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Abstract

To build a coreference resolver for a new
language, the typical approach is to first
coreference-annotate documents from this tar-
get language and then train a resolver on these
annotated documents using supervised learn-
ing techniques. However, the high cost asso-
ciated with manually coreference-annotating
documents needed by a supervised approach
makes it difficult to deploy coreference tech-
nologies across a large number of natural lan-
guages. To alleviate this corpus annotation
bottleneck, we examine a translation-based
projection approach to multilingual corefer-
ence resolution. Experimental results on two
target languages demonstrate the promise of
our approach.

1 Introduction

Noun phrase (NP) coreference resolution is the
task of determining which NPs (ormentions) refer
to each real-world entity in a document. Recent
years have witnessed a surge of interest in multilin-
gual coreference resolution. For instance, the ACE
2004/2005 evaluations and SemEval-2010 Shared
Task 1 have both involved coreference resolution in
multiple languages. As evidenced by the partici-
pants in these evaluations, the most common ap-
proach to building a resolver for a new language
is supervised, which involves training a resolver
on coreference-annotated documents from the tar-
get language. Although supervised approaches work
reasonably well, they present a challenge to deploy-
ing coreference technologies across a large number
of natural languages. Specifically, for each new lan-
guage of interest, one has to hire native speakers of

the language to go through the labor-intensive, time-
consuming process of hand-annotating a potentially
large number of documents with coreference anno-
tation before a supervised resolver can be trained.

One may argue that a potential solution to this
corpus annotation bottleneckis to employ anunsu-
pervisedor heuristicapproach to coreference resolu-
tion, especially in light of the fact that they have re-
cently started to rival their supervised counterparts.
However, by adopting these approaches, we are sim-
ply replacing the corpus annotation bottleneck by
another, possibly equally serious, bottleneck, the
knowledge acquisition bottleneck. Specifically, in
these approaches, one has to employ knowledge of
the target language to design coreference rules (e.g.,
Mitkov (1999), Poon and Domingos (2008), Raghu-
nathan et al. (2010)) or sophisticated generative
models (e.g., Haghighi and Klein (2007,2010), Ng
(2008)) to combine the available knowledge sources.

One could argue that designing coreference
rules and generative models may not be as time-
consuming as annotating a large coreference corpus.
This may be true for a well-studied language like
English, where we can easily compose a rule that
disallows coreference between two mentions if they
disagree in number and gender, for instance. How-
ever, computing these features may not be as simple
as we hope for a language like Chinese: the lack of
morphology complicates the determination of num-
ber information, and the fact that most Chinese first
names are used by both genders makes gender deter-
mination difficult. The difficulty in accurately com-
puting features translates to difficulties in compos-
ing coreference rules: for example, the aforemen-
tioned rule involving gender and number agreement,
as well as rules that implement traditional linguistic
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constraints on coreference, may no longer be accu-
rate and desirable to have if the features involved
cannot be accurately computed. Consequently, we
believe that research in multilingual coreference res-
olution will continue to be dominated by supervised
approaches.

Given the high cost of annotating data with coref-
erence chains, it is crucial to explore methods for
obtaining annotated data in a cost-effective manner.
Motivated in part by this observation, we examine
one such method that has recently shown promise
for a variety of NLP tasks, translation-based projec-
tion, which is composed of three steps. To coref-
erence annotate a text in the target language, we
(1) machine-translate it to a resource-rich language
(henceforth thesourcelanguage); (2) automatically
produce the desired linguistic annotations (which in
our case are coreference annotations) on the trans-
lated text using the linguistic tool developed for the
source language (which in our case is a coreference
resolver) ; and (3) project the annotations from the
source language to the target language.

Unlike supervised approaches, this projection ap-
proach does not require any coreference-annotated
data from the target language. Equally importantly,
unlike its unsupervised counterparts, this approach
does not require that we have any linguistic knowl-
edge of the target language. In fact, we have no
knowledge of the target languages we employ in our
evaluation. One of our goals is to examine the fea-
sibility of building a coreference resolver for a lan-
guage for which we have no coreference-annotated
dataandno linguistic knowledge of the language.

