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Abstract

The accuracy of many natural language pro-
cessing tasks can be improved by a reranking
step, which involves selecting a single output
from a list of candidate outputs generated by
a baseline system. We propose a novel fam-
ily of reranking algorithms based on learning
separatelow-dimensional embeddings of the
task’s input and output spaces. This embed-
ding is learned in such a way that prediction
becomes a low-dimensional nearest-neighbor
search, which can be done computationally ef-
ficiently. A key quality of our approach is that
feature engineering can be doneseparatelyon
the input and output spaces; the relationship
between inputs and outputs is learned auto-
matically. Experiments on part-of-speech tag-
ging task in four languages show significant
improvements over a baseline decoder and ex-
isting reranking approaches.

1 Introduction

Mapping inputs to outputs lies at the heart of many
Natural Language Processing applications. For ex-
ample, given a sentence as input: part-of-speech
(POS) tagging involves finding the appropriate POS
tag sequence (Thede and Harper, 1999); pars-
ing involves finding the appropriate tree structure
(Kubler et al., 2009) and statistical machine trans-
lation (SMT) involves finding correct target lan-
guage translation (Brown et al., 1993). The accuracy
achieved on such tasks can often be improved signif-
icantly with the help of a discriminative reranking
step (Collins and Koo, 2005; Charniak and John-
son, 2005; Shen et al., 2004; Watanabe et al., 2007).

For the POS tagging, reranking is relative less ex-
plored due to the already higher accuracies in En-
glish (Collins, 2002), but it is shown to improve ac-
curacies in other languages such as Chinese (Huang
et al., 2007). In this paper, we propose a novel ap-
proach to discriminative reranking and show its ef-
fectiveness in POS tagging. Reranking allows us to
use arbitrary features defined jointly on input and
output spaces that are often difficult to incorporate
into the baseline decoder due to the computational
tractability issues. The effectiveness of reranking
depends on the joint features defined over both input
and output spaces. This has led the community to
spend substantial efforts in defining joint features for
reranking (Fraser et al., 2009; Chiang et al., 2009).

Unfortunately, developing joint features over the
input and output space can be challenging, espe-
cially in problems for which the exact mapping be-
tween the input and the output is unclear (for in-
stance, in automatic caption generation for images,
semantic parsing or non-literal translation). In con-
trast to prior work, our approach uses features de-
finedseparatelywithin the input and output spaces,
and learns a mapping function that can map an ob-
ject from one space into the other. Since our ap-
proach requires within-space features, it makes the
feature engineering relatively easy.

For clarity, we will discuss our approach in the
context of POS tagging, though of course it gener-
alizes to any reranking problem. At test time, in
POS tagging, we receive a sentence and a list of
candidate output POS sequences as input. We run
a feature extractor on the input sentence to obtain
a representationx ∈ R

d1 ; we run anindependent
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feature extractor on each of them-many outputs
to obtain representationŝy1, . . . , ŷm ∈ R

d2 . We
will project all of these points down to a lowk-
dimensional space by means of matricesA ∈ R

d1×k

(for x asATx) andB ∈ R
d2×k (for ŷ asBT ŷ).

We then select as the output theŷj that maximizes
cosine similar tox in the lower-dimensional space:
maxj cos(ATx, BT ŷj). The goal is to learn the pro-
jection matricesA andB so that the result of this
operation is a low-loss output.

Given training data of sentences and their refer-
ence tag sequences, our approach implicitly uses all
possible pairwise feature combinations across the
views and learns the matricesA andB that can map
a given sentence (as its feature vector) to its cor-
responding tag sequence. Considering all possible
pairwise combinations enables our model to auto-
matically handle long range dependencies such as
a word at a position effecting the tag choice at any
other position.

Experiments performed on four languages (En-
glish, Chinese, French and Swedish) show the ef-
fectiveness of our approach in comparison to the
baseline decoder and to the existing reranking ap-
proaches (Sec. 4). Using only the within-space fea-
tures, our models are able to beat reranking ap-
proaches that use more informative joint features.
While it is possible to include joint features into our
models, we leave this for future work.

