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Abstract

We introduce lightly supervised learning for
dependency parsing. In this paradigm, the al-
gorithm is initiated with a parser, such as one
that was built based on a very limited amount
of fully annotated training data. Then, the al-
gorithm iterates over unlabeled sentences and
asks only for a single bit of feedback, rather
than a full parse tree. Specifically, given an
example the algorithm outputs two possible
parse trees and receives only a single bit indi-
cating which of the two alternatives has more
correct edges. There is no direct information
about the correctness of any edge. We show
on dependency parsing tasks in 14 languages
that with only 1% of fully labeled data, and
light-feedback on the remaining 99% of the
training data, our algorithm achieves, on av-
erage, only 5% lower performance than when
training with fully annotated training set. We
also evaluate the algorithm in different feed-
back settings and show its robustness to noise.

1 Introduction

Supervised learning is a dominant paradigm in ma-
chine learning in which a prediction model is built
based on examples, each of which is composed of in-
puts and a corresponding full annotation. In the task
of parsing, examples are composed of sentences in
some language and associated with full parse trees.
These parse trees are often generated by human an-
notators. The annotation process is complex, slow
and prone to mistakes as for each sentence a full cor-
rect feedback is required.

We describe light-feedback learning which suits
learning problems with complex or structured out-
put, like parsing. After building an initial classi-
fier, our algorithm reduces the work of the annota-
tor from a full annotation of the input sentence to
a single bit of information. Specifically, it provides
the annotator with two alternative parses of the in-
put sentence and asks for the single bit indicating
which of the alternatives is better. In 95% of the
sentences both alternatives are identical except for a
single word. See Fig. 2 for an illustration. Thus,
the work of the annotator boils down to deciding
for some specific word in the sentence which of two
possible words should be that word’s head.

We show empirically, through simulation, that us-
ing only 1% of the training set with full annotation,
and the remaining 99% with light annotation, our al-
gorithm achieves an average accuracy of about 80%,
only 5% less than a parser built with full annotated
training data. These results are averaged over 14
languages. With additional simple relaxations, our
algorithm achieves average accuracy of 82.5%, not
far from the performance of an algorithm observing
full annotation of the data. We also evaluate our al-
gorithm under few noise settings, showing that it is
resistant to noise, with a decrease of only 1.5% in
accuracy under about 10% feedback noise. We defer
a discussion of related work to the end of the paper.

2 Dependency Parsing and Parsers

Dependency parsing of a sentence is an intermediate
between shallow-parsing, in which a given sentence
is annotated with its part-of-speech, and between a
full structure over the sentence, such as the ones de-
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fined using context-free grammar. Given a sentence
with n words a parse tree is defined by constructing
a single directed edge outgoing from each word to
its head, that is the word it depends on according to
syntactic or semantic rules. Additionally, one of the
words of the sentence must be labeled as the root of
the tree. The choice of edges is restricted to induce
trees, i.e. graphs with no loops.

Dependency parsers, such as the MSTParser of
(McDonald et al., 2005), construct directed edges
between words of a given sentence to their argu-
ments. We focus on non-projective parsing with
non-typed (unlabeled) edges. MSTParser produces
a parse tree for a sentence by constructing a full di-
rected graph over the words of the sentence with
weighted edges, and then outputting the maximal
spanning tree (MST) of the graph. Given a true parse
tree (aka as gold labeling) and a predicted parse tree
ŷ, we evaluate the latter by counting the number of
words that are in agreement with the true labeling.

The MSTParser maintains a linear model for set-
ting the weights of the edges of the full graph. Given
the input sentence x the parser sets the weight of
the edge between words xi and xj to be s(i, j) =
w·f(x, i, j) using a feature function f that maps the
input x and a pair of possibly connected words into
Rd. Example features are the distance between the
two words, words identity and words part-of-speech.
The goal of the learning algorithm is to choose a
proper value of w such that the induced tree for each
sentence x will have high accuracy.

Online Learning: MSTParser is training a model
by processing one example at a time using online
learning. On each round the algorithm receives a
new sentence x and the set of correct edges y. It
then computes the score-value of all possible di-
rected edges, s(i, j) = w · f (x, i, j) for words i, j
using the current parameters w. The algorithm is
computing the best dependency tree ŷ of this input
x defined to be the MST of the weighted complete
directed graph induced from the matrix {s(i, j)}. It
then uses the discrepancy between the true parse tree
y and the predicted parse tree ŷ to modify the weight
vector.

