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Abstract

The accuracy of many natural language pro-
cessing tasks can be improved by a reranking
step, which involves selecting a single output
from a list of candidate outputs generated by
a baseline system. We propose a novel fam-
ily of reranking algorithms based on learning
separatelow-dimensional embeddings of the
task’s input and output spaces. This embed-
ding is learned in such a way that prediction
becomes a low-dimensional nearest-neighbor
search, which can be done computationally ef-
ficiently. A key quality of our approach is that
feature engineering can be doseparatelyon

the input and output spaces; the relationship
between inputs and outputs is learned auto-
matically. Experiments on part-of-speech tag-
ging task in four languages show significant
improvements over a baseline decoder and ex-
isting reranking approaches.

1 Introduction

Hal Daumé Il
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For the POS tagging, reranking is relative less ex-
plored due to the already higher accuracies in En-
glish (Collins, 2002), but it is shown to improve ac-
curacies in other languages such as Chinese (Huang
et al., 2007). In this paper, we propose a novel ap-
proach to discriminative reranking and show its ef-
fectiveness in POS tagging. Reranking allows us to
use arbitrary features defined jointly on input and
output spaces that are often difficult to incorporate
into the baseline decoder due to the computational
tractability issues. The effectiveness of reranking
depends on the joint features defined over both input
and output spaces. This has led the community to
spend substantial efforts in defining joint features for
reranking (Fraser et al., 2009; Chiang et al., 2009).

Unfortunately, developing joint features over the
input and output space can be challenging, espe-
cially in problems for which the exact mapping be-
tween the input and the output is unclear (for in-
stance, in automatic caption generation for images,
semantic parsing or non-literal translation). In con-

Mapping inputs to outputs lies at the heart of manyast to prior work, our approach uses features de-
Natural Language Processing applications. For efinedseparatelywithin the input and output spaces,
ample, given a sentence as input: part-of-spee@hd learns a mapping function that can map an ob-
(POS) tagging involves finding the appropriate POgCt from one space into the other. Since our ap-
tag sequence (Thede and Harper, 1999); pargroach requires within-space features, it makes the
ing involves finding the appropriate tree structurdeature engineering relatively easy.

(Kubler et al., 2009) and statistical machine trans- For clarity, we will discuss our approach in the
lation (SMT) involves finding correct target lan-context of POS tagging, though of course it gener-
guage translation (Brown et al., 1993). The accuraaglizes to any reranking problem. At test time, in
achieved on such tasks can often be improved signirOS tagging, we receive a sentence and a list of
icantly with the help of a discriminative rerankingcandidate output POS sequences as input. We run
step (Collins and Koo, 2005; Charniak and Johna feature extractor on the input sentence to obtain
son, 2005; Shen et al., 2004; Watanabe et al., 2003).representatior € R%: we run anindependent
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feature extractor on each of the-many outputs and are represented g € R?% j =1-..m;. Each
to obtain representationg;, ..., ¥, € R%. We candidate tag sequencg;f) is also associated with
will project all of these points down to a low- a non-negative losé;;. Note that we place abso-
dimensional space by means of matrices R%**  |utely no constraints on the loss function. Moreover,
(for x as ATx) and B € R%2** (for y as BTy). letX (d; xn)andY (ds x n) denote the data matri-
We then select as the output the that maximizes ces withx; andy; as columns respectively. Finally,
cosine similar tax in the lower-dimensional space:let (u, v) denote the dot product of the two vectors
max; co§ ATx, BTy ;). The goal is to learn the pro- u andv.
jection matricesA and B so that the result of this N
operation is a low-loss output. 2.2 Intuition