2 Models for Low-Dimensional Reranking

In this section, we describe our approach to learning
low-dimensional representations for reranking. We
first fix some notation, then discuss the intuition be-
hind the problem we wish to solve. We propose both
generative-style and discriminative-style approaches
to formalizing this intuition, as well as a softened
variant of the discriminative model. In the subse-
quent section, we discuss computational issues re-
lated to these models.

2.1 Notation

Let xi ∈ R
d1 andyi ∈ R

d2 be the feature vectors
representing theith(1 · · ·n) sentence and its refer-
ence tag sequence from the training data. Each sen-
tence is also associated withmi number of candi-
date tag sequences, output by the baseline decoder,

and are represented asŷij ∈ R
d2 j = 1 · · ·mi. Each

candidate tag sequence (ŷij) is also associated with
a non-negative lossLij . Note that we place abso-
lutely no constraints on the loss function. Moreover,
letX (d1×n) andY (d2×n) denote the data matri-
ces withxi andyi as columns respectively. Finally,
let 〈u,v〉 denote the dot product of the two vectors
u andv.

2.2 Intuition

As stated in the introduction, our goal is to learn
projectionsA ∈ R

d1×k andB ∈ R
d2×k in such a

way that test-time predictions are made with high
accuracy (or low loss). At test time, the output will
be chosen by maximizing cosine similarity between
the input and the output, after projecting these vec-
tors into a low-dimensional space usingA andB,
respectively. The cosine similarity in our context is:

xTABT ŷj
√

xTAATx
√

ŷT
j BB

T ŷj

(1)

Our goal is to learnA andB in such a way that the
ŷj with maximum cosine similarity to anx is ac-
tually the correct output. In what follows, we will
describe our models to find one-dimensional projec-
tion vectorsa ∈ R

d1 andb ∈ R
d2 , but the general-

ization to matricesA andB is very trivial.

2.3 A Generative-Style Model

The first model we propose is akin to a gener-
ative probabilistic model, in the sense that it at-
tempts to model the relationship between an input
and its desired output, without taking alternate pos-
sible outputs into account. In the context of the in-
tuition sketched in the previous section, the idea is
to chooseA andB so as to maximize the cosine
similarities on the training data between each input
and it’s correct (or minimal-loss) output. This model
intentionally ignoresthe information present in the
alternative, incorrect outputs. The hope is that by
making the cosine similarities with the best output
as high as possible, all the alternate outputs will look
bad in comparison.

Given a training data of sentences and their
reference tag sequences represented asX and Y
(Sec. 2.1), our generative model finds projection di-
rections, in word and tag spaces, along which the
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aligned sentence and tag sequence pairs have maxi-
mum cosine similarity. In the one-dimensional set-
ting, it finds directionsa ∈ R

d1 andb ∈ R
d2 such

that the correlation as defined in Eq. 2 is maximized.

aTXY Tb√
aTXXTa

√
bTY Y Tb

(2)

Since the objective is invariant to the scaling of vec-
torsa andb, it can be rewritten as:

argmax
a,b

aTXY Tb (3)

s.t. aTXXTa = 1 and bTY Y Tb = 1(4)

We refer to the constraints in Eq. 4 as length con-
straints in the rest of this paper.

To understand why maximizing this objective
function learns a good mapping function between
the sentence and the tag sequence, consider decom-
posing the objective function as follows:

aTXY Tb =
n
∑

i=1

〈xi,a〉〈yi,b〉

=
n
∑

i=1

(

d1
∑

l=1

xl
ial ·

d2
∑

m=1

ym
i bm

)

=
n
∑

i=1

(

d1
∑

l=1

d2
∑

m=1

xl
ial y

m
i bm

)

=
n
∑

i=1

(

d1,d2
∑

l,m=1

wlmφ
lm
i

)

(5)

where we replaced the scalarsxl
iy

m
i andalbm with

φlm
i andwlm respectively. So finally, the objective

can be expressed asaTXY Tb =
∑

i〈w, φ(xi,yi)〉
wherew is the weight vector andφ(xi,yi) is a vec-
tor of size (d1 × d2) and is given by the Kronecker
product of the two feature vectorsxi andyi.

