather forecast generation.

A typical concept-to-text generation system im-
plements a pipeline architecture consisting of three
core stages, namely text planning (determining the

content and structure of the target text), sentence
planning (determining the structure and lexical con-
tent of individual sentences), and surface realiza-
tion (rendering the specification chosen by the sen-
tence planner into a surface string). Traditionally,
these components are hand-engineered in order to
generate high quality text, however at the expense
of portability and scalability. It is thus no surprise
that recent years have witnessed a growing interest
in automatic methods for creating trainable genera-
tion components. Examples include learning which
database records should be present in a text (Duboue
and McKeown, 2002; Barzilay and Lapata, 2005)
and how these should be verbalized (Liang et al.,
2009). Besides concentrating on isolated compo-
nents, a few approaches have emerged that tackle
concept-to-text generation end-to-end. Due to the
complexity of the task, most models simplify the
generation process, e.g., by creating output that con-
sists of a few sentences, thus obviating the need for
document planning, or by treating sentence planning
and surface realization as one component. A com-
mon modeling strategy is to break up the genera-
tion process into a sequence of local decisions, each
learned separately (Reiter et al., 2005; Belz, 2008;
Chen and Mooney, 2008; Angeli et al., 2010; Kim
and Mooney, 2010).

In this paper we describe an end-to-end gen-
eration model that performs content selection and
surface realization jointly. Given a corpus of
database records and textual descriptions (for some
of them), we define a probabilistic context-free
grammar (PCFG) that captures the structure of the
database and how it can be rendered into natural

752



Flight

From To
phoenix new york

Search

Type What
query flight

Day

Day Dep/Ar
sunday departure

List flights from phoenix to new york on sunday

Temperature

Time Min Mean Max
06:00-21:00 9 15 21

Wind Speed

Time Min Mean Max
06:00-21:00 15 20 30

Cloud Sky Cover

Time Percent (%)
06:00-09:00 25-50
09:00-12:00 50-75

Wind Direction

Time Mode
06:00-21:00 S

Cloudy, with a low around 10. South wind around 20 mph.

Pass

From To
pink3 pink7

Bad Pass

From To
pink7 purple3

Turn Over

From To
pink7 purple3

pink3 passes the ball to pink7

(b)(a)

(c)

Figure 1: Input-output examples for (a) query generation in the air travel domain, (b) weather forecast generation, and
(c) sportscasting.

language. This grammar represents a set of trees
which we encode compactly using a weighted hy-
pergraph (or packed forest), a data structure that de-
fines a probability (or weight) for each tree. Gen-
eration then boils down to finding the best deriva-
tion tree in the hypergraph which can be done effi-
ciently using the Viterbi algorithm. In order to en-
sure that our generation output is fluent, we intersect
our grammar with a language model and perform
decoding using a dynamic programming algorithm
(Huang and Chiang, 2007).

Our model is conceptually simpler than previous
approaches and encodes information about the do-
main and its structure globally, by considering the
input space simultaneously during generation. Our
only assumption is that the input must be a set of
records essentially corresponding to database-like
tables whose columns describe fields of a certain
type. Experimental evaluation on three domains ob-
tains results competitive to the state of the art with-
out using any domain specific constraints, explicit
feature engineering or labeled data.

2 Related Work

Our work is situated within the broader class of
data-driven approaches to content selection and sur-
face realization. Barzilay and Lapata (2005) focus
on the former problem which they view as an in-
stance of collective classification (Barzilay and La-
pata, 2005). Given a corpus of database records
and texts describing some of them, they learn a con-
tent selection model that simultaneously optimizes

local label assignments and their pairwise relations.
Building on this work, Liang et al. (2009) present a
hierarchical hidden semi-Markov generative model
that first determines which facts to discuss and then
generates words from the predicates and arguments
of the chosen facts.