MSTParser specifically employs the MIRA algo-
rithm (Crammer et al., 2006) to update the weight

vector w using a linear update,

w←w+α

 ∑
(i,j)∈y

f(x, i, j)−
∑

(i,j)∈ŷ

f(x, i, j)

 (1)

for input-dependent scalar α that is defined by the
algorithm. By construction, correct edges (i, j), that
appear both in the true parse tree y and the predicted
parse tree ŷ, are not affecting the update, as the
terms in the two sums of Eq. (1) cancel each other.

3 Online Learning with Light Feedback

Supervised learning is a very common paradigm in
machine learning, where we assume having access
to the correct full parse tree of every input sentence.
Many algorithms, including MSTParser, explicitly
assume this kind of feedback. Supervised learn-
ing algorithms achieve good performance in depen-
dency parsing, but they come with a price. Human
annotators are required to fully parse each and ev-
ery sentence in the corpora, a long, tedious and ex-
pensive process, which is also prone to mistakes.
For example, the first phase of the famous penn tree
bank project (Marcus et al., 1993) lasted three years,
in which annotators corrected outputs of automated
machines in a rate of 475 words per hour. For super-
vised learning to be successful, typically a large set
of thousands instances is required, which translates
to a long and expensive annotation phase.

Binary or multi-class prediction tasks, such as
spam filtering or document classification, are sim-
ple in the sense that the label associated with each
instance or input is simple. It is either a single bit
indicating whether the input email is spam or not,
or one of few values from a fixed predefined set if
topics. Dependency parsing is more complex as a
decision is required for every word of the sentence,
and additionally there is a global constraint of the
parse being a tree.

In binary classification or multi-class problems it
is only natural to either annotate (or label) an exam-
ple, or not, since the labels are atomic, they cannot
be decomposed to smaller components. The situa-
tion is different in structured tasks such as depen-
dency parsing (or sequence labeling) where each in-
stance is constructed of many elements that each
needs to be annotated. While there are relations and
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coupling between the elements it is possible to anno-
tate an instance only partially, such as provide a de-
pendency edge only to several words in a sentence.

We take this approach to the extreme, and con-
sider (for now) that for each sentence only a single
bit of labeling will be provided. The choice of what
bit to require is algorithm and example dependent.
We propose using a light feedback scheme in order
to significantly reduce annotation effort for depen-
dency parsing. First, a base or initial model will be
learned from a very small set of fully annotated ex-
amples, i.e. sentences with full dependency infor-
mation known. Then, in a second training stage the
algorithm works in rounds. On each round the al-
gorithm is provided with a new non-annotated sen-
tence which it annotates, hopefully making the right
decision for most of the words. Then the algorithm
chooses subset of the words (or segments) to be an-
notated by humans. These words are the ones that al-
gorithm estimates to be the hardest, or that their true
label would resolve any ambiguity that is currently
existing with the parsing of the input sentence.

Although such partial annotation task may be eas-
ier and faster to annotate, we realize that even partial
annotation if not limited enough can require eventu-
ally similar effort as annotating the entire sentence.
For example, if for a 25-words sentence annotation
is requested for 5 words scattered over the entire sen-
tence, providing this annotation may require the an-
notator to basically parse the entire sentence.

We thus further restrict the possible feedback re-
quested from the annotator. Specifically, given a
new sentence our algorithm outputs two possible an-
notations, or parse trees, ŷA and ŷB , and asks for
a single bit from the annotator, indicating whether
parse A is better or parse B is better. We do not
ask the annotator to parse the actual sentence, or de-
cide what is the correct parse, but only to state which
of the parses is quantitatively better. Formally, we
say that parse ŷA is better if it contains more correct
edges than ŷB . The annotator is asked for a single
bit, and thus must state one of the two parses, even
if both parses are equally good. We denote this la-
beling paradigm as binary, as the annotator provides
binary feedback.

The two parses our algorithms presents to the an-
notator are the highest ranking parse and the sec-
ond highest ranking parse according to the current

model. That is, the parse it would output for x and
the best alternative. The feedback required from the
annotator is only which of the two parses is better,
the annotator does not explicitly indicate which of
the edges are labeled correctly or incorrectly, and
furthermore, the annotator does not provide any ex-
plicit information about the correct edge of any of
the words.

In general, the two alternative parses presented
to the annotator may be significantly different from
each other; they may disagree on the edges of many
words. In this case the task of deciding which of
them is better may be as hard as annotating the en-
tire sentence, and then comparing the resulting an-
notation to both alternatives. In practice, however,
due to our choice of features (as functions of the two
words) and model (linear), and since our algorithm
chooses the two parse-trees ranked highest and sec-
ond highest, the difference between the two alterna-
tives is very small. In fact, we found empirically
that, on average, in 95% of the sentences, they differ
in the labeling of only a single word. That is, both
ŷA and ŷB agree on all words, except some word xi,
for which the first alternative assigns to some word
xj and the second alternative assign to other word
xk. This is due to the fact that the score of the parses
are additive in the edges. Therefore, the parse tree
ranked second highest is obtained from the highest-
ranked parse tree, where for a single word the edge is
replaced, such that the difference between scores is
minimized. For the remaining 5% of the sentences,
replacing an edge as described causes a loop in the
graph induced over words, and thus more than a sin-
gle edge is modified. To minimize the potential labor
of the annotator we simply ignore these cases, and
present the annotator only two alternatives which are
different in a single edge. We refer to this setting or
scenario as single.

To conclude, given a new non-annotated sentence
x the algorithm uses its current model w to out-
put two annotations ŷA and ŷB which are different
only on a single word and ask the annotator which
is better. The annotator should decide to which of
two possible words xj and xk to connect the word
xi in question. The annotator then feeds the algo-
rithm a single bit, i.e. a binary labeling, which rep-
resents which alternative is better, and the algorithm
updates its internal model w. Although it may be the
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Input data A set of n unlabeled sentences {xi}ni=1

Input parameters Initial weight vector learned from
fully annotated data u; Number of Iterations over the un-
labeled data T
Initialize w ← u
For t = 1, . . . , T
• For i = 1, . . . , n

– Compute the two configurations ŷA and ŷB

with highest scores of xi using w
– Ask for feedback : ŷA vs. ŷB

– Get feedback β ∈ {+1,−1}
(or β ∈ {+1, 0,−1} in Sec. 5)

– Compute the value of α using the MIRA algo-
rithm ( or just set α = 1 for simplicity)

– Update

w+αβ
∑

(i,j)∈(ŷA/ŷB∪ŷB/ŷA)

(−1)[[(i,j)∈ŷB ]]f(x, i, j)

Output: Weight vector w

Figure 1: The Light-Feedback learning algorithm

case that both alternatives are equally good (or bad),
which occurs only when both assign the wrong word
to xi, that is not xj nor xk are the correct dependents
of xi, the annotator is still required to respond with
one alternative, even though a wrong edge is recom-
mended. Although this setting may induce noise, we
consider it since a human annotator, that is asked to
provide a quick light feedback, will tend to choose
one of the two proposed options, the one that seems
more reasonable, even if it is not correct. We refer to
this combined setting of receiving a binary feedback
only about a single word as Binary-Single. Below
we discuss alternative models where the annotator
may provide additional information, which we hy-
pothesize, would be for the price of labor.

Finally, given the light-feedback β from the anno-
tator, where β = +1 if the first parse ŷA is preferred
over the second parse ŷB , and β = −1 otherwise,
we employ a single online update,

w ←w + αβ

 ∑
(i,j)∈ŷA

f(x, i, j)−
∑

(i,j)∈ŷB

f(x, i, j)


Pseudocode of the algorithm appears in Fig. 1.

From the last equation we note that the update de-
pends only on the edges that are different between

Figure 2: Example of single edge feedback. The solid blue ar-
rows describe the proposed parse and the two dashed red arrows
are the requested light feedback.

the two alternatives. This provides us the flexibil-
ity of what to show the annotator. One extreme is
to provide the annotator with (almost) a full depen-
dency parse tree, that both alternatives agree on, as
well as the dilemma. This provides the annotator
some context to assist of making a right decision and
fast. The other extreme, is to provide the annotator
only the edges for which the algorithm is not sure
about, omitting any edges both alternatives agree on.
This may remove labeling noise induced by erro-
neous edges both alternatives mistakenly agree on.
Formally, these options are equivalent, and the de-
cision which to use may even be dependent on the
individual annotator.

An example of a light-feedback request is shown
in Fig. 2. The sentence is 12 words long and
the parser succeeded to assign correct edges for 11
words. It was uncertain whether there was a “sale by
first boston corps” - having the edge ”by→sale” (in-
correct), or there was an “offer by first boston corps”
- having the edge ”by→offered” (correct). In this
example, a human annotator can easily clarify the
dilemma.

4 Evaluation

We evaluated the light feedback model using 14 lan-
guages: English (the Penn Tree Bank) and the re-
maining 13 were used in CoNLL 2006 shared task1.
The number of training sentences in the training
datasets is ranging is between about 1.5−57K, with
an average of about 14K sentences and 50K−700K
words. The test sets contain an average of ∼ 590
sentences and ∼10K words for all datasets. The av-
erage number of words per sentence vary from 6 in
Chinese to 37 in Arabic.

1Arabic, Bulgarian, Chinese, Czech, Danish, Dutch, Ger-
man, Japanese, Portuguese, Slovene, Spanish, Swedish and
Turkish . See http://nextens.uvt.nl/˜conll/
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Experimental Setup For each of the languages
we split the data into two parts of relative fraction of
p and 1−p for p = 10%, 5% and 1% and performed
training in two stages. First, we used the smaller set
to build a parser using standard supervised learning
procedure. Specifically, we used MSTParser and ran
the MIRA online learning algorithm for 5 iterations.
This process yielded our initial parser. Second, the
larger portion, which is the remaining of the training
set, was used to improve the initial parser using the
light feedback algorithm described above. Our algo-
rithm iterates over the sentences of the larger subset
and each sentence was parsed by the current parser
(parameterized by w) and asked for a preference be-
tween two specific parses for that sentence. Given
this feedback, the algorithm updated its model and
proceeded for the next sentence. The true parse of
these sentences was only used to simulate light feed-
back and it was never provided to the algorithm. The
performance of all the trained parsers was evaluated
on a fixed test set. We performed five iterations of
the larger subset during the light feedback training.

4.1 Results

The results of the light-feedback training after only
a single iteration are given in the two left plots of
Fig. 3. One plot shows the performance averaged
over all languages, and second plot show the results
for English. The black horizontal line shows the ac-
curacy achieved by training the parser on the entire
annotated data using the MIRA algorithm for 10 it-
erations. The predicted edge accuracy of the parser
trained on the entire annotated dataset ranges from
77% on Turkish to 93% on Japanese, with an aver-
age of 85%. This is our skyline.

The blue bars in each plot shows the accuracy of
a parser trained with only a fraction of the dataset
- 10% (left group), via 5% (middle) to 1% (right
group). As expected reducing the amount of training
data causes degradation in performance, from an ac-
curacy of about 76.3% (averaged over all languages)
via 75% to 70.1% when training only with 1% of the
data. These performance levels are our baselines,
one per specific amount of fully annotated data and
lightly annotated data.

The red bar in each pair, shows the contribution
of a single training epoch with light-feedback on the
performance. We see that training with light feed-

back improves the performance of the final parser.
Most noticeably, is when using only 1% of the fully
annotated data for initial training, and the remaining
99% of the training data with light feedback. The
accuracy on test set improves from 70.1% to 75.6%,
an absolute increase of 5.5%. These results are av-
eraged over all languages, individual results for En-
glish are also shown. In most languages, including
those not shown, these trends remain: when reduc-
ing the fraction of data used for fully supervised
training the performance decreases, and light feed-
back improves it, most substantially for the smallest
fraction of 1%.

We also evaluated the improvement in accuracy
on the test set by allowing more than a single itera-
tion over the larger fraction of the training set. The
results are summarized in two right plots of Fig. 3,
accuracy averaged over all languages (left), and for
English (right). Each line refers to a different ratio
of split between full supervised learning and light
feedback learning - blue for 90%, green for 95% and
red for 99%. The x-axis is the number of light feed-
back iterations, from zero up to five. The y-axis is
the accuracy. In general more iterations translates to
improvement in performance. For example, build-
ing a parser with only 1% of the training data yields
70.1% accuracy on the test set, a single iteration of
light-feedback on the remaining 99% improves the
performance to 75.6%, each of the next iterations
improves the accuracy by about 1− 2% up to an ac-
curacy of about 80%, which is only 5% lower than
the skyline. We note again, that the skyline was ob-
tained by using full feedback on the entire training
set, while our parser used at most five bits of feed-
back per sentence from the annotator, one bit per it-
eration.

As noted above, on each sentence, and each it-
eration, our algorithm presents a parsing query or
“dilemma”: should word a be assigned to word b
or word c. These queries are generated indepen-
dently of the previous queries shown, and in fact the
same query may be presented again in a later iter-
ation although already shown in an early one. We
thus added a memory storage of all queries to the
algorithm. When a query is generated by the algo-
rithm, it first checks if an annotation of it already
exists in memory. If this is the case, then no query is
issued to the annotator, and the algorithm simulates
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Figure 3: Two left plots: Evaluation in Binary-Single light feedback setting. Averaged accuracy over all languages (left) and for
English. The horizontal black line shows the accuracy when training the parser on the entire annotated training data - “skyline”.
Each pair of bars shows the results for a parser trained with small amount of fully annotated data (left blue bar) and a parser that
was then trained with a single iteration of light feedback on the remaining training data (right red bar). Two right plots: Evaluation
of training with up to five iterations of binary-single light feedback. The plots show the average accuracy (left), and for English.
Each line refers to a different ratio of split between full supervised learning and light feedback learning. The x-axis is the number
of iterations of light feedback, from zero to five.

a query and response using the stored information.

The fraction of new queries, that were actually
presented to the annotator, when light-training with
99% of the training set, is shown in the left panel
of Fig. 4. Each line corresponds to one language.
The languages are ordered in the legend according
to the average number of words per sentence: from
Chinese (6) to Arabic (37). Each point shows the
fraction of new queries (from the total number of
sentences with light-feedback) (y-axis) vs. the itera-
tion (x-axis). Two trends are observed. First, in later
iterations there are less and less new queries (or need
for an actual interaction with the annotator). By def-
inition, all queries during the first iteration are new,
and the fraction of new queries after five iteration
ranges from about 20% (Japanese and Chinese) to a
bit less than 80% (Arabic).

The second trend is across the average number of
words per sentence, the larger this number is, the
more new queries there are in multiple iterations.
For example, in Arabic (37 words per sentence) and
Spanish (28) about 80% of the light-training sen-
tences induce new queries in the fifth iteration, while
in Chinese (6) and Japanese (8) only about 20%.
As expected, longer sentences require, on average,
more queries before getting their parse correctly.

We can also compare the performance improve-
ment achieved by light feedbacks with the per-
formance achieved by using the same amount of
labeled-edges using fully annotated sentences in
standard supervised training. The average sentence
length across all languages is 18 words. Thus, re-
ceiving feedback regarding a single word in a sen-

tence equals to about 1/18 ≈ 5.5% of the informa-
tion provided by a fully annotated sentence. There-
fore, we may view the light-feedback provided for
99% of the dataset as about equal to additional 5.5%
of fully annotated data.

From the second plot from the right of Fig. 3, we
see that by training with 1% of fully annotated data
and a single iteration of light feedback over the re-
maining 99% of the data, the parser performance
is 75.6% (square markers at x = 1), compared to
75% obtained by training with 5% of fully anno-
tated data (diamond markers at x = 0). A second
iteration of light feedback on 99% of the dataset
can be viewed as additional . 5% of labeled data
(accounting for repeating queries). After the sec-
ond light feedback iteration, the parser performance
is 77.8% (square markers at x = 2), compared to
76.3% achieved when training with 10% of fully an-
notated data (circle markers at x = 0). Similar rela-
tions can be observed for English in the right plot of
Fig. 3. From these observations, we learn that on av-
erage, for about the same amount of labeled edges,
light feedback learning gains equal, or even better,
performance compared with fully labeled sentences.

5 Light Feedback Variants

Our current model is restrictive in two ways: first,
the algorithm does not pass to the annotators exam-
ples for which the disagreements is larger than one
word; and second, the annotator must prefer one of
the two alternatives. Both restrictions were set to
make the annotators’ work easier. We now describe
the results of experiments in which one or even both
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Figure 4: Left: the fraction of new queries presented to the annotator after each of the five iterations (x-axis) for all 14 languages,
when light-training with 99% of the entire training data. Middle: comparison of the accuracy achieved using the four light feedback
models using different fraction of the data for light feedback stage. The results are averaged over all the languages. Right: Effect of
light-feedback noise on the accuracy of the trained model. Results are averaged over all languages for two light feedback settings,
the ternary-multi and binary-multi. The plots show the performance measured on test set according the amount of feedback noise
added. The black line is the baseline of the initial parser trained on 1% of annotated data.

restrictions are relaxed, which may make the work
of the annotator harder, but as we shall see, improves
performance.

Our first modification is to allow the algorithm to
pass the annotator also queries on two alternatives
ŷA and ŷB that differ on more than a single edge.
As mentioned before, we found empirically that this
arises in only ∼5% of the instances. In most cases
the two alternatives differ in two edges, but in some
cases the alternatives differ in up to five edges. Typ-
ically when the alternatives differ on more than a
single edge, the words in question are close to each
other in the sentence (in terms of word-distance)
and are syntactically related to each other. For ex-
ample, if changing the edge (i, j) to (i, k) forms a
loop in the dependency graph then also another edge
(k, l) must be changed to resolve the loop, so the
two edges different between the alternatives are re-
lated. Nevertheless, even if the two alternatives are
far from being similar, the annotator is still required
to provide only a binary feedback, indicating a strict
preference between the two alternatives. We refer to
this model as Binary-Multi, for binary feedback and
possibly multiple different edge between the alter-
natives.

Second, we enrich the number of possible re-
sponses of the annotator from two to three, giving
the annotator the option to respond that the two al-
ternatives ŷA and ŷB are equally good (or bad), and
no one should be preferred by the other. In this case
we set β = 0 in the algorithm of Fig. 1, and as can
be seen in the pseudocode, this case does not modify
the weight vector w associated with the parser. Such

feedback will be received when both parses have the
same number of errors. (We can also imagine a hu-
man annotator using the equal feedback to indicate
”don’t know”). For the common case of single edge
difference between the two parses, this means that
both proposed edges are incorrect. Since there are
three possible responds we call this setting ternary.
This setting can be combined with the previous one
and thus we have in fact two new settings. The third
setting is when only single edges are presented to the
annotator, yet three possible responds are optional.
We call this setting Ternary-Single . The fourth, is
when the two alternatives may differ in more than a
single edge and three possible responds are optional
- Ternary-Multi setting.

The accuracy, averaged over all 14 languages, af-
ter 5 light feedback iterations, for all four settings
is shown in the middle plate of Fig. 4. Each of
the three groups summarizes the results for differ-
ent split of the training set to full training and light-
training: 90%, 95% and 99% (left to right; portion
of light training). The horizontal black line shows
the accuracy skyline (85% obtained by using all the
training set in full supervised learning). Each bar in
each group shows the results for one of the four set-
tings: Binary-Single, Binary-Multi, Ternary-Single
and Ternary-Multi. We focus our discussion in the
99% split. The averaged accuracy using Binary-
Single feedback setting is about 80% (left bar). Re-
laxing the type of input to include alternatives that
differ on more than one edge, improves accuracy by
1.4% (second bar from left). Slightly greater im-
provement is shown when relaxing the type of feed-
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back, from binary to ternary (third bar from left).
Finally, relaxing both constraints yields an improve-
ment of additional 1% to an averaged accuracy of
82.5% which is only 2.5% lower than the skyline.

Moving to the other splits of 95, 90% we observe
that relaxing the feedback from binary to ternary im-
proves the accuracy more than requiring to provide a
preference of parses that differ on more than a single
word.

6 Noisy Light Feedback

In the last section we discussed relaxations that re-
quires slightly more effort from the annotator to gain
higher test accuracy. The intent of the light feed-
back is to build a high-accuracy parser, yet faster
and with less human effort compared with full su-
pervised learning, or alternatively, allow collecting
feedbacks from non-experts. We now evaluate the
effect of light-feedback noise, which may be a con-
sequence of asking the annotator to perform quick
(and rough) light-feedback. We experiment with two
settings in which the feedback of the annotator is
either binary or ternary, in the multi settings, when
99% of the training-data is used for light-feedback.
These settings refer to the second and fourth bar in
the right group of the middle plate of Fig. 4.

We injected independent feedback errors to a frac-
tion of ε of the queries, where ε is ranging between
0− 30%. In the Binary-Multi setting, we flipped the
binary preference with probability ε. For example, if
ŷA is better than ŷB then with probability ε the light
feedback was the other way around. In the Ternary-
Multi setting we changed the correct feedback to one
of the other two possible feedbacks with probabil-
ity ε, the specific alternative chosen was chosen uni-
formly. E.g., if indeed ŷA is preferred over ