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Abstract

Coarse-to-fine inference has been shown to be
a robust approximate method for improving
the efficiency of structured prediction models
while preserving their accuracy. We propose
a multi-pass coarse-to-fine architecture for de-
pendency parsing using linear-time vine prun-
ing and structured prediction cascades. Our
first-, second-, and third-order models achieve
accuracies comparable to those of their un-
pruned counterparts, while exploring only a
fraction of the search space. We observe
speed-ups of up to two orders of magnitude
compared to exhaustive search. Our pruned
third-order model is twice as fast as an un-
pruned first-order model and also compares
favorably to a state-of-the-art transition-based
parser for multiple languages.

1 Introduction

Coarse-to-fine inference has been extensively used
to speed up structured prediction models. The gen-
eral idea is simple: use a coarse model where in-
ference is cheap to prune the search space for more
complex models. In this work, we present a multi-
pass coarse-to-fine architecture for graph-based de-
pendency parsing. We start with a linear-time vine
pruning pass and build up to higher-order models,
achieving speed-ups of two orders of magnitude
while maintaining state-of-the-art accuracies.

In constituency parsing, exhaustive inference for
all but the simplest grammars tends to be pro-
hibitively slow. Consequently, most high-accuracy
constituency parsers routinely employ a coarse
grammar to prune dynamic programming chart cells

∗ Research conducted at Google.

of the final grammar of interest (Charniak et al.,
2006; Carreras et al., 2008; Petrov, 2009). While
there are no strong theoretical guarantees for these
approaches,1 in practice one can obtain significant
speed improvements with minimal loss in accuracy.
This benefit comes primarily from reducing the large
grammar constant |G| that can dominate the runtime
of the cubic-time CKY inference algorithm. De-
pendency parsers on the other hand do not have a
multiplicative grammar factor |G|, and until recently
were considered efficient enough for exhaustive in-
ference. However, the increased model complex-
ity of a third-order parser forced Koo and Collins
(2010) to prune with a first-order model in order to
make inference practical. While fairly effective, all
these approaches are limited by the fact that infer-
ence in the coarse model remains cubic in the sen-
tence length. The desire to parse vast amounts of
text necessitates more efficient dependency parsing
algorithms.

We thus propose a multi-pass coarse-to-fine ap-
proach where the initial pass is a linear-time sweep,
which tries to resolve local ambiguities, but leaves
arcs beyond a fixed length b unspecified (Section
3). The dynamic program is a form of vine parsing
(Eisner and Smith, 2005), which we use to compute
parse max-marginals, rather than for finding the 1-
best parse tree. To reduce pruning errors, the param-
eters of the vine parser (and all subsequent pruning
models) are trained using the structured prediction
cascades of Weiss and Taskar (2010) to optimize
for pruning efficiency, and not for 1-best prediction
(Section 4). Despite a limited scope of b = 3, the

1This is in contrast to optimality preserving methods such as
A* search, which typically do not provide sufficient speed-ups
(Pauls and Klein, 2009).
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vine pruning pass is able to preserve >98% of the
correct arcs, while ruling out ∼86% of all possible
arcs. Subsequent i-th order passes introduce larger
scope features, while further constraining the search
space. In Section 5 we present experiments in multi-
ple languages. Our coarse-to-fine first-, second-, and
third-order parsers preserve the accuracy of the un-
pruned models, but are faster by up to two orders of
magnitude. Our pruned third-order model is faster
than an unpruned first-order model, and compares
favorably in speed to the state-of-the-art transition-
based parser of Zhang and Nivre (2011).

It is worth noting the relationship to greedy
transition-based dependency parsers that are also
linear-time (Nivre et al., 2004) or quadratic-time
(Yamada and Matsumoto, 2003). It is their success
that motivates building explicitly trained, linear-time
pruning models. However, while a greedy solu-
tion for arc-standard transition-based parsers can be
computed in linear-time, Kuhlmann et al. (2011)
recently showed that computing exact solutions or
(max-)marginals has time complexity O(n4), mak-
ing these models inappropriate for coarse-to-fine
style pruning. As an alternative, Roark and Holling-
shead (2008) and Bergsma and Cherry (2010)
present approaches where individual classifiers are
used to prune chart cells. Such approaches have the
drawback that pruning decisions are made locally
and therefore can rule out all valid structures, despite
explicitly evaluating O(n2) chart cells. In contrast,
we make pruning decisions based on global parse
max-marginals using a vine pruning pass, which is
linear in the sentence length, but nonetheless guar-
antees to preserve a valid parse structure.

2 Motivation & Overview

The goal of this work is fast, high-order, graph-
based dependency parsing. Previous work on con-
stituency parsing demonstrates that performing sev-
eral passes with increasingly more complex mod-
els results in faster inference (Charniak et al., 2006;
Petrov and Klein, 2007). The same technique ap-
plies to dependency parsing with a cascade of mod-
els of increasing order; however, this strategy is
limited by the speed of the simplest model. The
algorithm for first-order dependency parsing (Eis-
ner, 2000) already requires O(n3) time, which Lee
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Figure 1: (a) Heat map indicating how likely a par-
ticular head position is for each modifier position.
Greener/darker is likelier. (b) Arc length frequency for
three common modifier tags. Both charts are computed
from all sentences in Section 22 of the PTB.

(2002) shows is a practical lower bound for parsing
of context-free grammars. This bound implies that
it is unlikely that there can be an exhaustive pars-
ing algorithm that is asymptotically faster than the
standard approach.

We thus need to leverage domain knowledge to
obtain faster parsing algorithms. It is well-known
that natural language is fairly linear, and most head-
modifier dependencies tend to be short. This prop-
erty is exploited by transition-based dependency
parsers (Yamada and Matsumoto, 2003; Nivre et
al., 2004) and empirically demonstrated in Figure 1.
The heat map on the left shows that most of the
probability mass of modifiers is concentrated among
nearby words, corresponding to a diagonal band in
the matrix representation. On the right we show the
frequency of arc lengths for different modifier part-
of-speech tags. As one can expect, almost all arcs
involving adjectives (ADJ) are very short (length 3
or less), but even arcs involving verbs and nouns are
often short. This structure suggests that it may be
possible to disambiguate most dependencies by con-
sidering only the “banded” portion of the sentence.

We exploit this linear structure by employing a
variant of vine parsing (Eisner and Smith, 2005).2

Vine parsing is a dependency parsing algorithm that
considers only close words as modifiers. Because of
this assumption it runs in linear time. Of course, any
parse tree with hard limits on dependency lengths
will contain major parse errors. We therefore use the

2The term vine parsing is a slight misnomer, since the un-
derlying vine models are as expressive as finite-state automata.
However, this allows them to circumvent the cubic-time bound.
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Figure 2: Multi-pass pruning with a vine, first-order, and second-order model shown as dependencies and filtered
index sets after each pass. Darker cells have higher max-marginal values, while empty cells represent pruned arcs.

vine parser only for pruning and augment it to allow
arcs to remain unspecified (by including so called
outer arcs). The vine parser can thereby eliminate
a possibly quadratic number of arcs, while having
the flexibility to defer some decisions and preserve
ambiguity to be resolved by later passes. In Figure 2
for example, the vine pass correctly determined the
head-word of McGwire as neared, limited the head-
word candidates for fans to neared and went, and
decided that the head-word for went falls outside the
band by proposing an outer arc. A subsequent first-
order pass needs to score only a small fraction of all
possible arcs and can be used to further restrict the
search space for the following higher-order passes.

3 Graph-Based Dependency Parsing

Graph-based dependency parsing models factor all
valid parse trees for a given sentence into smaller
units, which can be scored independently. For in-
stance, in a first-order factorization, the units are just
dependency arcs. We represent these units by an in-
dex set I and use binary vectors Y ⊂ {0, 1}|I| to
specify a parse tree y ∈ Y such that y(i) = 1 iff the
index i exists in the tree. The index sets of higher-
order models can be constructed out of the index sets
of lower-order models, thus forming a hierarchy that
we will exploit in our coarse-to-fine cascade.

The inference problem is to find the 1-best parse
tree arg maxy∈Y y · w, where w ∈ R|I| is a weight
vector that assigns a score to each index i (we dis-

cuss how w is learned in Section 4). A general-
ization of the 1-best inference problem is to find
the max-marginal score for each index i. Max-
marginals are given by the function M : I → Y de-
fined as M(i;Y, w) = arg maxy∈Y:y(i)=1 y ·w. For
first-order parsing, this corresponds to the best parse
utilizing a given dependency arc. Clearly there are
exponentially many possible parse tree structures,
but fortunately there exist well-known dynamic pro-
gramming algorithms for searching over all possible
structures. We review these below, starting with the
first-order factorization for ease of exposition.

Throughout the paper we make use of some ba-
sic mathematical notation. We write [c] for the enu-
meration {1, . . . , c} and [c]a for {a, . . . , c}. We use
1[c] for the indicator function, equal to 1 if con-
dition c is true and 0 otherwise. Finally we use
[c]+ = max{0, c} for the positive part of c.

3.1 First-Order Parsing
The simplest way to index a dependency parse struc-
ture is by the individual arcs of the parse tree. This
model is known as first-order or arc-factored. For a
sentence of length n the index set is:

I1 = {(h,m) : h ∈ [n]0,m ∈ [n]}
Each dependency tree has y(h,m) = 1 iff it includes
an arc from head h to modifier m. We follow com-
mon practice and use position 0 as the pseudo-root
(∗) of the sentence. The full set I1 has cardinality
|I1| = O(n2).
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Figure 3: Parsing rules for first-order dependency pars-
ing. The complete items C are represented by triangles
and the incomplete items I are represented by trapezoids.
Symmetric left-facing versions are also included.

The first-order bilexical parsing algorithm of Eis-
ner (2000) can be used to find the best parse tree
and max-marginals. The algorithm defines a dy-
namic program over two types of items: incom-
plete items I(h,m) that denote the span between
a modifier m and its head h, and complete items
C(h, e) that contain a full subtree spanning from the
head h and to the word e on one side. The algo-
rithm builds larger items by applying the composi-
tion rules shown in Figure 3. Rule 3(a) builds an
incomplete item I(h,m) by attaching m as a modi-
fier to h. This rule has the effect that y(h,m) = 1 in
the final parse. Rule 3(b) completes item I(h,m) by
attaching item C(m, e). The existence of I(h,m)
implies that m modifies h, so this rule enforces that
the constituents of m are also constituents of h.

We can find the best derivation for each item
by adapting the standard CKY parsing algorithm
to these rules. Since both rule types contain three
variables that can range over the entire sentence
(h,m, e ∈ [n]0), the bottom-up, inside dynamic pro-
gramming algorithm requires O(n3) time. Further-
more, we can find max-marginals with an additional
top-down outside pass also requiring cubic time. To
speed up search, we need to filter indices from I1
and reduce possible applications of Rule 3(a).

3.2 Higher-Order Parsing

Higher-order models generalize the index set by us-
ing siblings s (modifiers that previously attached to
a head word) and grandparents g (head words above
the current head word). For compactness, we use g1
for the head word and sk+1 for the modifier and pa-
rameterize the index set to capture arbitrary higher-
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Figure 4: Additional rules for vine parsing. Vine left
(V←) items are pictured as right-facing triangles and vine
right (V→) items are marked trapezoids. Each new item
is anchored at the root and grows to the right.

order decisions in both directions:

Ik,l = {(g, s) : g ∈ [n]l+1
0 , s ∈ [n]k+1}

where k + 1 is the sibling order, l + 1 is the par-
ent order, and k + l + 1 is the model order. The
canonical second-order model uses I1,0, which has
a cardinality of O(n3). Although there are several
possibilities for higher-order models, we use I1,1 as
our third-order model. Generally, the parsing index
set has cardinality |Ik,l| = O(n2+k+l). Inference
in higher-order models uses variants of the dynamic
program for first-order parsing, and we refer to pre-
vious work for the full set of rules. For second-order
models with index set I1,0, parsing can be done in
O(n3) time (McDonald and Pereira, 2006) and for
third-order models in O(n4) time (Koo and Collins,
2010). Even though second-order parsing has the
same asymptotic time complexity as first-order pars-
ing, inference is significantly slower due to the cost
of scoring the larger index set.

We aim to prune the index set, by mapping each
higher-order index down to a set of small set indices
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that can be pruned using a coarse pruning model.
For example, to use a first-order model for pruning,
we would map the higher-order index to the individ-
ual indices for its arc, grandparents, and siblings:

pk,l→1(g, s) = {(g1, sj) : j ∈ [k + 1]}
∪ {(gj+1, gj) : j ∈ [l]}

The first-order pruning model can then be used
to score these indices, and to produce a filtered in-
dex set F (I1) by removing low-scoring indices (see
Section 4). We retain only the higher-order indices
that are supported by the filtered index set:

{(g, s) ∈ Ik,l : pk,l→1(g, s) ⊂ F (I1)}

3.3 Vine Parsing
To further reduce the cost of parsing and produce
faster pruning models, we need a model with less
structure than the first-order model. A natural
choice, following Section 2, is to only consider
“short” arcs:

S = {(h,m) ∈ I1 : |h−m| ≤ b}

where b is a small constant. This constraint reduces
the size of the set to |S| = O(nb).

Clearly, this index set is severely limited; it is nec-
essary to have some long arcs for even short sen-
tences. We therefore augment the index set to in-
clude outer arcs:

I0 = S ∪ {(d,m) : d ∈ {←,→},m ∈ [n]}
∪ {(h, d) : h ∈ [n]0, d ∈ {←,→}}

The first set lets modifiers choose an outer head-
word and the second set lets head words accept outer
modifiers, and both sets distinguish the direction of
the arc. Figure 5 shows a right outer arc. The size of
I0 is linear in the sentence length. To parse the in-
dex set I0, we can modify the parse rules in Figure 3
to enforce additional length constraints (|h− e| ≤ b
for I(h, e) and |h−m| ≤ b for C(h,m)). This way,
only indices in S are explored. Unfortunately, this is
not sufficient since the constraints also prevent the
algorithm from producing a full derivation, since no
item can expand beyond length b.

Eisner and Smith (2005) therefore introduce vine
parsing, which includes two new items, vine left,

As McGwire neared , fans went wild*

Figure 5: An outer arc (1,→) from the word “As” to pos-
sible right modifiers.

V←(e), and vine right, V→(e). Unlike the previous
items, these new items are left-anchored at the root
and grow only towards the right. The items V←(e)
and V→(e) encode the fact that a word e has not
taken a close (within b) head word to its left or right.
We incorporate these items by adding the five new
parsing rules shown in Figure 4.

The major addition is Rule 4(e) which converts a
vine left item V←(e) to a vine right item V→(e). This
implies that word e has no close head to either side,
and the parse has outer head arcs, y(←, e) = 1 or
y(→, e) = 1. The other rules are structural and dic-
tate creation and extension of vine items. Rules 4(c)
and 4(d) create vine left items from items that can-
not find a head word to their left. Rules 4(f) and
4(g) extend and finish vine right items. Rules 4(d)
and 4(f) each leave a head word incomplete, so they
may set y(e,←) = 1 or y(m,→) = 1 respec-
tively. Note that for all the new parse rules, e ∈ [n]0
and m ∈ {e − b . . . n}, so parsing time of this so
called vine parsing algorithm is linear in the sen-
tence length O(nb2).

Alone, vine parsing is a poor model of syntax - it
does not even score most dependency pairs. How-
ever, it can act as a pruning model for other parsers.
We prune a first-order model by mapping first-order
indices to indices in I0.

p1→0(h,m) =


{(h,m)} if |h−m| ≤ b

{(→,m), (h,→)} if h < m
{(←,m), (h,←)} if h > m

The remaining first-order indices are then given by:

{(h,m) ∈ I1 : p1→0(h,m) ⊂ F (I0)}

Figure 2 depicts a coarse-to-fine cascade, incor-
porating vine and first-order pruning passes and fin-
ishing with a higher-order parse model.
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4 Training Methods

Our coarse-to-fine parsing architecture consists of
multiple pruning passes followed by a final pass
of 1-best parsing. The training objective for the
pruning models comes from the prediction cascade
framework of Weiss and Taskar (2010), which ex-
plicitly trades off pruning efficiency versus accuracy.
The models used in the final pass on the other hand
are trained for 1-best prediction.

4.1 Max-Marginal Filtering
At each pass of coarse-to-fine pruning, we apply an
index filter function F to trim the index set:

F (I) = {i ∈ I : f(i) = 1}

Several types of filters have been proposed in the
literature, with most work in coarse-to-fine pars-
ing focusing on predicates that threshold the poste-
rior probabilities. In structured prediction cascades,
we use a non-probabilistic filter, based on the max-
marginal value of the index:

f(i;Y, w) = 1[ M(i;Y, w) · w < tα(Y, w) ]

where tα(Y, w) is a sentence-specific threshold
value. To counteract the fact that the max-marginals
are not normalized, the threshold tα(Y, w) is set as
a convex combination of the 1-best parse score and
the average max-marginal value:

tα(Y, w) = αmax
y∈Y

(y · w)

+ (1− α)
1

|I|
∑
i∈I

M(i;Y, w) · w

where the model-specific parameter 0 ≤ α ≤ 1 is
the tradeoff between α = 1, pruning all indices i not
in the best parse, and α = 0, pruning all indices with
max-marginal value below the mean.

The threshold function has the important property
that for any parse y, if y ·w ≥ tα(Y, w) then y(i) =
1 implies f(i) = 0, i.e. if the parse score is above
the threshold, then none of its indices will be pruned.

4.2 Filter Loss Training
The aim of our pruning models is to filter as many
indices as possible without losing the gold parse. In

structured prediction cascades, we incorporate this
pruning goal into our training objective.

Let y be the gold output for a sentence. We define
filter loss to be an indicator of whether any i with
y(i) = 1 is filtered:

∆(y,Y, w) = 1[∃i ∈ y,M(i;Y, w) ·w < tα(Y, w)]

During training we minimize the expected filter loss
using a standard structured SVM setup (Tsochan-
taridis et al., 2006). First we form a convex, con-
tinuous upper-bound of our loss function:

∆(y,Y, w) ≤ 1[y · w < tα(Y, w)]

≤ [1− y · w + tα(Y, w)]+

where the first inequality comes from the proper-
ties of max-marginals and the second is the standard
hinge-loss upper-bound on an indicator.

Now assume that we have a corpus of P train-
ing sentences. Let the sequence (y(1), . . . , y(P )) be
the gold parses for each sentences and the sequence
(Y(1), . . . ,Y(P )) be the set of possible output struc-
tures. We can form the regularized risk minimiza-
tion for this upper bound of filter loss:

min
w
λ‖w‖2 +

1

P

P∑
p=1

[1− y(p) · w + tα(Y(p), w)]+

This objective is convex and non-differentiable, due
to the max inside t. We optimize using stochastic
subgradient descent (Shalev-Shwartz et al., 2007).
The stochastic subgradient at example p, H(w, p) is
0 if y(p) − 1 ≥ tα(Y, w) otherwise,

H(w, p) =
2λw

P
− y(p) + α arg max

y∈Y(p)
y · w

+ (1− α)
1

|I(p)|
∑
i∈I(p)

M(i;Y(p), w)

Each step of the algorithm has an update of the form:

wk = wk−1 − ηkH(w, p)

where η is an appropriate update rate for subgradi-
ent convergence. If α = 1 the objective is identical
to structured SVM with 0/1 hinge loss. For other
values of α, the subgradient includes a term from
the features of all max-marginal structures at each
index. These feature counts can be computed using
dynamic programming.
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First-order Second-order Third-order
Setup Speed PE Oracle UAS Speed PE Oracle UAS Speed PE Oracle UAS
NOPRUNE 1.00 0.00 100 91.4 0.32 0.00 100 92.7 0.01 0.00 100 93.3
LENGTHDICTIONARY 1.94 43.9 99.9 91.5 0.76 43.9 99.9 92.8 0.05 43.9 99.9 93.3
LOCALSHORT 3.08 76.6 99.1 91.4 1.71 76.4 99.1 92.6 0.31 77.5 99.0 93.1
LOCAL 4.59 89.9 98.8 91.5 2.88 83.2 99.5 92.6 1.41 89.5 98.8 93.1
FIRSTONLY 3.10 95.5 95.9 91.5 2.83 92.5 98.4 92.6 1.61 92.2 98.5 93.1
FIRSTANDSECOND - - 1.80 97.6 97.7 93.1
VINEPOSTERIOR 3.92 94.6 96.5 91.5 3.66 93.2 97.7 92.6 1.67 96.5 97.9 93.1
VINECASCADE 5.24 95.0 95.7 91.5 3.99 91.8 98.7 92.6 2.22 97.8 97.4 93.1

k=8 k=16 k=64
ZHANGNIVRE 4.32 - - 92.4 2.39 - - 92.5 0.64 - - 92.7

Table 1: Results comparing pruning methods on PTB Section 22. Oracle is the max achievable UAS after pruning.
Pruning efficiency (PE) is the percentage of non-gold first-order dependency arcs pruned. Speed is parsing time relative
to the unpruned first-order model (around 2000 tokens/sec). UAS is the unlabeled attachment score of the final parses.

4.3 1-Best Training

For the final pass, we want to train the model for 1-
best output. Several different learning methods are
available for structured prediction models including
structured perceptron (Collins, 2002), max-margin
models (Taskar et al., 2003), and log-linear mod-
els (Lafferty et al., 2001). In this work, we use the
margin infused relaxed algorithm (MIRA) (Cram-
mer and Singer, 2003; Crammer et al., 2006) with
a hamming-loss margin. MIRA is an online algo-
rithm with similar benefits as structured perceptron
in terms of simplicity and fast training time. In prac-
tice, we found that MIRA with hamming-loss mar-
gin gives a performance improvement over struc-
tured perceptron and structured SVM.

5 Parsing Experiments

To empirically demonstrate the effectiveness of our
approach, we compare our vine pruning cascade
with a wide range of common pruning methods on
the Penn WSJ Treebank (PTB) (Marcus et al., 1993).
We then also show that vine pruning is effective
across a variety of different languages.

For English, we convert the PTB constituency
trees to dependencies using the Stanford dependency
framework (De Marneffe et al., 2006). We then
train on the standard PTB split with sections 2-21
as training, section 22 as validation, and section 23
as test. Results are similar using the Yamada and
Matsumoto (2003) conversion. We additionally se-
lected six languages from the CoNLL-X shared task

(Buchholz and Marsi, 2006) that cover a number
of different language families: Bulgarian, Chinese,
Japanese, German, Portuguese, and Swedish. We
use the standard CoNLL-X training/test split and
tune parameters with cross-validation.

All experiments use unlabeled dependencies for
training and test. Accuracy is reported as unlabeled
attachment score (UAS), the percentage of tokens
with the correct head word. For English, UAS ig-
nores punctuation tokens and the test set uses pre-
dicted POS tags. For the other languages we fol-
low the CoNLL-X setup and include punctuation in
UAS and use gold POS tags on the set set. Speed-
ups are given in terms of time relative to a highly
optimized C++ implementation. Our unpruned first-
order baseline can process roughly two thousand to-
kens a second and is comparable in speed to the
greedy shift-reduce parser of Nivre et al. (2004).

5.1 Models

Our parsers perform multiple passes over each sen-
tence. In each pass we first construct a (pruned) hy-
pergraph (Klein and Manning, 2005) and then per-
form feature computation and inference. We choose
the highest α that produces a pruning error of no
more than 0.2 on the validation set (typically α ≈
0.6) to filter indices for subsequent rounds (similar
to Weiss and Taskar (2010)). We compare a variety
of pruning models:

LENGTHDICTIONARY a deterministic prun-
ing method that eliminates all arcs longer
than the maximum length observed for each
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head-modifier POS pair.
LOCAL an unstructured arc classifier that chooses

indices from I1 directly without enforcing
parse constraints. Similar to the quadratic-time
filter from Bergsma and Cherry (2010).

LOCALSHORT an unstructured arc classifier that
chooses indices from I0 directly without en-
forcing parse constraints. Similar to the linear-
time filter from Bergsma and Cherry (2010).

FIRSTONLY a structured first-order model trained
with filter loss for pruning.

FIRSTANDSECOND a structured cascade with
first- and second-order pruning models.

VINECASCADE the full cascade with vine, first-
and second-order pruning models.

VINEPOSTERIOR the vine parsing cascade trained
as a CRF with L-BFGS (Nocedal and Wright,
1999) and using posterior probabilities for fil-
tering instead of max-marginals.

ZHANGNIVRE an unlabeled reimplementation of
the linear-time, k-best, transition-based parser
of Zhang and Nivre (2011). This parser uses
composite features up to third-order with a
greedy decoding algorithm. The reimplemen-
tation is about twice as fast as their reported
speed, but scores slightly lower.

We found LENGTHDICTIONARY pruning to give
significant speed-ups in all settings and therefore al-
ways use it as an initial pass. The maximum number
of passes in a cascade is five: dictionary, vine, first-,
and second-order pruning, and a final third-order 1-
best pass.3 We tune the pruning thresholds for each
round and each cascade separately. This is because
we might be willing to do a more aggressive vine
pruning pass if the final model is a first-order model,
since these two models tend to often agree.

5.2 Features

For the non-pruning models, we use a standard set
of features proposed in the discriminative graph-
based dependency parsing literature (McDonald et
al., 2005; Carreras, 2007; Koo and Collins, 2010).

3For the first-order parser, we found it beneficial to employ a
reduced feature first-order pruner before the final model, i.e. the
cascade has four rounds: dictionary, vine, first-order pruning,
and first-order 1-best.
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Figure 6: Mean parsing speed by sentence length for
first-, second-, and third-order parsers as well as differ-
ent pruning methods for first-order parsing. [b] indicates
the empirical complexity obtained from fitting axb.

Included are lexical features, part-of-speech fea-
tures, features on in-between tokens, as well as fea-
ture conjunctions, surrounding part-of-speech tags,
and back-off features. In addition, we replicate each
part-of-speech (POS) feature with an additional fea-
ture using coarse POS representations (Petrov et al.,
2012). Our baseline parsing models replicate and,
for some experiments, surpass previous best results.

The first- and second-order pruning models have
the same structure, but for efficiency use only the
basic features from McDonald et al. (2005). As fea-
ture computation is quite costly, future work may
investigate whether this set can be reduced further.
VINEPRUNE and LOCALSHORT use the same fea-
ture sets for short arcs. Outer arcs have features of
the unary head or modifier token, as well as features
for the POS tag bordering the cutoff and the direc-
tion of the arc.

5.3 Results

A comparison between the pruning methods is
shown in Table 1. The table gives relative speed-
ups, compared to the unpruned first-order baseline,
as well as accuracy, pruning efficiency, and ora-
cle scores. Note particularly that the third-order
cascade is twice as fast as an unpruned first-order
model and >200 times faster than the unpruned
third-order baseline. The comparison with poste-
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1-Best Model
Round First Second Third
Vine 37% 27% 16%
First 63% 30% 17%
Second - 43% 18%
Third - - 49%

Table 2: Relative speed of pruning models in a multi-pass
cascade. Note that the 1-best models use richer features
than the corresponding pruning models.

rior pruning is less pronounced. Filter loss train-
ing is faster than VINEPOSTERIOR for first- and
third-order parsing, but the two models have similar
second-order speeds. It is also noteworthy that ora-
cle scores are consistently high even after multiple
pruning rounds: the oracle score of our third-order
model for example is 97.4%.

Vine pruning is particularly effective. The vine
pass is faster than both LOCAL and FIRSTONLY

and prunes more effectively than LOCALSHORT.
Vine pruning benefits from having a fast, linear-time
model, but still maintaining enough structure for
pruning. While our pruning approach does not pro-
vide any asymptotic guarantees, Figure 6 shows that
in practice our multi-pass parser scales well even
for long sentences: Our first-order cascade scales
almost linearly with the sentence length, while the
third-order cascade scales better than quadratic. Ta-
ble 2 shows that the final pass dominates the compu-
tational cost, while each of the pruning passes takes
up roughly the same amount of time.

Our second- and third-order cascades also signif-
icantly outperform ZHANGNIVRE. The transition-
based model with k = 8 is very efficient and effec-
tive, but increasing the k-best list size scales much
worse than employing multi-pass pruning. We also
note that while direct speed comparison are difficult,
our parser is significantly faster than the published
results for other high accuracy parsers, e.g. Huang
and Sagae (2010) and Koo et al. (2010).

Table 3 shows our results across a subset of the
CoNLL-X datasets, focusing on languages that dif-
fer greatly in structure. The unpruned models per-
form well across datasets, scoring comparably to the
top results from the CoNLL-X competition. We see
speed increases for our cascades with almost no loss
in accuracy across all languages, even for languages
with fairly free word order like German. This is

First-order Second-order Third-order
Setup Speed UAS Speed UAS Speed UAS

BG
B 1.90 90.7 0.67 92.0 0.05 92.1
V 6.17 90.5 5.30 91.6 1.99 91.9

DE
B 1.40 89.2 0.48 90.3 0.02 90.8
V 4.72 89.0 3.54 90.1 1.44 90.8

JA
B 1.77 92.0 0.58 92.1 0.04 92.4
V 8.14 91.7 8.64 92.0 4.30 92.3

PT
B 0.89 90.1 0.28 91.2 0.01 91.7
V 3.98 90.0 3.45 90.9 1.45 91.5

SW
B 1.37 88.5 0.45 89.7 0.01 90.4
V 6.35 88.3 6.25 89.4 2.66 90.1

ZH
B 7.32 89.5 3.30 90.5 0.67 90.8
V 7.45 89.3 6.71 90.3 3.90 90.9

EN
B 1.0 91.2 0.33 92.4 0.01 93.0
V 5.24 91.0 3.92 92.2 2.23 92.7

Table 3: Speed and accuracy results for the vine prun-
ing cascade across various languages. B is the un-
pruned baseline model, and V is the vine pruning cas-
cade. The first section of the table gives results for
the CoNLL-X test datasets for Bulgarian (BG), German
(DE), Japanese (JA), Portuguese (PT), Swedish (SW),
and Chinese (ZH). The second section gives the result
for the English (EN) test set, PTB Section 23.

encouraging and suggests that the outer arcs of the
vine-pruning model are able to cope with languages
that are not as linear as English.

6 Conclusion

We presented a multi-pass architecture for depen-
dency parsing that leverages vine parsing and struc-
tured prediction cascades. The resulting 200-fold
speed-up leads to a third-order model that is twice
as fast as an unpruned first-order model for a vari-
ety of languages, and that also compares favorably
to a state-of-the-art transition-based parser. Possible
future work includes experiments using cascades to
explore much higher-order models.
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