In this form, the generative objective function
bears similarity to the linear boundary surface
widely used in machine learning, except that the
weights are restricted to be the outer product of two
vectors. From the reduced expressions, it is clear
that our generative model considers all possible pair-
wise combinations of the input features (d1×d2) and
learns which of them are more important than others.
Intuitively, it puts higher weight on a word and tag
pair that co-occur frequently in the training data, at
the same time each of these are infrequent in their
own views.

2.4 A Discriminative-Style Model

The primary disadvantage of our generative model is
that it only uses input sentences and their reference
tag sequences and doesnot use the incorrect candi-
date tag sequences of a given sentence at all. In what
follows, we describe a model that utilize the incor-
rect candidate tag sequences as negative examples
to improve the projection directions (a andb). Our
goal is to address this by adding constraints to our
model that explicitly penalize ranking high-loss out-
puts higher than low-loss outputs, as is often done in
the context of maximum-margin structure prediction
techniques (Taskar et al., 2004).

In this section, we describe a discriminative
model that keeps track of the margin deviations and
finds the projection directions iteratively. Intuitively,
after the projection into the lower dimensional sub-
space, the cosine similarity of a sentence to its refer-
ence tag sequence must be greater than that of its
incorrect candidate tag sequences. Moreover, the
margin between these similarities should be propor-
tional to the loss of the candidate translation,i.e. the
more dissimilar a candidate tag sequence to its ref-
erence is, the farther it should be from the reference
in the projected space.

From the decomposition shown in Eq. 5, for a
given pair of source sentencexi and a tag sequence
yj , the generative model assigns a score of :

〈a,xi〉〈b,yj〉 = aTxiy
T
j b

Each input sentence is also associated with a list
of candidate tag sequences and since each of these
candidate sequences are incorrect they should be as-
signed a score less than that of the reference tag se-
quence. Drawing ideas from structure prediction lit-
erature (Bakir et al., 2007), we modify the objec-
tive function in order to include these terms. This
idea can be captured using a loss augmented mar-
gin constraint for each sentence, tag sequence pair
(Tsochantaridis et al., 2004). Letξi denote a non-
negative slack variable, then we define our new op-
timization problem as:

arg max
a,b,ξ≥0

1− λ
λ

aTXY Tb−
∑

i

ξi (6)

s.t. aTXXTa = 1 and bTY Y Tb = 1

∀i ∀j aTxiy
T
i b− aTxiŷ

T
ijb ≥ 1− ξi

Lij
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where0 ≤ λ ≤ 1 is a weight parameter. This ob-
jective function is ensuring that the margin between
the reference and the candidate tag sequences in the
projected space (as given byaTxiy

T
i b−aTxiŷ

T
ijb)

is proportional to its loss (Lij). Notice that the slack
is defined for each sentence and it remains the same
for all of its candidate tag sequences.

2.5 A Softened Discriminative Model

One disadvantage of the discriminative model de-
scribed in the previous section is that it cannot be
optimized in closed form (as discussed in the next
section). In this section, we consider a model that
lies between the generative model and the (fully)
discriminative model. This softened model has at-
tractive computational properties (it is easy to com-
pute) and will also form a building block for the op-
timization of the full discriminative model.

For each sentencexi, its reference tag sequence
yi should be assigned a higher score than any of its
candidate tag sequencesŷij i.e. we want to maxi-
mizeaTxiy

T
i b−aTxiŷ

T
ijb. In the fully discrimina-

tive model, we enforce that this is at least one (mod-
ulo slack). In the relaxed version, we instead require
that this holdon average. In order to achieve this
we add the following terms to the objective function:
∀j = 1 · · ·mi

aTxiy
T
i b− aTxiŷ

T
ijb = aTxir

T
ijb (7)

whererij = yi − ŷij is the residual vector between
the reference and the candidate sequences. Now,
we simply sum all these terms for a given sentence
weighted by their loss and encourage it to be as high
as possible,i.e. we maximize

1

mi

mi
∑

j=1

Lij

(

aTxir
T
ijb
)

= aTxi

( 1

mi

mi
∑

j=1

Lijr
T
ij

)

b (8)