Recall that we view projection as an approach
for alleviating the corpus annotation bottleneck, not
as a solution to the multilingual coreference resolu-
tion problem. In fact, though rarely emphasized in
previous work on applying projection, we note that
projection alone cannot be used to solve multilin-
gual NLP problems, including coreference resolu-
tion. The reason is that every language has its own
idiosyncrasies with respect to linguistic properties,
and projection simply cannot produce annotations
capturing those properties that are specific to the tar-
get language. Our goal in this paper is to explore the
extent to which projection, which does not require
that we have any knowledge of the target language,
can push the limits of multilingual coreference res-

olution. If our results indicate that projection is a
promising approach, then the automatic coreference
annotations it produces can be used to augment the
manual annotations that capture the properties spe-
cific to the target language, thus alleviating the cor-
pus annotation bottleneck.

2 Related Work on Projection

The idea of projecting annotations from a resource-
rich language to a resource-scarce language was
originally proposed by Yarowsky and Ngai (2001)
and subsequently developed by others (e.g., Resnik
(2004), Hwa et al. (2005)). These projection al-
gorithms assume as input a parallel corpus for the
source language and the target language. Given the
recent availability of machine translation (MT) ser-
vices on the Web, researchers have focused more
on translated-based projection rather than acquiring
a parallel corpus themselves. MT-based projection
has been applied to various NLP tasks, such as part-
of-speech tagging (e.g., Das and Petrov (2011)),
mention detection (e.g., Zitouni and Florian (2008)),
and sentiment analysis (e.g., Mihalcea et al. (2007)).

There have been two initial attempts to apply pro-
jection to create coreference-annotated data for a
resource-poor language, both of which involve pro-
jecting hand-annotated coreference data from En-
glish to Romanian via a parallel corpus. Specifically,
Harabagiu and Maiorano (2000) create an English-
Romanian corpus by manually translating the MUC-
6 corpus into Romanian and manually project the
English annotations to Romanian. On the other
hand, Postolache et al. (2006) apply a word align-
ment algorithm to project the hand-annotated En-
glish coreference chains and then manually fix the
projection errors on the Romanian side. Hence,
their goal is different from ours in at least two re-
spects. First, while they employ significant knowl-
edge of the target language to create acleancorefer-
ence corpus, we examine the quality of coreference-
annotated data created via an entirely automatic pro-
cess, determining quality by the performance of the
resolver trained on the data. Second, unlike ours,
neither of these attempts is at the level of defining
a technology for projection annotations that can po-
tentially be deployed across a large number of lan-
guages without coreference-annotated data.
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3 Translation-Based Projection

Recall that our MT-based projection approach to
coreference resolution is composed of three steps.
Given a text in the target language, we (1) machine-
translate the text to the source language; (2) au-
tomatically produce coreference annotations on the
translated text using a coreference resolver devel-
oped for the source language; and (3) project the
annotations from the source language to the target
language. In this section, we employ our approach
in three settings, which differ in terms of the ex-
tent to which linguistic taggers (e.g., chunkers and
named entity (NE) recognizers) for the target lan-
guage are available. The goal is to examine whether
these linguistic taggers can be profitably exploited to
improve the performance of the projection approach.
Below we assume that English and French are our
source and target languages, respectively.

3.1 Setting 1: No French Taggers Available

In this setting, we assume that we do not have access
to any French tagger that we can exploit to improve
projection. Hence, all we can do is to employ the
three steps involved in the projection approach as
described at the beginning of this section to create
coreference-annotated data for French. Specifically,
we translate a French text to an English text using
GoogleTranslate1, and create coreference chains for
the translated English text using Reconcile2 (Stoy-
anov et al., 2010). To project mentions from En-
glish to French, we first align the English and French
words in each pair of parallel sentences, and then
project the English mentions onto the French text us-
ing the alignment. However, since the alignment is
noisy, the French words to which the words in the
English mention are aligned may not form a con-
tiguous text span. To fix this problem, we follow
Yarowsky and Ngai (2001) and use the smallest text
span that covers all the aligned French words to cre-
ate the French mention.3 We process the English
mentions in the text in a left-to-right manner, as
processing the mentions sequentially enables us to
ensure that an English mention is not mapped to a

1Seehttp://translate.google.com.
2Seehttp://www.cs.utah.edu/nlp/reconcile.

We use the resolver pre-trained on the Wolverhampton corpus.
3Other methods for projecting mentions can be found in Pos-

tolache et al. (2006), for example.