A few approaches have emerged more recently
that combine content selection and surface realiza-
tion. Kim and Mooney (2010) adopt a two-stage ap-
proach: using a generative model similar to Liang et
al. (2009), they first decide what to say and then ver-
balize the selected input with WASP−1, an existing
generation system (Wong and Mooney, 2007). In
contrast, Angeli et al. (2010) propose a unified con-
tent selection and surface realization model which
also operates over the alignment output produced
by Liang et al. (2009). Their model decomposes
into a sequence of discriminative local decisions.
They first determine which records in the database
to talk about, then which fields of those records
to mention, and finally which words to use to de-
scribe the chosen fields. Each of these decisions
is implemented as a log-linear model with features
learned from training data. Their surface realiza-
tion component is based on templates that are au-
tomatically extracted and smoothed with domain-
specific constraints in order to guarantee fluent out-
put. Other related work (Wong and Mooney, 2007;
Lu and Ng, 2011). has focused on generating natural
language sentences from logical form (i.e., lambda-
expressions) using mostly synchronous context-free
grammars (SCFGs).
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Similar to Angeli et al. (2010), we also present
an end-to-end system that performs content selec-
tion and surface realization. However, rather than
breaking up the generation task into a sequence of
local decisions, we optimize what to say and how
to say simultaneously. We do not learn mappings
from a logical form, but rather focus on input which
is less constrained, possibly more noisy and with a
looser structure. Our key insight is to convert the
set of database records serving as input to our gen-
erator into a PCFG that is neither hand crafted nor
domain specific but simply describes the structure
of the database. The approach is conceptually sim-
ple, does not rely on discriminative training or any
feature engineering. We represent the grammar and
its derivations compactly as a weighted hypergraph
which we intersect with a language model in order
to generate fluent output. This allows us to easily
port surface generation to different domains without
having to extract new templates or enforce domain
specific constraints.

3 Problem Formulation

We assume our generator takes as input a set of
database records d and produces text w that verbal-
izes some of these records. Each record r ∈ d has a
type r.t and a set of fields f associated with it. Fields
have different values f .v and types f .t (i.e., in-
teger or categorical). For example, in Figure 1b,
wind speed is a record type with four fields: time,
min, mean, and max. The values of these fields are
06:00-21:00, 15, 20, and 30, respectively; the type
of time is categorical, whereas all other fields are
integers.

During training, our algorithm is given a cor-
pus consisting of several scenarios, i.e., database
records paired with texts like those shown in Fig-
ure 1. In the weather forecast domain, a scenario cor-
responds to weather-related measurements of tem-
perature, wind, speed, and so on collected for a spe-
cific day and time (e.g., day or night). In sportscast-
ing, scenarios describe individual events in the soc-
cer game (e.g., passing or kicking the ball). In the air
travel domain, scenarios comprise of flight-related
details (e.g., origin, destination, day, time). Our goal
then is to reduce the tasks of content selection and
surface realization into a common probabilistic pars-

ing problem. We do this by abstracting the struc-
ture of the database (and accompanying texts) into
a PCFG whose probabilities are learned from train-
ing data.1 Specifically, we convert the database into
rewrite rules and represent them as a weighted di-
rected hypergraph (Gallo et al., 1993). Instead of
learning the probabilities on the PCFG, we directly
compute the weights on the hyperarcs using a dy-
namic program similar to the inside-outside algo-
rithm (Li and Eisner, 2009). During testing, we are
given a set of database records without the corre-
sponding text. Using the trained grammar we com-
pile a hypergraph specific to this test input and de-
code it approximately via cube pruning (Chiang,
2007).

The choice of the hypergraph framework is moti-
vated by at least three reasons. Firstly, hypergraphs
can be used to represent the search space of most
parsers (Klein and Manning, 2001). Secondly, they
are more efficient and faster than the common CYK
parser-based representation for PCFGs by a factor
of more than ten (Huang and Chiang, 2007). And
thirdly, the hypergraph representation allows us to
integrate an n-gram language model and perform de-
coding efficiently using k-best Viterbi search, opti-
mizing what to say and how to say at the same time.