The normalization bymi takes care of unequal num-
bers of candidate tag sequences that often arises be-
cause of the difference in the lengths of the input
sentences. Now letR denote a matrix of the same
size as that ofY (i.e. d2 × n) with its ith column as
given by 1

mi

∑mi

j=1
Lijrij , then we add the following

term to the generative objective function:

n
∑

i=1

aTxi

( 1

mi

mi
∑

j=1

Lijr
T
ij

)

b = aTXRTb (9)

Finally, the projection directions are obtained by
solving the following optimization problem :

argmax
a,b

(1− λ)aTXY Tb+ λ aTXRTb (10)

s.t. aTXXTa = 1 and bTY Y Tb = 1

where0 ≤ λ ≤ 1 is the weight parameter to be
tuned on the development set.

3 Optimization

In this section, we describe how we solve the opti-
mization problems associated with our models. First
we discuss the solution of the generative model.
Next, we discuss thesofteneddiscriminative model,
since its solution will be used as a subroutine in our
final discussion of the fully discriminative model.

3.1 Optimizing the Generative Model

The optimization problem corresponding to the gen-
erative model turns out to be identical to that of
canonical correlation analysis (CCA) (Hotelling,
1936; Hardoon et al., 2004), which immediately
suggests a solution by solving an eigensystem. In
particular, the projection directions are obtained by
solving the following generalized eigensystem:

(

0 Cxy

Cyx 0

)(

a

b

)

=

(

Cxx 0
0 Cyy

)(

a

b

)

(11)

whereCxx = (1 − τ)XXT + τI, Cyy = (1 −
τ)Y Y T + τI are autocovariance matrices,Cxy =
XY T is the cross-covariance matrix,Cyx = CT

xy,
τ is a regularization parameter andI is the identity
matrix of appropriate size. Using these eigenvectors
as columns, we form projection matricesA andB.
These projection matrices are used to project sen-
tences and tag sequences into a common lower di-
mensional subspace. In general, using all the eigen-
vectors is sub-optimal from the generalization per-
spective so we retain only topk eigenvectors.

3.2 Optimizing the Softened Model

In the softened discriminative version, the summa-
tion of all the difference terms over all candidate tag
sequences and sentences (Eq. 9), enables a simpler
objective function whose optimum can be derived
by following a procedure very similar to that of the
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generative model. In particular, the projection direc-
tions are obtained by solving Eq. 11 except thatCxy

is replaced withX((1− λ)Y T + λRT ).

3.3 Optimizing the Discriminative Model

To solve the discriminative model, we begin by con-
structing the Lagrange dual. Letβ1, β2 and αij

be the Lagrangian multipliers corresponding to the
length and the margin constraints respectively, then
the Lagrangian of Eq. 6 is given by:

L =
1− λ
λ

aTXY Tb−
n
∑

i=1

ξi

− β1
(

aTXXTa− 1
)

− β2
(

bTY Y Tb− 1
)

+

n,mi
∑

i=1,j=1

αij

(

aTxir
T
ijb− 1 +

ξi

Lij

)

Differentiating the Lagrangian with respect to the
parametersa,b and setting them to zero yields
the solution for the parameters in terms of the La-
grangian multipliersαij as follows:
(

0 Cα
xy

Cα
yx 0

)(

a

b

)

=

(

Cxx 0
0 Cyy

)(

a

b

)

(12)

whereCα
xy = X

(

1−λ
λ
Y T + RT

)

andR is a ma-

trix of size d2 × n with ith column as given by
1

mi

∑mi

j=1
αijrij . We use superscriptα on the cross-

covariance matrix to indicate that it is dependent on
the Lagrangian multipliersαij . In other words, the
solution is similar to that of the previous formulation
except that the residual vectors are weighted by the
Lagrangian multipliers instead of the loss function.
Unlike the max margin formulations of SVM, it is
not easy to rewrite the parametersa,b in terms of
the Lagrangian multipliersαij asCα

xy itself depends
on αij ’s. Hence, rewriting the parameters in terms
of the Lagrangian multipliers and then solving the
dual is not amenable in this case.