French text span that has already been mapped to by
a previously-processed English mention.4

To align English and French words, we trained
a word alignment model using GIZA++5 (Och and
Ney, 2000) on a parallel corpus comprising the
English-French section of Europarl6 (Koehn, 2005)
as well as all the French texts (and their translated
English counterparts) for which we want to auto-
matically create coreference chains. Following com-
mon practice, we stemmed the parallel corpus us-
ing the Porter stemmer (Porter, 1980) in order to
reduce data sparseness. However, even with stem-
ming, we found that many English words were not
aligned to any French words by the resulting align-
ment model. This would prevent many English men-
tions from being projected to the French side, poten-
tially harming the recall of the French coreference
annotations. To improve alignment coverage, we re-
trained the alignment model by supplying GIZA++
with an English-French bilingual dictionary that we
assembled using three online dictionary databases:
OmegaWiki, Wiktionary, and Universal Dictionary.
Furthermore, if a wordw appears in both the English
side and the French side in a pair of parallel sen-
tences, we assume that it has the same orthographic
form in both languages and hence we augment the
bilingual dictionary with the entry (w, w).

Note that the use of a supervised resolver like
Reconcile doesnot render our approach supervised,
since we can replace it with any resolver, be it super-
vised, heuristic, or unsupervised. In other words, we
treat the resolver built for the source language as a
black box that can produce coreference annotations.

3.2 Setting 2: Mention Extractor Available

Next, we consider a comparatively less resource-
scarce setting where a French mention extractor is
available for identifying mentions in a French text7,
and describe how we can modify the projection ap-
proach to exploit this French mention extractor.

Given a French text we want to coreference-

4While we chose to process the mentions in a left-to-right
manner, any order of processing the mentions would work.

5Seehttp://code.google.com/p/giza-pp/.
6Seehttp://www.statmt.org/europarl/.
7Mention extraction is a term used in Automatic Content

Evaluation to refer to the task of determining the NPs that a
coreference system should consider in the resolution process.
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annotate, we first translate it to English using
GoogleTranslate and align the French and English
words using a French-to-English word alignment
algorithm. Next, we identify the mentions in the
French text using the given mention extractor, and
project them onto the English text using the NP pro-
jection algorithm described in Setting 1. Finally, we
run Reconcile on the resulting English mentions to
generate coreference chains for the translated text,
and project these chains back to the French text.

As explained before, the performance of this
method is sensitive to the accuracy of the NP projec-
tion algorithm in recovering the English mentions,
which in turn depends on the accuracy of the word
alignment algorithm. To make this method more ro-
bust to noisy word alignment, we make a modifica-
tion to it. Rather than running Reconcile on the men-
tions produced by the NP projection algorithm, we
use Reconcile to identify the mentions directly from
the translated text. After that, we create a mapping
between the English mentions produced by the NP
projection algorithm and those produced by Recon-
cile using a small set of heuristics.

Specifically, letMP be the set of mentions identi-
fied by the NP projection algorithm andMR be the
set of mentions identified by Reconcile. For each
mentionmP in MP , we map it to a mention inMR

that shares the same right boundary. If this fails, we
map it to a mention that covers its entire text span. If
this fails again, we map it to a mention that has a par-
tial overlap with it. If this still fails, we assume that
mP is not found by Reconcile and simply addmP to
MR. As before, we process the mentions inMP in
a left-to-right manner in order to ensure that no two
mentions inMP are mapped to the same Reconcile
mention. Finally, we discard all mentions inMR that
are not mapped by any mention inMP , and present
MR to Reconcile for coreference resolution. Since
we now have a 1-to-1 mapping between the Recon-
cile mentions and the French mentions, projecting
the coreference results back to French is trivial.

It may not be immediately clear why the exploita-
tion of the mention extractor in this setting may yield
better coreference annotations than those produced
in Setting 1. To see the reason, recall that one source
of errors inherent in a projection approach is word
alignment errors. In Setting 1, when we tried to
project English mentions to the French text, word

alignment errors would adversely affect the ability
of the NP projection algorithm to correctly define
the boundaries of the French mentions. Since coref-
erence performance depends crucially on the abil-
ity to correctly identify mentions (Stoyanov et al.,
2009), the presence of word alignment errors im-
plies that the resulting French coreference annota-
tions could score poorly even if the English coref-
erence annotations produced by Reconcile were of
high quality. In the current setting, on the other
hand, we reduce the sensitivity of coreference per-
formance to word alignment errors via the use of the
French mention extractor to produce more accurate
French mention boundaries.