3.1 Grammar Definition

Our model captures the inherent structure of the
database with a number of CFG rewrite rules, in
a similar way to how Liang et al. (2009) define
Markov chains in the different levels of their hierar-
chical model. These rules are purely syntactic (de-
scribing the intuitive relationship between records,
records and fields, fields and corresponding words),
and could apply to any database with similar struc-
ture irrespectively of the semantics of the domain.

Our grammar is defined in Table 1 (rules (1)–(9)).
Rule weights are governed by an underlying multi-
nomial distribution and are shown in square brack-
ets. Non-terminal symbols are in capitals and de-

1An alternative would be to learn a SCFG between the
database input and the accompanying text. However, this would
involve considerable overhead in terms of alignment (as the
database and the text do not together constitute a clean parallel
corpus, but rather a noisy comparable corpus), as well as gram-
mar training and decoding using state-of-the art SMT methods,
which we manage to avoid with our simpler approach.
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1. S→ R(start) [Pr = 1]

2. R(ri.t)→ FS(r j,start) R(r j.t) [P(r j.t |ri.t) ·λ]

3. R(ri.t)→ FS(r j,start) [P(r j.t |ri.t) ·λ]

4. FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) [P( f j | fi)]

5. FS(r,r. fi)→ F(r,r. f j) [P( f j | fi)]

6. F(r,r. f )→W(r,r. f ) F(r,r. f ) [P(w |w−1,r,r. f )]

7. F(r,r. f )→W(r,r. f ) [P(w |w−1,r,r. f )]

8. W(r,r. f )→ α [P(α |r,r. f , f .t, f .v)]

9. W(r,r. f )→ g( f .v)
[P(g( f .v).mode |r,r. f , f .t = int)]

Table 1: Grammar rules and their weights shown in
square brackets.

note intermediate states; the terminal symbol α

corresponds to all words seen in the training set,
and g( f .v) is a function for generating integer num-
bers given the value of a field f . All non-terminals,
save the start symbol S, have one or more features
(shown in parentheses) that act as constraints, sim-
ilar to number and gender agreement constraints in
augmented syntactic rules.

Rule (1) denotes the expansion from the start
symbol S to record R, which has the special ‘start’
record type (hence the notation R(start)). Rule (2)
defines a chain between two consecutive records,
i.e., going from a source record ri to a target r j.
Here, FS(r j,r j. f ) represents the set of fields of the
target r j, following the source record R(ri).
For example, the rule R(skyCover1.t) →
FS(temperature1,start)R(temperature1.t) can
be interpreted as follows. Given that we have
talked about skyCover1, we will next talk about
temperature1 and thus emit its corresponding fields.
R(temperature1.t) is a non-terminal place-holder
for the continuation of the chain of records, and
start in FS is a special boundary field between
consecutive records. The weight of this rule is the
bigram probability of two records conditioned on
their record type, multiplied with a normalization
factor λ. We have also defined a null record type
i.e., a record that has no fields and acts as a
smoother for words that may not correspond to a
particular record. Rule (3) is simply an escape rule,

so that the parsing process (on the record level) can
finish.

Rule (4) is the equivalent of rule (2) at the
field level, i.e., it describes the chaining of
two consecutive fields fi and f j. Non-terminal
F(r,r. f ) refers to field f of record r. For
example, the rule FS(windSpeed1,min) →
F(windSpeed1,max)FS(windSpeed1,max), spec-
ifies that we should talk about the field max of
record windSpeed1, after talking about the field
min. Analogously to the record level, we have also
included a special null field type for the emission
of words that do not correspond to a specific record
field. Rule (6) defines the expansion of field F to
a sequence of (binarized) words W, with a weight
equal to the bigram probability of the current word
given the previous word, the current record, and
field. This is an attempt at capturing contextual
dependencies between words over and above to
integrating a language model during decoding (see
Section 3.3).

Rules (8) and (9) define the emission of words and
integer numbers from W, given a field type and its
value. Rule (8) emits a single word from the vocabu-
lary of the training set. Its weight defines a multino-
mial distribution over all seen words, for every value
of field f , given that the field type is categorical or
the special null field. Rule (9) is identical but for
fields whose type is integer. Function g( f .v) gener-
ates an integer number given the field value, using
either of the following six ways (Liang et al., 2009):
identical to the field value, rounding up or rounding
down to a multiple of 5, rounding off to the clos-
est multiple of 5 and finally adding or subtracting
some unexplained noise.2 The weight is a multino-
mial over the six generation function modes, given
the record field f .

3.2 Hypergraph Construction

So far we have defined a probabilistic grammar
that captures the structure of a database d with
records and fields as intermediate non-terminals, and
words w (from the associated text) as terminals. Us-
ing this grammar and the CYK parsing algorithm,
we could obtain the top scoring derivation of records
and fields for a given input (i.e., a sequence of

2The noise is modeled as a geometric distribution.
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S0,7

R0,2(start)

R0,1(start)

· · ·

FS0,1(skyCover1,start)

R1,1(skyCover1.t)

R1,1(temp1.t)

FS0,1(temp1,start)

· · ·

F0,1(skyCover1,%)

FS1,1(skyCover1,%)

F0,1(skyCover1,time)

FS1,1(skyCover1,time)

W0,1(skyCover1,%)

W0,1(skyCover1,time)

FS1,2(temp1,start)

R2,2(temp1.t)

FS1,2(skyCover1,start)

R2,2(skyCover1.t)

· · ·

sunny

F1,2(temp1,min)

FS2,2(temp1,min)

W0,1(temp1,min) g0,1(min,v=10)

F1,2(temp1,max)

FS2,2(temp1,max)

W0,1(temp1,max) g0,1(max,v=20)

with

Figure 2: Partial hypergraph representation for the sentence “Sunny with a low around 30 .” For the sake of readability,
we show a partial span on the first two words without weights on the hyperarcs.

words) as well as the optimal segmentation of the
text, provided we have a trained set of weights. The
inside-outside algorithm is commonly used for esti-
mating the weights of a PCFG. However, we first
transform the CYK parser and our grammar into
a hypergraph and then compute the weights using
inside-outside. Huang and Chiang (2005) define a
weighted directed hypergraph as follows:
Definition 1 An ordered hypergraph H is a tuple
〈N,E, t,R〉, where N is a finite set of nodes, E
is a finite set of hyperarcs and R is the set of
weights. Each hyperarc e ∈ E is a triple e =
〈T (e),h(e), f (e)〉, where h(e) ∈ N is its head node,
T (e) ∈ N∗ is a set of tail nodes and f (e) is a mono-
tonic weight function R|T (e)| to R and t ∈ N is a tar-
get node.

Definition 2 We impose the arity of a hyperarc to be
|e| = |T (e)| = 2, in other words, each head node is
connected with at most two tail nodes.

Given a context-free grammar G = 〈N,T,P,S〉
(where N is the set of variables, T the set of ter-
minals, P the set of production rules, and S ∈ N the
start symbol) and an input string w, we can map the
standard weighted CYK algorithm to a hypergraph
as follows. Each node [A, i, j] in the hypergraph
corresponds to non-terminal A spanning words wi

to w j of the input. Each rewrite rule A→ BC in P,
with three free indices i < j < k, is mapped to
the hyperarc 〈((B, i, j),(C, j,k)) ,(A, i,k), f 〉, where
f = f ((B, i, j)) f ((C, j,k)) ·Pr(A→ BC).3 The hy-

3Similarly, rewrite rules of type A→ B are mapped to the
hyperarc 〈(B, i, j),(A, i, j), f 〉, with f = f ((B, i, j)) ·Pr(A→ B).

pergraph can be thus viewed as a compiled lattice
of the corresponding chart graph. Figure 2 shows
an example hypergraph for a grammar defined on
database input similar to Figure (1b).

In order to learn the weights on the hyperarcs we
perform the following procedure iteratively in an
EM fashion (Li and Eisner, 2009). For each train-
ing scenario we build its hypergraph representation.
Next, we perform inference by calculating the in-
side and outside scores of the hypergraph, so as to
compute the posterior distribution over its hyperarcs
(E-step). Finally, we collectively update the posteri-
ors on the parameters-weights, i.e., rule probabilities
and emission multinomial distributions (M-step).

3.3 Decoding
In the framework outlined above, parsing an input
string w (given some learned weights) boils down
to traversing the hypergraph in a particular order.
(Note that the hypergraph should be acyclic, which
is always guaranteed by the grammar in Table 1). In
generation, our aim is to verbalize an input scenario
from a database d (see Figure 1). We thus find the
best text by maximizing:

argmax
w

P(w |d) = argmax
w

P(w) ·P(d |w) (1)

where P(d |w) is the decoding likelihood for a se-
quence of words w, P(w) is a measure of the qual-
ity of each output (given by a language model),
and P(w |d) the posterior of the best output for
database d. Note that calculating P(d |w) requires
deciding on the output length |w|. Rather than set-
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ting w to a fixed length, we rely on a linear regres-
sion predictor that uses the counts of each record
type per scenario as features and is able to produce
variable length texts.

In order to perform decoding with an n-gram lan-
guage model, we adopt Huang and Chiang’s (2007)
dynamic-programming algorithm for SCFG-based
systems. Each node in the hypergraph is split into
a set of compound items, namely +LM items. Each
+LM item is of the form (na?b), where a and b are
boundary words of the generation string, and ? is a
place-holder symbol for an elided part of that string,
indicating a sub-generation part ranging from a to b.
An example +LM deduction of a single hyperarc of
the hypergraph in Figure 2 using bigrams is:

(2)
FS1,2(temp1,start)low : (w1,g1),
R2,2(temp1.t)around?degrees : (w2,g2)

R1,1(skyCover1.t)low?degrees : (w,g1g2)

w = w1 +w2 + ew +Plm(around | low) (3)

where w1,w2 are node weights, g1,g2 are the corre-
sponding sub-generations, ew is the weight of the hy-
perarc and w the weight of the resulting +LM item.
Plm and (na?b) are defined as in Chiang (2007) in a
generic fashion, allowing extension to an arbitrary
size of n-gram grammars.

Naive traversal of the hypergraph bottom-up
would explore all possible +LM deductions along
each hyperarc, and would increase decoding com-
plexity to an infeasible O(2nn2), assuming a trigram
model and a constant number of emissions at the ter-
minal nodes. To ensure tractability, we adopt cube
pruning, a popular approach in syntax-inspired ma-
chine translation (Chiang, 2007). The idea is to use a
beam-search over the intersection grammar coupled
with the cube-pruning heuristic. The beam limits the
number of derivations for each node, whereas cube-
pruning further limits the number of +LM items con-
sidered for inclusion in the beam. Since f (e) in Def-
inition 1 is monotonic, we can select the k-best items
without computing all possible +LM items.

Our decoder follows Huang and Chiang (2007)
but importantly differs in the treatment of leaf nodes
in the hypergraph (see rules (8) and (9)). In the
SCFG context, the Viterbi algorithm consumes ter-
minals from the source string in a bottom-up fashion

and creates sub-translations according to the CFG
rule that holds each time. In the concept-to-text
generation context, however, we do not observe the
words; instead, for each leaf node we emit the k-best
words from the underlying multinomial distribution
(see weights on rules (8) and (9)) and continue build-
ing our sub-generations bottom-up.