In order to solve this optimization problem, we
resort to an alternate optimization technique in the
primal space. It proceeds in two stages. In the first
stage, we keep the Lagrangian multipliersαij fixed
and then solve for the parametersa,b, β1, β2 and
ξi. Projection directionsa,b and their Lagrangian
multipliers β1, β2 are obtained by solving the gen-
eralized eigenvalue problem given in Eq. 12. Using

Algorithm 1 Alternate optimization algorithm for
solving the parameters of Discriminative Model.

Input: X,Y, Ŷ , L, λ, τ

Output: A,B

1: ∀i, j αij = Lij ;
2: rij = yi − ŷij ; Cxx = (1 − τ)XXT + τI;
Cyy = (1− τ)Y Y T + τI

3: repeat
4: FormR with ith column as 1

mi

∑mi

j=1
αijrij

5: Cα
xy = X

(

1−λ
λ

Y T +RT
)

6: Solve for the eigenvectors of Eq. 12. .
7: Form matricesA,B with top k eigenvectors

as columns;k is determined using dev. set.
8: Let An & Bn be normalized versions ofA

andB s.t. they follow the length constraints.
9: for each sentencei = 1 · · ·n do

10: j = 1· · ·mi, ψij =
(

1− xT
i AnB

T
n rij

)

Lij

11: ξi = min
{

0 , ψij | s.t. ψij > 0
}

12: if ξi > 0 then
13: dij = xT

i AnB
T
n rij −

(

1− ξi
Lij

)

14: αij = αij − γ dij

15: end if
16: end for
17: until slack values doesn’t change
18: return A,B

these projection directions, we determine the slack
variableξi for each sentence. In the second stage
of the alternate optimization, we fixa,b andξi and
take a gradient descent step alongαij ’s to minimize
the function. We repeat this process until conver-
gence. In our experiments, we noticed that this al-
gorithm converges within five iterations, so we only
run it for five iterations.

The pseudocode of our approach is shown in
Alg. 1. First we initialize the Lagrangian multipli-
ers proportional to the loss of the candidate tag se-
quences (step 1). This ensures that the eigenvectors
solved in step 6 are same as the output given by the
softened model (Sec. 2.5). In general, in our experi-
ments, we observed that this is a good starting point.
After solving the generalized eigenvalue problem in
step. 6, we consider the topk eigenvectors, as de-
termined by the error on the development set and
normalize them so that they follow the length con-
straints (steps 7 and 8). In the rest of the algorithm,
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we use these normalized projection directions to find
the slack values which are in turn used to find the up-
date direction for the Lagrangian variables.

In step 10, we compute the potential slack value
(ψij) for each constraint so that it is satisfied and
then choose the minimum of the positiveψij val-
ues as the slack for this sentence (step 11). If the
chosen slack value is equal to zero, it implies that
ψij ≤ 0 ∀j = 1 · · ·mi which in turn implies that
all the constraints of a given input sentence are sat-
isfied by the current projection directions and hence
there is no need to update the Lagrangian multipli-
ers. Otherwise, some of the constraints are still not
satisfied and hence we will update their correspond-
ing Lagrangian multipliers in steps 13 and 14. In
specific, step 13 computes the deviation of the mar-
gin constraints with the new slack value and step 14
updates the Lagrangian multipliers along the gradi-
ent direction.

In principle, our approach is similar to the cutting
plane algorithm used to optimize slack re-scaling
version of Structured SVM (Tsochantaridis et al.,
2004), but it differs in selecting the slack variable
(step 11). The cutting plane method choosesξi as
the maximum of{0, ψij} where as we choose the
minimum of the positiveψij values as the slack. In-
tuitively, this means that the cutting plane algorithm
chooses a constraint that is most violated which re-
sults in fewer constraints. This is crucial in struc-
tured SVM, because solving the dual problem is cu-
bic in terms of the number of examples and con-
straints. In contrast, our approach selects the slack
such that at least one of the constraints is satisfied
and adds all the remaining constraints to the active
set. Since step 6 considers a weighted average of all
these constraints the complexity depends only on the
number of training examples and not the constraints.

3.4 Combining with Viterbi Decoding Score

All the three formulations discussed until now do not
consider the Viterbi decoding score assigned to each
candidate tag sequence. As explained in Collins and
Koo (2005), the decoding score plays an important
role in reranking the candidate sentences. Here, we
describe a simple linear combination of the Viterbi
decoding score and the score obtained by projecting
into the low-dimensional subspace, using projection
directions obtained by any of the above models.

For a given sentencexi and candidate tag se-
quence pair̂yij , let sij andpij (Eq. 1) be the scores
assigned by Viterbi decoding and the lower dimen-
sional projections respectively. Then we define the
final score for this pair as a simple linear combina-
tion of these two scores as:

Score(xi, ŷij) = sij + w pij (13)

The weightw is optimized using a grid search on
the development data set, we search forw from 0 to
100 with an increment of 1 and choose the value for
which the error is minimum on the development set.

3.5 Reranking for POS Tagging

To summarize our approach, we convert the train-
ing data into feature vectors and use any of the
three methods discussed above to find the lower di-
mensional projection directions (a andb). Each of
those approaches involve solving a similar general-
ized eigenvalue problem (Eq. 11) with the cross co-
variance matrixCxy defined differently in the three
approaches. This problem can be solved in differ-
ent ways, but we use the following approach since it
reduces the size of the eigenvalue problem.

C−1

yy C
T
xyC

−1

xx Cxy b = ω b (14)

a =
1√
ω
C−1

xx Cxy b (15)

whereω is the eigenvalue. Assuming thatd2 ≪ d1,
which is usually true in POS tagging because of
the smaller tag vocabulary, these equations solve
a smaller eigenvalue problem. After solving the
eigenvalue problem, we form matricesA andB with
columns as the topk eigenvectorsa andb respec-
tively. Given a new sentence and candidate tag se-
quence pair(xi, ŷij), their similarity is obtained us-
ing Eq. 1. Now, based on the development data set
we find the weight (w) for the linear combination of
the projection and Viterbi decoding scores (Eq. 13).

During the reranking stage, we first use Eq. 1 to
compute the projection score for all the candidate
tag sequences and then use Eq. 13 to combine this
scores with the decoding score. The candidate tag
sequences are reranked based on this final score.

4 Experiments

In this section, we report POS tagging experiments
on four languages: English, Chinese, French and
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Train. Dev. Test

English (En.)
# sent. 15K 2K 1791
# words 362K 47K 43K

Chinese (Zh.)
# sent. 50K 4K 3647
# words 292K 26K 25K

French (Fr.)
# sent. 9K 2K 1351
# words 254K 57K 40K

Swedish (Sv.)
# sent. 8K 2K 1431
# words 137K 31K 28K

Table 1: Training and test data statistics.

Swedish. The data in all these languages is obtained
from the CoNLL 2006 shared task on multilingual
dependency parsing (Buchholz and Marsi, 2006).
We only consider the word and its fine grained POS
tag (columns 2 and 5 respectively) and ignore the
dependency links in the data. Table 1 shows the data
statistics in each of these languages.

We use a second order Hidden Markov Model
(Thede and Harper, 1999) based tagger as a baseline
tagger in our experiments. This model uses trigram
transition and emission probabilities and is shown
to achieve good accuracies in English and other lan-
guages (Huang et al., 2007). We refer to this as the
baseline tagger in the rest of this paper and is used to
producen-best list for each candidate sentence. The
n-best list for training data is produced using multi-
fold cross-validation like Collins and Koo (2005)
and Charniak and Johnson (2005). The first block of
Table 2 shows the accuracies of the top-ranked tag
sequence (according to the Viterbi decoding score)
and the oracle accuracies on the 10-best list. As
expected the accuracies on English and French are
high and are on par with the state-of-the-art systems.
From the oracle scores, it is clear that though there is
a chance for improvement using reranking, the scope
for improvement in English is less compared to the
5 point improvement reported for parsing (Charniak
and Johnson, 2005). This indicates the difficulty
of the reranking problem for POS tagging in well-
resourced languages.