3.3 Setting 3: Additional Taggers Available

Finally, we consider a setting that is the least
resource-scarce of the three. We assume that in ad-
dition to a French mention extractor, we have access
to other French linguistic taggers (e.g., syntactic and
semantic parsers) that will allow us to generate the
linguistic features needed to train a French resolver
on the projected coreference annotations.

Specifically, assume thatTest is a set of French
texts we want to coreference-annotate, andTraining
is a set of French texts that is disjoint fromTestbut is
drawn from the same domain asTest.8 To annotate
theTesttexts, we perform the following steps. First,
we employ the French mention extractor in combi-
nation with the method described in Setting 2 to au-
tomatically coreference-annotate theTraining texts.
Next, motivated by Kobdani et al. (2011), we train
a French coreference resolver on the automatically
coreference-annotated training texts, using the fea-
tures provided by the available linguistic taggers. Fi-
nally, we apply the resolver to generate coreference
chains for eachTesttext.

Two questions arise. First, is this method neces-
sarily better than the one described in Setting 2? We
hypothesize that the answer is affirmative: not only
can this method exploit the knowledge about the tar-
get language provided by the additional linguistic
taggers, but the resulting coreference resolver may
allow us to generalize from the (noisily labeled) data
and make this method more robust to the noise in-

8We assume that it is easy to assemble theTrainingset, since
unlabeled texts are typically easy to collect in practice.
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herent in the projected coreference annotations than
the previously-described methods. Second, is this
method necessarily better than projection via a par-
allel corpus? Like the first question, this is also an
empirical question. Nevertheless, one reason why
this method is intuitively better is that it ensures that
the training and test documents are drawn from the
same domain. On the other hand, when project-
ing annotations via a parallel corpus, we may en-
counter a domain mismatch problem if the parallel
corpus and the test documents come from different
domains, and the coreference resolver may not work
well if it is trained and tested on different domains.

4 Coreference Resolution System

To train the coreference resolver employed in Set-
ting 3 in the previous section, we need to derive
linguistic features from the documents in the target
language. In our experiments, we employ the coref-
erence data sets produced as part of the SemEval-
2010 shared task on Coreference Resolution in Mul-
tiple Languages. The shared task organizers have
made publicly available six data sets that corre-
spond to six European languages. Each data set
comprises not onlytraining andtestdocuments that
are coreference-annotated, but also a number of
word-based linguistic features from which we derive
mention-based linguistic features for training a re-
solver. In this section, we will describe how this re-
solver is trained and then applied to generate coref-
erence chains for unseen documents.
Training the coreference classifier. As our coref-
erence model, we train amention-pairmodel, which
is a classifier that determines whether two mentions
are co-referring or not (e.g., Soon et al. (2001), Ng
and Cardie (2002)).9 Each instancei(mj ,mk) cor-
responds tomj (a candidate antecedent) andmk (the
mention to be resolved), and is represented by a set
of 23 features shown in Table 1. As we can see, each
feature is eitherrelational, capturing the relation be-
tweenmj andmk, or non-relational, capturing the
linguistic property ofmk. The possible values of
a relational feature (exceptLEXICAL ) areC (com-
patible), I (incompatible), andNA (the comparison

9Note that any supervised coreference model can be used,
such as an entity-mention model (e.g., Luo et al. (2004), Yang
et al. (2008)) or a ranking model (e.g., Denis and Baldridge
(2008), Rahman and Ng (2009)).

cannot be made due to missing data). For a non-
relational feature, we refer the reader to the data sets
for the list of possible values.10

We follow Soon et al.’s (2001) method for creat-
ing training instances. Specifically, we create (1) a
positive instance for each anaphoric mentionmk and
its closest antecedentmj; and (2) a negative instance
for mk paired with each of the intervening mentions,
mj+1,mj+2, . . . ,mk−1. The classification associ-
ated with a training instance is either positive or neg-
ative, depending on whether the two mentions are
coreferent in the associated text. To train the classi-
fier, we use SVMlight (Joachims, 1999).

Applying the classifier to a test text. After train-
ing, the classifier is used to identify an antecedent
for a mention in a test text. Specifically, each men-
tion, mk, is compared to each preceding mention,
mj, from right to left, andmj is selected as the an-
tecedent ofmk if the pair is classified as coreferent.
The process terminates as soon as an antecedent is
found formk or the beginning of the text is reached.

5 Evaluation

We evaluate our MT-based projection approach for
each of the three settings described in Section 3.

5.1 Experimental Setup

Data sets. We use the Spanish and Italian data sets
from the SemEval-2010 shared task on Coreference
Resolution in Multiple Languages.11 Each data set
is composed of a training set and a test set. Statistics
of these data sets are shown in Table 2.

Spanish Italian
Training Set Statistics

number of mentions 78779 24853
number of non-singleton clusters 48681 18376
number of singleton clusters 37336 15984

Test Set Statistics
number of mentions 14133 13394
number of non-singleton clusters 8789 9520
number singleton clusters 6737 8288

Table 2: Statistics of the data sets.

10The data sets can be downloaded fromhttp://stel.
ub.edu/semeval2010-coref/datasets.

11Note, however, that our approach is equally applicable to
other languages evaluated in the shared task.
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Features describingmk, the mention to be resolved
1 NUM WORDS the number of words inmk

2 COARSE POS the coarse POS ofmk (see “PoS” in Recasens et al. (2010))
3 FINE POS the fine-grained POS ofmk (see “PoS type” in Recasens et al. (2010))
4 NE the named entity tag ofmk if mk is a named entity; else NA
5 SR the semantic role ofmk

6 GRAMROLE the grammatical role ofmk

7 NUMBER the number ofmk

8 GENDER the gender ofmk

9 PERSON the person ofmk (e.g., first, second, third) if it is pronominal; else NA
Features describing the relationship betweenmj , a candidate antecedent andmk, the mention to be resolved
10 CS STR MATCH determines whether the mentions are the same string
11 CI STR MATCH same as feature 10, except that case differences are ignored
12 CS SUBSTR MATCH determines whether one mention is a substring of the other
13 CI SUBSTR MATCH same as feature 12, except that case differences are ignored
14 NUMBER MATCH determines whether the mentions agree in number
15 GENDER MATCH determines whether the mentions agree in gender
16 COARSE POS MATCH determines whether the mentions have the same coarse POS tag
17 FINE POS MATCH determines whether the mentions have the same fine-grained POS tag
18 ROLE MATCH determines whether the mentions have the same grammatical role
19 NE MATCH determines whether both are NEs and have the same NE type
20 SR MATCH determines whether the mentions have the same semantic role
21 ALIAS determines whether one mention is an abbreviation or an acronym of the other
22 PERSONMATCH determines whether both mentions are pronominal and have the same person
23 LEXICAL the concatenation of the heads of the two mentions

Table 1: Feature set for coreference resolution.

Scoring programs. To score the output of a coref-
erence resolver, we employ four scoring programs,
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), φ3-CEAF (Luo, 2005), and BLANC (Re-
casens and Hovy, 2011), which were downloaded
from the shared task website (see Footnote 10).

Gold-standard versus regular settings. The for-
mat of each data set follows that of a typical CoNLL
shared task data set. In other words, each row cor-
responds to a word in a document; moreover, all but
the last column contain the linguistic features com-
puted for the words, and the last column stores the
coreference information. Some of the features were
computed via automatic means, but some were ex-
tracted from human annotations. Given this distinc-
tion, the shared task organizers defined two evalua-
tion settings: in theregularsetting, only the columns
that were computed automatically can be used to de-
rive coreference features for classifier training, and
results should be reported on system mentions; on
the other hand, in thegold-standardsetting, only
the columns that were extracted from human annota-

tions can be used to derive coreference features, and
results should be reported on true mentions. We will
present results corresponding to both settings. Note
that these two settings should not be confused with
the three settings described in Section 3.

Mention extraction. Recall that Settings 2 and 3
both assume the availability of a mention extrac-
tor for extracting mentions in the target language.
In our experiments, we extract mentions using two
methods. First, we assume the availability of an
oracle mention extractor that will enable us to ex-
tracttrue mentions(i.e., gold-standard mentions) di-
rectly from the test texts. Second, we employ simple
heuristics to automatically extractsystem mentions.

Since coreference performance is sensitive to the
accuracy of mention extraction (Stoyanov et al.,
2009), we experiment with several heuristic meth-
ods for extracting system mentions for both Span-
ish and Italian. According to our cross-validation
experiments on the training data, the best heuris-
tic for extracting Spanish mentions is different from
that for extracting Italian mentions. Specifically, for
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Spanish, the best heuristic method operates as fol-
lows. First, it extracts all the syntactic heads (i.e.,
the word tokens whose gold dependency labels are
SUBJ, PRED, or GMOD). Second, for each syntac-
tic head, it identifies the smallest text span contain-
ing the head and all of its dependents, and creates a
mention from this text span. For Italian, on the other
hand, the best heuristic simply involves creating one
mention for each gold NE. The reason why this sim-
ple heuristic works well is that most of the Italian
mentions are NEs, owing to the fact that abstract
NPs and pronouns are also annotated as NEs in the
Italian data set. When evaluated on the test set, the
heuristic-based mention extractor achieves F-scores
of 80.2 (78.4 recall, 82.1 precision) for Spanish and
92.3 (85.9 recall, 99.6 precision) for Italian.

5.2 Results and Discussion

5.2.1 Supervised Results

Our supervised systems. While our MT-based
projection approach is unsupervised (i.e., it does not
rely on any coreference annotations from the target
language), it would be informative to see the perfor-
mance of thesupervisedresolvers, since their perfor-
mance can be viewed as a crude upper bound on the
performance of our unsupervised systems. Specif-
ically, we train a mention-pair model on the train-
ing set using the 23 features shown in Table 1 and
SVMlight as the underlying learning algorithm12,
and apply the resulting model in combination with
Soon et al.’s clustering algorithm (see Section 4) to
generate coreference chains for the test texts.

Results on the test sets, reported in terms of re-
call (R), precision (P), and F-score (F) computed by
the four coreference scorers, are shown in the first
two rows of Table 3 (Spanish) and Table 4 (Italian).
For convenience, we summarize a system’s perfor-
mance using a single number, which is shown in the
last column (Average) and is obtained by taking a
simple average of the F-scores of the four scorers.
More specifically, row 1, which is marked with a
’G’, and row 2, which is marked with a ’R’, show
the results obtained under thegold-standardsetting
and theregular setting, respectively.

As we can see, under the gold-standard setting,

12All SVM learning parameters in this and other experiments
in this paper are set to their default values.

the supervised resolver achieves an average F-score
of 66.1 (Spanish) and 65.9 (Italian). Not surpris-
ingly, under the regular setting, its average F-score
drops statistically significantly13 to 54.6 (Spanish)
and 63.4 (Italian).14

Best systems in the shared task. To determine
whether the upper bounds established by our su-
pervised systems are reasonable, we show the re-
sults of the best-performing resolvers participating
in the shared task for both languages under the gold-
standard and regular settings in rows 3 and 4 of Ta-
bles 3 and 4. Since none of the participating systems
achieved the best score over all four scorers, we re-
port the performance of the system that has the high-
est average F-score. According to the shared task
website, TANL-1 (Attardi et al., 2010) achieved the
best average F-score in the regular setting for Span-
ish, whereas SUCRE (Kobdani and Schütze, 2010)
outperformed others in the remaining settings.

Comparing these best shared task results with our
supervised results in rows 1 and 2, we see that our
average F-score for Spanish/Gold is worse than its
shared task counterpart by 0.7 points, but otherwise
our system outperforms in other settings w.r.t. av-
erage F-score, specifically by 5.0 points for Span-
ish/Regular (due to a better MUC F-score), by 3.4–
4.7 points for Italian (due to better CEAF, B3, and
BLANC scores). Overall, these results suggest that
the scores achieved by our systems are at least as
competitive as the best shared task scores.

5.2.2 Unsupervised Results

Next, we evaluate our projection algorithm.

Setting 1. Results of our approach, when applied
in Setting 1, are shown in row 5 of Tables 3 and 4.
Given that it has to operate under the severe condi-
tion where no linguistic taggers are available for the
target language, it is perhaps not surprising to see
that its performance is significantly worse than that
of its supervised counterparts.

Setting 2. Recall that this setting is less resource-
scarce than Setting 1 in that a mention extractor for

13All significance test results in this paper are obtained using
one-way ANOVA, withp set to 0.05.

14Separately, we determined whether the performance drop
in the regular setting is due to the use of automatically computed
features or the use of system mentions, and found that the latter
was almost entirely responsible for the drop.

726



CEAF MUC B3 BLANC Average
Approach R P F R P F R P F R P F F

1 Supervised (G) 68.8 68.8 68.8 58.2 52.6 55.3 76.5 75.1 75.8 62.9 66.1 64.3 66.1
2 Supervised (R) 57.4 60.1 58.8 41.0 46.3 43.5 57.6 64.8 61.0 53.9 65.0 55.2 54.6
3 Shared task best (G) 69.8 69.8 69.8 52.7 58.3 55.3 75.8 79.0 77.4 67.3 62.5 64.5 66.8
4 Shared task best (R) 58.6 60.0 59.3 14.0 48.4 21.7 56.6 79.0 66.0 51.4 74.7 51.4 49.6
5 Setting 1 35.9 52.9 42.8 10.8 48.7 17.7 30.5 63.9 41.3 51.2 72.6 48.7 37.6
6 Setting 2 (True) 65.6 65.6 65.6 16.8 64.7 26.7 64.3 96.9 77.3 52.8 78.8 54.6 56.1
7 Setting 2 (System) 53.2 55.7 54.4 13.4 58.5 21.8 49.8 79.7 61.3 50.7 75.5 49.5 46.8
8 Setting 3 (G) 65.9 65.9 65.9 48.1 45.2 46.6 72.3 72.6 72.5 60.1 61.4 60.7 61.4
9 Setting 3 (R) 55.3 55.3 55.3 34.1 41.6 37.5 55.1 63.6 59.0 53.8 62.1 54.9 51.7

Table 3: Results for Spanish

CEAF MUC B3 BLANC Average
Approach R P F R P F R P F R P F F

1 Supervised (G) 74.5 74.5 74.5 31.8 67.4 43.2 74.4 93.6 82.9 58.4 79.6 62.9 65.9
2 Supervised (R) 73.7 74.3 74.0 31.9 68.0 43.4 60.8 92.5 73.3 58.4 79.6 62.9 63.4
3 Shared task best (G) 66.0 66.0 66.0 48.1 42.3 45.0 76.7 76.9 76.8 54.8 63.5 56.9 61.2
4 Shared task best (R) 57.1 66.2 61.3 50.1 50.7 50.4 63.6 79.2 70.6 55.2 68.3 57.7 60.0
5 Setting 1 17.0 26.0 20.6 8.1 28.5 12.6 14.1 30.5 19.3 50.1 62.9 32.9 21.4
6 Setting 2 (True) 73.3 73.3 73.3 14.2 60.6 23.0 72.9 96.8 83.2 51.9 77.9 53.2 58.2
7 Setting 2 (System) 60.4 70.1 64.9 17.2 68.2 27.5 59.3 97.1 73.6 52.0 82.9 53.4 54.9
8 Setting 3 (G) 64.3 64.3 64.3 28.3 63.3 39.1 65.3 87.4 74.8 55.1 74.7 57.5 58.9
9 Setting 3 (R) 61.1 62.9 61.9 29.5 63.2 40.2 60.3 84.1 70.2 55.3 72.9 58.3 57.7

Table 4: Results for Italian

the target language is available. Results of our al-
gorithm, when operating under Setting 2 using true
mentions and system mentions, are shown in rows
6 and 7 of Tables 3 and 4, respectively. In com-
parison to the results for Setting 1, we see that the
F-scores obtained under Setting 2 increase signifi-
cantly, regardless of (1) the scoring programs and
(2) whether true mentions or system mentions are
used. These results provide evidence for our earlier
hypothesis that our projection algorithm can prof-
itably exploit the linguistic knowledge about the tar-
get language that is available to it. In particular, the
mention extractor helps make our approach less sen-
sitive to word alignment and NP projection errors.

In comparison to our supervised results in rows 1
and 2, our algorithm still lags behind by about 8–10
points in average F-score. However, this should not
be surprising, since our algorithm is unsupervised.
Looking closer at the results, we can see that the
performance lag by our approach can be attributed
to its lower recall: in general, the lag in MUC recall
appears to be more acute than that in B3 and CEAF
recall. Since MUC only scores non-singleton clus-
ters wheres B3 and CEAF score both singleton and

non-singleton clusters, these results suggest that our
approach is better at identifying singleton clusters
than recovering coreference links.

Setting 3. Finally, we evaluate our approach in a
setting where it has access to all the information
available to our supervised resolvers, except for the
gold-standard coreference annotations on the train-
ing sets. Specifically, our approach uses projected
coreference annotations to train a resolver on the
training texts, whereas the supervised resolvers do
so using gold-standard annotations.

Comparing Settings 2 and 3 with respect to true
mentions (rows 6 and 8 of Tables 3 and 4), we see
mixed results. According to MUC and BLANC, the
resolvers in Setting 3 are significantly better than
those in Setting 2 for both languages. According to
B3, the resolvers in Setting 2 are significantly better
than those in Setting 3 for both languages. Accord-
ing to CEAF, the Spanish resolvers in Setting 3 are
significantly better than their counterparts in Setting
2, but the opposite is true for the Italian resolvers.

To understand these somewhat contradictory per-
formance trends, let us first note that the dramatic in-
crease in the MUC F-score can be attributed to large
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gains in MUC recall. This suggests that the clas-
sifiers being trained in Setting 3 have enabled the
discovery of additional coreference links. In other
words, there are benefits to be obtained just by learn-
ing over noisy coreference annotations, a result that
we believe is quite interesting. However, not all of
these newly discovered coreference links are correct.
The fact that some scoring programs (e.g., B3) are
more sensitive to spurious coreference links than the
others (e.g., MUC) explains these mixed results.

Nevertheless, according to average F-score, the
resolvers in Setting 3 perform significantly better
than those in Setting 2 for both languages: F-score
increases by 5.3 points for Spanish and 0.7 points for
Italian. Similar trends can be observed when com-
paring the two settings w.r.t. system mentions (rows
7 and 9 of Tables 3 and 4): F-score increases by 4.9
points for Spanish and 2.8 points for Italian.

While our Setting 3 results still underperform the
supervised results in rows 1 and 2, we can see that
they achieve 93–94% of the average F-scores of the
supervised Spanish resolvers and 89–91% of the av-
erage F-scores of the supervised Italian resolvers.
Importantly, recall that our approach achieves this
level of performance without relying on any gold-
standard coreference annotations in Spanish and
Italian, and we believe that these results demonstrate
the promise of our MT-based projection approach.

Since these results suggest that our approach can-
not be successfully applied without MT services, a
parallel corpus for learning a word alignment model,
and a mention extractor for the target language, a
natural question is: to what extent do these require-
ments limit the applicability of our approach? While
it is the case that our approach cannot be applied to
a truly resource-scarce language, it can be applied to
the numerous Indian and East European languages
for which the aforementioned requirements are sat-
isfied but coreference-annotated data is not readily
available.

6 Conclusions and Future Work

We explored the under-investigated yet challenging
task of performing coreference resolution for a lan-
guage for which we have no coreference-annotated
data and no linguistic knowledge of the language.
Our translation-based projection approach has the

flexibility to exploit any available knowledge about
the target language. In experiments with Spanish
and Italian, we obtained promising results: our ap-
proach achieved around 90% of the performance of
a supervised resolver when only a mention extrac-
tor for the target language was available. We believe
that this approach has the potential to allow coref-
erence technologies to be deployed across a larger
number of languages than is currently possible, and
that this is just the beginning of a new line of work.

To gain additional insights into our approach,
we plan to pursue several directions. First, we
will isolate the impact of each factor that ad-
versely affects its performance, including errors
in projection, translation, and coreference resolu-
tion in the resource-rich language. Second, we
will perform an empirical comparison of two ap-
proaches to projecting coreference annotations, our
translation-based approach and Camargo de Souza
and Orasan’s (2011) approach, where annotations
are projected via a parallel corpus. Third, rather than
translate from the target to the source language, we
will examine whether it is better to translate all the
coreference-annotated data available in the source
language to the target language, and train a coref-
erence model for the target language on the trans-
lated data. Fourth, since the success of our pro-
jection approach depends heavily on the accuracies
of machine translation as well as coreference res-
olution in the source language, we will determine
whether their accuracies can be improved via an en-
semble approach, where we employ multiple MT
engines and multiple coreference resolvers. Finally,
we plan to employ our approach to alleviate the
corpus-annotation bottleneck, specifically by using
the annotated data it produces to augment the man-
ual coreference annotations that capture the specific
properties of the target language.
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