4 Experimental Design

Data We used our system to generate soccer com-
mentaries, weather forecasts, and spontaneous utter-
ances relevant to the air travel domain (examples
are given in Figure 1). For the first domain we
used the dataset of Chen and Mooney (2008), which
consists of 1,539 scenarios from the 2001–2004
Robocup game finals. Each scenario contains on av-
erage |d|= 2.4 records, each paired with a short sen-
tence (5.7 words). This domain has a small vocabu-
lary (214 words) and simple syntax (e.g., a transitive
verb with its subject and object). Records in this
dataset (henceforth ROBOCUP) were aligned man-
ually to their corresponding sentences (Chen and
Mooney, 2008). Given the relatively small size of
this dataset, we performed cross-validation follow-
ing previous work (Chen and Mooney, 2008; An-
geli et al., 2010). We trained our system on three
ROBOCUP games and tested on the fourth, averaging
over the four train/test splits.

For weather forecast generation, we used the
dataset of Liang et al. (2009), which consists of
29,528 weather scenarios for 3,753 major US cities
(collected over four days). The vocabulary in this
domain (henceforth WEATHERGOV) is comparable
to ROBOCUP (345 words), however, the texts are
longer (|w| = 29.3) and more varied. On average,
each forecast has 4 sentences and the content selec-
tion problem is more challenging; only 5.8 out of
the 36 records per scenario are mentioned in the text
which roughly corresponds to 1.4 records per sen-
tence. We used 25,000 scenarios from WEATHER-
GOV for training, 1,000 scenarios for development
and 3,528 scenarios for testing. This is the same par-
tition used in Angeli et al. (2010).

For the air travel domain we used the ATIS dataset
(Dahl et al., 1994), consisting of 5,426 scenar-
ios. These are transcriptions of spontaneous utter-
ances of users interacting with a hypothetical on-
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WEATHERGOV ATIS ROBOCUP

1-
B

E
S

T Near 57. Near 57. Near 57. Near 57. Near
57. Near 57. Near 57. Near 57. Near 57.
Near 57. Near 57. South wind.

What what what what flights
from Denver Phoenix Pink9 to to Pink7 kicks

k-
B

E
S

T

As high as 23 mph. Chance of precipitation
is 20. Breezy, with a chance of showers.
Mostly cloudy, with a high near 57. South
wind between 3 and 9 mph.

Show me the flights from
Denver to Phoenix

Pink9 passes back to Pink7

A
N

G
E

L
I

A chance of rain or drizzle, with a high near
57. South wind between 3 and 9 mph.

Show me the flights leave
from Nashville to Phoenix

Pink9 kicks to Pink7

H
U

M
A

N

A slight chance of showers. Mostly cloudy,
with a high near 58. South wind between 3
and 9 mph, with gusts as high as 23 mph.
Chance of precipitation is 20%.

List flights from Denver to
Phoenix

Pink9 passes back to Pink7

Table 2: System output on WEATHERGOV, ATIS, and ROBOCUP (1-BEST, k-BEST, ANGELI) and corresponding
human-authored text (HUMAN).

line flight booking system. We used the dataset
introduced in Zettlemoyer and Collins (2007)4 and
automatically converted their lambda-calculus ex-
pressions to attribute-value pairs following the con-
ventions adopted by Liang et al. (2009). For ex-
ample, the scenario in Figure 1(a) was initially
represented as: λx. f light(x) ∧ f rom(x, phoenix) ∧
to(x,new york)∧day(x,sunday).5 In contrast to the
two previous datasets, ATIS has a much richer vo-
cabulary (927 words); each scenario corresponds
to a single sentence (average length is 11.2 words)
with 2.65 out of 19 record types mentioned on av-
erage. Following Zettlemoyer and Collins (2007),
we trained on 4,962 scenarios and tested on ATIS
NOV93 which contains 448 examples.