4.1 Reranking Features and Baselines

In this paper, except for Chinese, we use suffixes of
length two to four as features in the word view and
unigram and bigram tag sequences as features in the

tag view. That is, we convert each word of the sen-
tence into suffixes of length two to four and then
treat each sentence as a bag of suffixes. Similarly,
we treat a candidate POS tag sequence as a bag of
unigram and bigram tag features. For Chinese, we
use character sequences of length one and two as
features for the sentences and use unigram and bi-
gram POS tag sequences on the tag view. We did
not include any alignment based features,i.e. fea-
tures that depend on the position.

We compare our models with a boosting-based
discriminative approach (Collins and Koo, 2005)
and its regularized version (Huang et al., 2007). In
order to enable a fair comparison, we use suffix and
tag pairs as features for both these models. For ex-
ample, we would generate the following features for
the word ‘selling’ in the phrase “the/DT selling/NN
pressure/NN”: (ng, NN), (ng, DTNN), (ing,NN),
(ing,DT NN), (ling,NN), (ling,DT NN). For com-
parison purposes, we also show results by running
the baseline rerankers with n-gram features.

4.2 Results

There are following hyper parameters in each of our
models, regularization parameterτ , weight parame-
ter λ in the discriminative and softened discrimina-
tive models, the linear combination weightw with
the Viterbi decoding score, and finally, the size of
the lower dimensional subspace (k). We use grid
search to tune these parameters based on the devel-
opment data set. The optimal hyperparameter values
differ based on the model and the language, but the
tagging accuracy is relatively robust with respect to
these parameter values. For English, the best values
for the discriminative model areτ = 0.95, λ = 0.3
andk = 75. For the same language, Fig. 1 shows
the performance with respect toτ andλ parameters,
respectively, with other parameters fixed to their op-
timal values. Notice that, although the performance
varies it is always more than the accuracy of the
baseline tagger (96.74%).

Table 2 shows the results of different models on
the development and test data sets. On the test data
set, the baseline reranking approaches perform bet-
ter than the HMM decoder in Chinese and Swedish
languages, but they underperform in English and
French languages. This is justifiable because the in-
dividual characters are good indicators of POS tag
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Figure 1: Tagging accuracy with hyperparametersτ andλ on English development data set.

Development Set Test set
English Chinese French Swedish English Chinese French Swedish

Baseline 96.74 92.55 96.94 93.22 96.15 92.31 97.41 93.23
Oracle 98.85 98.41 98.61 96.96 98.39 98.19 99.00 96.48

Collins (Sufx) 96.66 93.00 96.87 93.50 96.06 92.81 97.35 93.44
Regularized (Sufx) 96.60 93.12 96.90 93.36 96.00 92.88 97.38 93.35

Generative 96.82 93.14 96.97 93.46 96.24 92.95 97.43 93.26
Softened-Disc 96.85 93.14 97.04 93.49 96.32 92.87 97.53 93.24
Discriminative 96.85 93.17 97.03 93.50 96.3 92.91 97.53 93.36

Collins (n-gm) 96.74 93.14 97.06 93.44 96.13 92.74 97.54 93.45
Regularized (n-gm) 96.78 93.14 97.01 93.45 96.14 92.80 97.52 93.40

Table 2: Accuracy of the baseline HMM tagger and different reranking approaches. For comparison purposes, we also
showed the results of Collins and Koo (2005) its regularizedversions withn-gram features. The improvements of our
discriminative models are statistically significant atp = 0.01 andp = 0.05 levels on Chinese and English respectively.

information for Chinese and this additional informa-
tion is being exploited by the reranking approaches.
Swedish, on the other hand, is a Germanic language
with compound word phenomenon which makes the
baseline HMM decoder weaker compared to English
and French.

The fourth block shows the performance of our
models. Except in Swedish, one of our models out-
perform the baseline decoder and the other rerank-
ing approaches. The fact that our models outperform
the baseline system and other reranking approaches
indicate that, by considering all the pairwise com-
binations of the input features our models capture
dependencies that are left by other models. Among
the different formulations of our approach, maxi-

mizing the margin between the correct and incorrect
candidates performed better than generative, and en-
suring that the margin is proportional to the loss of
the candidate sequence (discriminative) led to even
more improved results. Except in Chinese, our dis-
criminative version performed at least as well as the
other variants. Compared to the baseline decoder,
the discriminative version achieves a maximum im-
provement of 0.6 points in Chinese while achieving
0.15, 0.12 and 0.13 points of improvement in En-
glish, French and Swedish languages respectively.