Given training data of sentences and their refelAs stated in the introduction, our goal is to learn
ence tag sequences, our approach implicitly uses @lfojectionsA € R¥“** and B € R%“** in such a
possible pairwise feature combinations across theay that test-time predictions are made with high
views and learns the matricglsand B that can map accuracy (or low loss). At test time, the output will
a given sentence (as its feature vector) to its cobe chosen by maximizing cosine similarity between
responding tag sequence. Considering all possibike input and the output, after projecting these vec-
pairwise combinations enables our model to autders into a low-dimensional space usiagand B,
matically handle long range dependencies such a&sspectively. The cosine similarity in our context is:
a word at a position effecting the tag choice at any

i+ x"ABTy,

other position. Yi

Experiments performed on four languages (En- xTAATx ijBBTyj
glish, Chinese, French and Swedish) show the ef-
fectiveness of our approach in comparison to th@ur goal is to learmd and B in such a way that the
baseline decoder and to the existing reranking apx With maximum cosine similarity to as is ac-
proaches (Sec. 4). Using only the within-space fedually the correct output. In what follows, we will
tures, our models are able to beat reranking alg_escribe our models to find one-dimensional projec-
proaches that use more informative joint featuredion vectorsa € R andb € R%, but the general-
While it is possible to include joint features into ourization to matricesd andB is very trivial.
models, we leave this for future work.

(1)

2.3 A Generative-Style Model

2 Models for Low-Dimensional Reranking The first model we propose is akin to a gener-
ative probabilistic model, in the sense that it at-
In this section, we describe our approach to Iearnin@mptS to model the relationship between an input
low-dimensional representations for reranking. Wenq its desired output, without taking alternate pos-
first fix some notation, then discuss the intuition begjp|e outputs into account. In the context of the in-
hind the problem we wish to solve. We propose bothition sketched in the previous section, the idea is
generative-style and discriminative-style approach@§ chooseA and B so as to maximize the cosine
to formalizing this intuition, as well as a softenedgjmijlarities on the training data between each input
variant of the discriminative model. In the subseyngit's correct (or minimal-loss) output. This model
quent section, we discuss computational issues rgientionallyignoresthe information present in the
lated to these models. alternative, incorrect outputs. The hope is that by
making the cosine similarities with the best output
as high as possible, all the alternate outputs will look
Let x; € R andy; € R% be the feature vectors bad in comparison.
representing thé'”(1---n) sentence and its refer- Given a training data of sentences and their
ence tag sequence from the training data. Each seeference tag sequences representedaand Y
tence is also associated with, number of candi- (Sec. 2.1), our generative model finds projection di-
date tag sequences, output by the baseline decodegtions, in word and tag spaces, along which the

2.1 Notation
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aligned sentence and tag sequence pairs have maXi4 A Discriminative-Style Model

mum cosine similarity. In thf one-dimen;sional Se€lThe primary disadvantage of our generative model is
ting, it finds directionsa € R™ andb € R® such  inat it only uses input sentences and their reference
that the correlation as defined in Eq. 2 is maX|m|zec{ag sequences and daest use the incorrect candi-
a’XyThb date tag sequences of a given sentence at all. In what
Val X XTavbIYYTh 2) follows, we describe a model that utiIize. the incor-
rect candidate tag sequences as negative examples
to improve the projection directiona @ndb). Our
goal is to address this by adding constraints to our
model that explicitly penalize ranking high-loss out-
st a’XXTa=1 and b"YY"b = 1(4) puts higher than onv—loss outp_uts, as is often d_on_e in
the context of maximum-margin structure prediction
We refer to the constraints in Eq. 4 as length conechniques (Taskar et al., 2004).
straints in the rest of this paper. - _ ~In this section, we describe a discriminative
To understand why maximizing this objectivemodel that keeps track of the margin deviations and
function learns a good mapping function betweefinds the projection directions iteratively. Intuitively,
the sentence and the tag sequence, consider decqfter the projection into the lower dimensional sub-

Since the objective is invariant to the scaling of vec
torsa andb, it can be rewritten as:

argmaxa’ XYTb 3

a,b

posing the objective function as follows: space, the cosine similarity of a sentence to its refer-
T o n ence tag sequence must be greater than that of its

a’ XY'b = Z<Xiaa>(%b> incorrect candidate tag sequences. Moreover, the
=1 margin between these similarities should be propor-

; " tional to the loss of the candidate translatioe, the
= Z (in‘” ' Z Yi bm) more dissimilar a candidate tag sequence to its ref-
erence is, the farther it should be from the reference

! in the projected space.
= E ( E g X;a; ymbm) " .
o\ e Eaa From the decomposition shown in Eq. 5, for a
= =] m= . .
Zn dy da given pair of source sentenge and a tag sequence
’ ;, the generative model assign re of :
_ Z Z wmqbﬁm) (5) y;, the generative model assigns a score o
=1 im=l1 <a7 Xi><ba YJ> = aTXiy,fb

where we replaced the scalacy;"” andab, With  Each input sentence is also associated with a list
¢™ andwy, respectively. So finally, the objective of candidate tag sequences and since each of these
can be expressed a8 XY'b = 3_,(w,6(x;,¥1))  candidate sequences are incorrect they should be as-
wherew is the weight vector and(x;, yi) is aVeC-  sjgned a score less than that of the reference tag se-
tor of size {1 x d») and is given by the Kronecker q,ence. Drawing ideas from structure prediction lit-
product of the two feature vectoss andy;. _erature (Bakir et al., 2007), we modify the objec-

In this form, the generative objective functiongye function in order to include these terms. This
bears similarity to the linear boundary surfacgyes can be captured using a loss augmented mar-
widely used in machine learning, except that thginy constraint for each sentence, tag sequence pair
weights are restricted to be the outer product of WPrsochantaridis et al., 2004). Lét denote a non-

vectors. From the reduced expressions, it is Cle@gative slack variable, then we define our new op-
that our generative model considers all possible paifimization problem as:

wise combinations of the input features & ds) and 1—»

learns which of them are more importantthan others.  arg max Z 2T xyvTh — Z & (6)
Intuitively, it puts higher weight on a word and tag abgz0 A ;

pair that co-occur frequently in the training data, at st alXXTa=1 and bIYY™b =1

the same time each of these are infrequent in their &

i T Ty T o
own views. Vivj a'xy;b—a'xy;b>1- 2=
ij

J
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where0 < X\ < 1is a weight parameter. This ob- Finally, the projection directions are obtained by
jective function is ensuring that the margin betweesolving the following optimization problem :

the reference and the candidate tag sequences in the

projected space (as given by x;y! b — a’x;y b) arg max (1-Na’Xy"b+Xa’ XR"b (10)

is proportional to its lossl{;;). Notice that the slack ’
is defined for each sentence and it remains the same

for all of its candidate tag sequences.

st.a’XXTa=1 and b’YY'b =1

where0 < X\ < 1 is the weight parameter to be
2.5 A Softened Discriminative Model tuned on the development set.

One disadvantage of the discriminative model des
scribed in the previous section is that it cannot be
optimized in closed form (as discussed in the nexh this section, we describe how we solve the opti-
section). In this section, we consider a model thahization problems associated with our models. First
lies between the generative model and the (fullyve discuss the solution of the generative model.
discriminative model. This softened model has atNext, we discuss thsoftenediscriminative model,

tractive computational properties (it is easy to comsince its solution will be used as a subroutine in our

pute) and will also form a building block for the op-final discussion of the fully discriminative model.
timization of the full discriminative model.

For each sentence;, its reference tag sequence3.1 Optimizing the Generative Model

yi should be assigned a higher score than any of itshe optimization problem corresponding to the gen-
candidate tag sequencgs i.e. we want to maxi- erative model turns out to be identical to that of
mizea”x;y{ b—a’x;y;;b. Inthe fully discrimina- canonical correlation analysis (CCA) (Hotelling,
tive mOdeI, we enforce that this is at least one (moqt9361 Hardoon et a|_1 2004), which |mmed|ate|y
ulo slack). In the relaxed version, we instead requirguggests a solution by solving an eigensystem. In
that this holdon average In order to achieve this particular, the projection directions are obtained by

we add the fOIlOWing terms to the ObjeCtive function:so|ving the fo"owing genera”zed eigensystem:

. 0 Cx a Cxac 0 a

wherer;; = y; — y;; is the residual vector between
the reference and the candidate sequences. N vy T ) ]
we simply sum all these terms for a given sentenc)Y ¥+ 7/ are autocovariance matriceS,, =

T . . . _ T
weighted by their loss and encourage it to be as high Y IS the cross-covariance matrig,,, = Cz,,
as possiblei,e. we maximize T is a regularization parameter aihds the identity

matrix of appropriate size. Using these eigenvectors
1 1 & as columns, we form projection matricésand B.
— Z Lij (aTXZ‘I'Z;b> = aTx,- (* Z Lier>b (8)
mi i mi s

Optimization

ereCyy = (1 — 1)XXT + 71, Cyy = (1 —

ij These projection matrices are used to project sen-
tences and tag sequences into a common lower di-
The normalization byn; takes care of unequal num- mensional subspace. In general, using all the eigen-
bers of candidate tag sequences that often arises ectors is sub-optimal from the generalization per-
cause of the difference in the lengths of the inpuspective so we retain only topeigenvectors.
sentences. Now lek denote a matrix of the same o
size as that oF (i.e. dy x n) with its " column as 3-2 Optimizing the Softened Model
given bym%, > 721 Lijrij, then we add the following In the softened discriminative version, the summa-
term to the generative objective function: tion of all the difference terms over all candidate tag
n ms sequences and sentences (Eq. 9), enables a simpler
ZaTXi(i ZLijrz;>b =a’XR™ (9) objective_ function whose optim_urr_1 can be derived
1 mi i3 by following a procedure very similar to that of the
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generative model. In particular, the projection direcAlgorithm 1 Alternate optimization algorithm for
tions are obtained by solving Eq. 11 except igj ~ solving the parameters of Discriminative Model.
is replaced withX ((1 — \)Y7 + ART). Input: X,Y,V,L,\ 7

Output: A, B

o : 1 Vi, j aij = Lij;

To soI.ve the discriminative model, we begin by con- ,,. ri; = yi — Viji Cow = (1 — 1)XXT 4 71
structing the Lagrange dual. Let, 32 and a;; Cyy = (1— T)ny T

be the Lagrangian multipliers corresponding to the 5. repeat

length and the margin constraints respectively, then,.
the Lagrangian of Eq. 6 is given by:

3.3 Optimizing the Discriminative Model

Form R with " column as;- 37" aijry;
5. Cg=X(12 v+ RT)

1— A\ . : i

r - R I xyTh — Zfi 6:  Solve for the eigenvectors of Eq. 12. .

7. Form matricesA, B with top k& eigenvectors
as columnsk is determined using dev. set.

i=1
- b <aTXXTa — 1) — B2 (bTYYTb — 1)

8: Let A, & B, be normalized versions of
n,m; 3 andB s.t. they follow the length constraints.
+ Z Qij (aTXz'rg;b -1+ LZ> 9: for each sentence=1---ndo
1=1,j=1 4 10: j =1-.. m;, wij = (1 — XzTAntI'ij>Lij

Differentiating the Lagrangian with respect to the' §i = min {0, ¢y | sty >0}
parametersa,b and setting them to zero yields 1% if & > Oth;:n . N
the solution for the parameters in terms of the La*® dij = x; AnByrij — (1 - sz)
grangian multipliersy;; as follows: 14: aij = aij — 7y dij

15: end if

0 C3y\ (a) _ (Cux O a (12) 16:  end for
Cyz 0 b/ 0 Cy/) \b 17: until slack values doesn’t change

18: return A, B

whereCg, = X(%YT + RT) and R is a ma-

trix of size d» x n with i** column as given by
m% ") aujrij. \We use superscript on the cross- these projection directions, we determine the slack
covariance matrix to indicate that it is dependent oMariableg; for each sentence. In the second stage
the Lagrangian multipliers;;;. In other words, the Of the alternate optimization, we fix b and¢; and
solution is similar to that of the previous formulationtake a gradient descent step aleng's to minimize
except that the residual vectors are weighted by ttige function. We repeat this process until conver-
Lagrangian multipliers instead of the loss functiongence. In our experiments, we noticed that this al-
Unlike the max margin formulations of SVM, it is gorithm converges within five iterations, so we only
not easy to rewrite the parametersb in terms of run it for five iterations.
the Lagrangian multipliers;; asCy, itself depends ~ The pseudocode of our approach is shown in
on a;;'s. Hence, rewriting the parameters in termsAlg. 1. First we initialize the Lagrangian multipli-
of the Lagrangian multipliers and then solving theers proportional to the loss of the candidate tag se-
dual is not amenable in this case. guences (step 1). This ensures that the eigenvectors
In order to solve this optimization problem, wesolved in step 6 are same as the output given by the
resort to an alternate optimization technique in theoftened model (Sec. 2.5). In general, in our experi-
primal space. It proceeds in two stages. In the firghents, we observed that this is a good starting point.
stage, we keep the Lagrangian multiplierg fixed  After solving the generalized eigenvalue problem in
and then solve for the parametetsb, 51,52 and step. 6, we consider the tdpeigenvectors, as de-
&;. Projection directiong, b and their Lagrangian termined by the error on the development set and
multipliers 31, B2 are obtained by solving the gen-normalize them so that they follow the length con-
eralized eigenvalue problem given in Eq. 12. Usingtraints (steps 7 and 8). In the rest of the algorithm,
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we use these normalized projection directions to find For a given sentence; and candidate tag se-

the slack values which are in turn used to find the upguence paig;;, let s;; andp;; (Eq. 1) be the scores

date direction for the Lagrangian variables. assigned by Viterbi decoding and the lower dimen-
In step 10, we compute the potential slack valusional projections respectively. Then we define the

(v45) for each constraint so that it is satisfied andinal score for this pair as a simple linear combina-

then choose the minimum of the positivg; val- tion of these two scores as:

ues as the slack for this sentence (step 11). If the SCOréx;, yij) = Sij + w pij (13)

chosen slack value is equal to zero, it implies that ] ) o ) ]

%i; < 0VYj = 1---m; which in turn implies that The weightw is optimized using a grid search on

all the constraints of a given input sentence are sdfl€ development data set, we searctuidrom O to

isfied by the current projection directions and henc&0 With an increment of 1 and choose the value for
there is no need to update the Lagrangian muItiphWh'Ch the error is minimum on the development set.

ers. Otherwise, some of the constraints are still & 5 Reranking for POS Tagging

satisfied and hence we will update theircorrespondr- mmariz i roach. w vert the train
ing Lagrangian multipliers in steps 13 and 14. In 0 sUmmarize our approach, we conve € tra

specific, step 13 computes the deviation of the maf-9 data into feature vectors and use any of the

gin constraints with the new slack value and step 1t£|ree methods discussed above to find the lower di-

updates the Lagrangian multipliers along the grad|r-nen$"0n"°II prOJectlc_)n dwecﬂon:a @ndb_). _Each of
ent direction. those approaches involve solving a similar general-

In principle, our approach is similar to the cuttingIzed eigenvalue problem (Eq. 11) with the cross co-

plane algorithm used to optimize slack re_Sct,j”nvariance matrixC,, defined differently in the three

version of Structured SVM (Tsochantaridis et al.%pproaches. This problem can be solved in differ-

2004), but it differs in selecting the slack variableent ways, but we use the following approach since it

(step 11). The cutting plane method chooseas reduces the size of the eigenvalue problem.

the maximum of{0, ¢;;} where as we choose the Cy_leZyC;;C;py b=wb (14)
minimum of the positive);; values as the slack. In- 1 .
tuitively, this means that the cutting plane algorithm =5 Cpz Cay b (15)

chooses a constraint that is most violated which re-

sults in fewer constraints. This is crucial in strucWherew is the eigenvalue. Assuming théf < d;,
tured SVM, because solving the dual problem is cuvhich is usually true in POS tagging because of
bic in terms of the number of examples and conthe smaller tag vocabulary, these equations solve
straints. In contrast, our approach selects the slagkSmaller eigenvalue problem. After solving the
such that at least one of the constraints is satisfiigenvalue problem, we form matricdsand B with

and adds all the remaining constraints to the actielumns as the top eigenvectors andb respec-
set. Since step 6 considers a weighted average of Hyely. Given a new sentence and candidate tag se-
these constraints the complexity depends only on tifgience paifx;, y;;), their similarity is obtained us-

number of training examples and not the constraint§?d Eq. 1. Now, based on the development data set
we find the weight) for the linear combination of

3.4 Combining with Viterbi Decoding Score the projection and Viterbi decoding scores (Eqg. 13).

All the three formulations discussed until now do not During the reranking stage, we first use Eqg. 1 to
consider the Viterbi decoding score assigned to ea@@Mmpute the projection score for all the candidate
candidate tag sequence. As explained in Collins arf@d sequences and then use Eq. 13 to combine this
Koo (2005), the decoding score plays an importarftcores with the decoding score. The candidate tag
role in reranking the candidate sentences. Here, wedquences are reranked based on this final score.
describe a simple linear combination of the Viterbi
decoding score and the score obtained by projecting
into the low-dimensional subspace, using projection this section, we report POS tagging experiments
directions obtained by any of the above models. on four languages: English, Chinese, French and

Experiments
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] | Train. | Dev. | Test| tag view. That is, we convert each word of the sen-
# sent. 15K 2K | 1791 tence into suffixes of length two to four and then
#words| 362K | 47K | 43K treat each sentence as a bag of suffixes. Similarly,
' #sent. | 50K | 4K | 3647| We treat a candidate POS tag sequence as a bag of
Chinese (Zh.)| ,,\ o 4s| 292K | 26K | 25k |  unigram and bigram tag features. For Chinese, we
Zsent 9K 5K | 1351 use character sequences of length one and two as
#words| 254K | 57K | 40k features for the sentences and use unigram and Ipl-
gram POS tag sequences on the tag view. We did
#sent. | 8K | 2K 11431}, include any alignment based features, fea-
#words| 137K | 31K | 28K tures that depend on the position.

Table 1: Training and test data statistics. We compare our models with a boosting-based
discriminative approach (Collins and Koo, 2005)
and its regularized version (Huang et al., 2007). In

Swedish. The data in all these languages is obtain@gqer to enable a fair comparison, we use suffix and
from the CoNLL 2006 shared task on multilingualtag pairs as features for both these models. For ex-
dependency parsing (Buchholz and Marsi, 20063mple, we would generate the following features for
We only consider the word and its fine grained POghe word ‘selling’ in the phrase “the/DT selling/NN
tag (columns 2 and 5 respectively) and ignore thBressure/NN": (ng, NN), (ng, DNN), (ing,NN),
dependency links in the data. Table 1 shows the dafgg DT_NN), (ling,NN), (ling,DT_NN). For com-

statistics in each of these languages. parison purposes, we also show results by running
We use a second order Hidden Markov Modejhe baseline rerankers with n-gram features.

(Thede and Harper, 1999) based tagger as a baseline
tagger in our experiments. This model uses trigrarh.2 Results

transition and emission probabilities and is ShOWlThere are fo“owing hyper parameters in each of our
to achieve gOOd accuracies in Engllsh and other |ali'}node|s’ regularization parameterweight parame-
guages (Huang et al., 2007). We refer to this as ther ) in the discriminative and softened discrimina-
baseline tagger in the rest of this paper and is usedige models, the linear combination weigtwith
producen-best list for each candidate sentence. Thghe Viterbi decoding score, and finally, the size of
n-best list for training data is produced using multithe lower dimensional subspack).( We use grid

fold cross-validation like Collins and Koo (2005) search to tune these parameters based on the devel-
and Charniak and Johnson (2005). The first block &pment data set. The optimal hyperparameter values
Table 2 shows the accuracies of the top-ranked tagiffer based on the model and the language, but the
sequence (according to the Viterbi decoding scorgagging accuracy is relatively robust with respect to
and the oracle accuracies on the 10-best list. Afese parameter values. For English, the best values
expected the accuracies on English and French g the discriminative model are = 0.95, A = 0.3

hlgh and are on par with the state-of-the-art systemgndi = 75. For the same language, Fig. 1 shows
From the oracle scores, itis clear that though there tﬁe performance with respectf(ﬁnd)\ parameters,

a chance forimprovement using reranking, the scop@spectively, with other parameters fixed to their op-
for improvement in English is less compared to thémal values. Notice that, although the performance
5 point improvement reported for parsing (Charniakaries it is always more than the accuracy of the
and Johnson, 2005). This indicates the difficultyyaseline tagger (96.74%).

of the reranking problem for POS tagging in well-  Taple 2 shows the results of different models on
resourced languages. the development and test data sets. On the test data
set, the baseline reranking approaches perform bet-
ter than the HMM decoder in Chinese and Swedish
In this paper, except for Chinese, we use suffixes ddinguages, but they underperform in English and
length two to four as features in the word view andrrench languages. This is justifiable because the in-
unigram and bigram tag sequences as features in thigidual characters are good indicators of POS tag

English (En.)

French (Fr.)

Swedish (Sv.)

4.1 Reranking Features and Baselines
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Figure 1: Tagging accuracy with hyperparametessnd A on English development data set.

Development Set Test set
English | Chinese| French| Swedish|| English| Chinese| French| Swedish
Baseline 96.74 9255 | 96.94 | 93.22 96.15 92.31 | 9741 | 93.23
Oracle 98.85 | 98.41 | 98.61 | 96.96 98.39 | 98.19 | 99.00 | 96.48
Collins (Sufx) 96.66 93.00 | 96.87 | 93.50 96.06 9281 | 97.35 | 93.44
Regularized (Sufx)|| 96.60 | 93.12 | 96.90 | 93.36 96.00 | 92.88 | 97.38 | 93.35
Generative 96.82 93.14 | 96.97 | 93.46 96.24 92,95 | 9743 | 93.26
Softened-Disc 96.85 93.14 | 97.04 | 93.49 96.32 92.87 | 97.53 | 93.24
Discriminative 96.85 93.17 | 97.03 | 93.50 96.3 9291 | 9753 | 93.36
Collins (n-gm) 96.74 | 93.14 | 97.06 | 93.44 | 96.13 | 92.74 | 97.54 | 93.45
Regularized#-gm) | 96.78 | 93.14 | 97.01 | 93.45 || 96.14 | 92.80 | 97.52 | 93.40

Table 2: Accuracy of the baseline HMM tagger and differeram&ing approaches. For comparison purposes, we also
showed the results of Collins and Koo (2005) its regularizasions withn-gram features. The improvements of our
discriminative models are statistically significanpat 0.01 andp = 0.05 levels on Chinese and English respectively.

information for Chinese and this additional informa-mizing the margin between the correct and incorrect
tion is being exploited by the reranking approachesandidates performed better than generative, and en-
Swedish, on the other hand, is a Germanic languagering that the margin is proportional to the loss of
with compound word phenomenon which makes ththe candidate sequence (discriminative) led to even
baseline HMM decoder weaker compared to Englismore improved results. Except in Chinese, our dis-
and French. criminative version performed at least as well as the

The fourth block shows the performance of ouPther variants. Compared to the baseline decoder,

: . {he discriminative version achieves a maximum im-
models. Except in Swedish, one of our models out-

. rovement of 0.6 points in Chinese while achieving
perform the baseline decoder and the other reran 15, 0.12 and 0.13 points of improvement in En-

ing approaches. The fact that our models outperform. . .
the baseline system and other reranking approach@éSh’ French and Swedish languages respectively.

indicate that, by considering all the pairwise com- We also reported the results of the baseline
binations of the input features our models captureerankers withn-gram features in the fifth block of
dependencies that are left by other models. Amonable 2. We remind the reader that our models use
the different formulations of our approach, maxi-only suffix features, so for a fair comparison the
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En. | Zh. Fr. Sv. Our approach differs from these formulations in two
Generative 94.83| 89.89| 96.1 | 91.89| main ways: the score assigned by our generative
Softened-Disc| 95.04 | 89.61| 95.97| 91.95 model (equivalent to CCA) for an input-output pair
Discriminative | 94.95| 89.76| 95.82| 92.11| (x'ab”y;) can be converted into this format by
substituting?’ «— ba” but in doing so we are
ignoring the rank constraint. It is often observed
that, dimensionality reduction leads to an improved
performance and thus the rank constraint becomes
reader should compare our results with the baselirgucial. Another major difference is that, the con-
rerankers run with the suffix features. The perforstraints in Eq. 16 represent that any input and out-
mance of these baseline rankers improved when vt pair should have at least a margin of 1 (modulo
include then-gram features but it is still less thansjack), whereas in our approach, the constraints in-
the discriminative model in most cases. clude incorrect outputs along with their loss value.

Finally, Table 3 shows the performance of ouln other words, our formulation is more suitable for
models without combining with the Viterbi decod-the reranking problem while Eq. 16 is more suitable
ing score. As shown, the performance drops signifor regression or classification tasks. Our genera-
icantly and is in accordance with the behavior obtive model is very similar to the supervised semantic
served elsewhere (Collins and Koo, 2005). hashing work (Bai et al., 2010) but the way we opti-
5 Related Work mize is completely different from theirs.

Table 3: Accuracies without combining with Viterbi de-
coding score.

. . . Di ion
In this section, we discuss approaches that are m065t SCUssIo

relevant to our problem and the approach. In this paper, we proposed a novel family of mod-
In NLP literature, discriminative reranking hasels for discriminative reranking problem and showed
been well explored for parsing (Collins and Koo,jmprovements for the POS tagging task in four dif-
2005; Charniak and Johnson, 2005; Shen and Josférent languages. Here, we restricted our scope to
2003; McDonald et al., 2005; Johnson and Uralshowing the utility of our technique and, hence, did
2010) and statistical machine translation (Shen @t experiment with different features, though it is
al., 2004; Watanabe et al., 2007; Liang et al., 2006@n important direction. By using only within space
Collins (2002) proposed two reranking approacheseatures, our models are able to beat the rerank-
namely boosting algorithm and a voted perceptroring approaches that use potentially more informa-
for the POS tagging task. Later Huaagal. (2007) tive alignment-based features. It is also possible to
propose a regularized version of the objective usddclude alignment-based features into our models by
by Collins (2002) and show an improved perforposing the problem as a feature selection problem on
mance for Chinese. In all of the above rerankinghe covariance matrices (Jagarlamudi et al., 2011).
approaches, the feature functions are defined jointlQur approach involves an inverse computation and
on the input and output, whereas in our approaclan eigenvalue problem. Although our models scale
the features are defined separately within each vielw medium size data sets (our Chinese data set has
and the algorithm learns the relationship betweebOK examples and 33K features), these operations
them automatically. This is the primary differencecan be expensive. But there are alternative approx-
between our approach and the existing rerankers. imation techniques that scale well to large data sets
In principle, our margin formulations are similar(Halko et al., 2009). We leave this for future work.
to the max margin formulations of CCA (SzedmakA
et al., 2007) and maximum margin regression (Szed-
mak et al., 2006; Wang et al., 2007). These apAe thank Zhonggiang Huang for providing the code
proaches solve the following optimization problem:for the baseline systems, Raghavendra Udupa and
the anonymous reviewers for their insightful com-
min [|[W|* +C17¢ (16)  ments. This work is partially funded by NSF grants
st (yi, Wo(x);)) >1—& Vi=1---n 1S-1153487 and 11S-1139909.
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