Model Parameters Our model has two parame-
ters, namely the number of k grammar derivations
considered by the decoder and the order of the
language model. We tuned k experimentally on
held-out data taken from WEATHERGOV, ROBOCUP,
and ATIS, respectively. The optimal value was k=15
for WEATHERGOV, k=25 for ROBOCUP, and k = 40

4The original corpus contains user utterances of single dia-
logue turns which would result in trivial scenarios. Zettlemoyer
and Collins (2007) concatenate all user utterances referring to
the same dialogue act, (e.g., book a flight), thus yielding more
complex scenarios with longer sentences.

5The resulting dataset and a technical report describ-
ing the mapping procedure in detail are available from
http://homepages.inf.ed.ac.uk/s0793019/index.php?
page=resources

for ATIS. For the ROBOCUP domain, we used a bi-
gram language model which was considered suffi-
cient given that the average text length is small. For
WEATHERGOV and ATIS, we used a trigram language
model.

System Comparison We evaluated two configu-
rations of our system. A baseline that uses the top
scoring derivation in each subgeneration (1-BEST)
and another version which makes better use of our
decoding algorithm and considers the best k deriva-
tions (i.e., 15 for WEATHERGOV, 40 for ATIS, and
25 for ROBOCUP). We compared our output to An-
geli et al. (2010) whose approach is closest to ours
and state-of-the-art on the WEATHERGOV domain.
For ROBOCUP, we also compare against the best-
published results (Kim and Mooney, 2010).

Evaluation We evaluated system output automat-
ically, using the BLEU modified precision score
(Papineni et al., 2002) with the human-written text
as reference. In addition, we evaluated the gener-
ated text by eliciting human judgments. Participants
were presented with a scenario and its correspond-
ing verbalization and were asked to rate the latter
along two dimensions: fluency (is the text grammat-
ical and overall understandable?) and semantic cor-
rectness (does the meaning conveyed by the text cor-
respond to the database input?). The subjects used a
five point rating scale where a high number indicates
better performance. We randomly selected 12 doc-
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ROBOCUP WEATHERGOV ATIS
System BLEU BLEU BLEU
1-BEST 10.79 8.64 11.85
k-BEST 30.90 33.70 29.30
ANGELI 28.70 38.40 26.77
KIM-MOONEY 47.27 — —

Table 3: BLEU scores on ROBOCUP (fixed content se-
lection), WEATHERGOV, and ATIS.

uments from the test set (for each domain) and gen-
erated output with our models (1-BEST and k-BEST)
and Angeli et al.’s (2010) model (see Figure 2 for
examples of system output). We also included the
original text (HUMAN) as gold standard. We thus
obtained ratings for 48 (12 × 4) scenario-text pairs
for each domain. The study was conducted over the
Internet using WebExp (Keller et al., 2009) and was
completed by 114 volunteers, all self reported native
English speakers.

5 Results

We conducted two experiments on the ROBOCUP do-
main. We first assessed the performance of our gen-
erator (k-BEST) on joint content selection and sur-
face realization and obtained a BLEU score of 24.88.
In comparison, the baseline’s (1-BEST) BLEU score
was 8.01. In a second experiment we forced the
generator to use the gold-standard records from the
database. This was necessary in order to compare
with previous work (Angeli et al., 2010; Kim and
Mooney, 2010).6 Our results are summarized in Ta-
ble 3. Overall, our generator performs better than
the baseline and Angeli et al. (2010). We observe
a substantial increase in performance compared to
the joint content selection and surface realization
setting. This is expected as the generator is faced
with an easier task and there is less scope for error.
Our model does not outperform Kim and Mooney
(2010), however, this is not entirely surprising as
their model requires considerable more supervision
(e.g., during parameter initialization) and includes a
post-hoc re-ordering component.

6Angeli et al. (2010) and Kim and Mooney (2010) fix con-
tent selection both at the record and field level. We let our gen-
erator select the appropriate fields, since these are at most two
per record type and this level of complexity can be easily tack-
led during decoding.

ROBOCUP WEATHERGOV ATIS
System F SC F SC F SC

1-BEST 2.47∗† 2.33∗† 1.82∗† 2.05∗† 2.40∗† 2.46∗†

k-BEST 4.31∗ 3.96∗ 3.92∗ 3.30∗ 4.01 3.87
ANGELI 4.03∗† 3.70∗† 4.26∗ 3.60∗ 3.56∗† 3.33∗†

HUMAN 4.47† 4.37† 4.61† 4.03† 4.10 4.01

Table 4: Mean ratings for fluency (F) and semantic cor-
rectness (SC) on system output elicited by humans on
ROBOCUP, WEATHERGOV, and ATIS (∗: sig. diff. from
HUMAN; †: sig. diff. from k-BEST.)

With regard to WEATHERGOV, our generator im-
proves over the baseline but lags behind Angeli et
al. (2010). Since our system emits words based on
a language model rather than a template, it displays
more freedom in word order and lexical choice, and
is thus penalized by BLEU when creating output that
is overly distinct from the reference. On ATIS, our
model outperforms both the baseline and Angeli et
al. This is the most challenging domain with re-
gard to surface realization with a vocabulary larger
than ROBOCUP and WEATHERGOV by factors of 2.7
and 4.3, respectively.

The results of our human evaluation study are
shown in Table 3. We carried out an Analysis of
Variance (ANOVA) to examine the effect of system
type (1-BEST, k-BEST, ANGELI, and HUMAN) on the
fluency and semantic correctness ratings. Means
differences were compared using a post-hoc Tukey
test. On ROBOCUP, our system (k-BEST) is signif-
icantly better than the baseline (1-BEST) and AN-
GELI both in terms of fluency and semantic correct-
ness (a < 0.05). On WEATHERGOV, our generator
performs comparably to ANGELI on fluency and se-
mantic correctness (the differences in the means are
not statistically significant); 1-BEST is significantly
worse than 15-BEST and ANGELI (a < 0.05). On
ATIS, k-BEST is significantly more fluent and seman-
tically correct than 1-BEST and ANGELI (a < 0.01).
There was no statistically significant difference be-
tween the output of our system and the original ATIS

sentences.
In sum, we observe that taking the k-best deriva-

tions into account boosts performance (the 1-BEST

system is consistently worse). Our model is on par
with ANGELI on WEATHERGOV but performs better
on ROBOCUP and ATIS when evaluated both auto-
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matically and by humans. In general, a large part of
our output resembles the human text, which demon-
strates that our simple language model yields coher-
ent sentences (without any template engineering), at
least for the domains under consideration.

6 Conclusions

We have presented an end-to-end generation system
that performs both content selection and surface re-
alization. Central to our approach is the encoding
of generation as a parsing problem. We reformulate
the input (a set of database records and text describ-
ing some of them) as a PCFG and show how to find
the best derivation using the hypergraph framework.
Despite its simplicity, our model is able to obtain
performance comparable to the state of the art. We
argue that our approach is computationally efficient
and viable in practical applications. Porting the sys-
tem to a different domain is straightforward, assum-
ing a database and corresponding (unaligned) text.
As long as the database is compatible with the struc-
ture of the grammar in Table 1, we need only retrain
to obtain the weights on the hyperarcs and a domain
specific language model.

Our model takes into account the k-best deriva-
tions at decoding time, however inspection of these
shows that it often fails to select the best one. In
the future, we plan to remedy this by using forest
reranking, a technique that approximately reranks
a packed forest of exponentially many derivations
(Huang, 2008). We would also like to scale our
model to more challenging domains (e.g., product
descriptions) and to enrich our generator with some
notion of discourse planning. An interesting ques-
tion is how to extend the PCFG-based approach ad-
vocated here so as to capture discourse-level docu-
ment structure.
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