We also reported the results of the baseline
rerankers withn-gram features in the fifth block of
Table 2. We remind the reader that our models use
only suffix features, so for a fair comparison the
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En. Zh. Fr. Sv.
Generative 94.83 89.89 96.1 91.89
Softened-Disc 95.04 89.61 95.97 91.95
Discriminative 94.95 89.76 95.82 92.11

Table 3: Accuracies without combining with Viterbi de-
coding score.

reader should compare our results with the baseline
rerankers run with the suffix features. The perfor-
mance of these baseline rankers improved when we
include then-gram features but it is still less than
the discriminative model in most cases.

Finally, Table 3 shows the performance of our
models without combining with the Viterbi decod-
ing score. As shown, the performance drops signif-
icantly and is in accordance with the behavior ob-
served elsewhere (Collins and Koo, 2005).

5 Related Work

In this section, we discuss approaches that are most
relevant to our problem and the approach.

In NLP literature, discriminative reranking has
been well explored for parsing (Collins and Koo,
2005; Charniak and Johnson, 2005; Shen and Joshi,
2003; McDonald et al., 2005; Johnson and Ural,
2010) and statistical machine translation (Shen et
al., 2004; Watanabe et al., 2007; Liang et al., 2006).
Collins (2002) proposed two reranking approaches,
namely boosting algorithm and a voted perceptron,
for the POS tagging task. Later Huanget al. (2007)
propose a regularized version of the objective used
by Collins (2002) and show an improved perfor-
mance for Chinese. In all of the above reranking
approaches, the feature functions are defined jointly
on the input and output, whereas in our approach,
the features are defined separately within each view
and the algorithm learns the relationship between
them automatically. This is the primary difference
between our approach and the existing rerankers.

In principle, our margin formulations are similar
to the max margin formulations of CCA (Szedmak
et al., 2007) and maximum margin regression (Szed-
mak et al., 2006; Wang et al., 2007). These ap-
proaches solve the following optimization problem:

min ‖W‖2 + C1T ξ (16)

s.t. 〈yi,Wφ(x)i〉 ≥ 1− ξi ∀i = 1 · · ·n

Our approach differs from these formulations in two
main ways: the score assigned by our generative
model (equivalent to CCA) for an input-output pair
(xT

i ab
Tyi) can be converted into this format by

substitutingW ← baT but in doing so we are
ignoring the rank constraint. It is often observed
that, dimensionality reduction leads to an improved
performance and thus the rank constraint becomes
crucial. Another major difference is that, the con-
straints in Eq. 16 represent that any input and out-
put pair should have at least a margin of 1 (modulo
slack), whereas in our approach, the constraints in-
clude incorrect outputs along with their loss value.
In other words, our formulation is more suitable for
the reranking problem while Eq. 16 is more suitable
for regression or classification tasks. Our genera-
tive model is very similar to the supervised semantic
hashing work (Bai et al., 2010) but the way we opti-
mize is completely different from theirs.

6 Discussion

In this paper, we proposed a novel family of mod-
els for discriminative reranking problem and showed
improvements for the POS tagging task in four dif-
ferent languages. Here, we restricted our scope to
showing the utility of our technique and, hence, did
not experiment with different features, though it is
an important direction. By using only within space
features, our models are able to beat the rerank-
ing approaches that use potentially more informa-
tive alignment-based features. It is also possible to
include alignment-based features into our models by
posing the problem as a feature selection problem on
the covariance matrices (Jagarlamudi et al., 2011).
Our approach involves an inverse computation and
an eigenvalue problem. Although our models scale
to medium size data sets (our Chinese data set has
50K examples and 33K features), these operations
can be expensive. But there are alternative approx-
imation techniques that scale well to large data sets
(Halko et al., 2009). We leave this for future work.
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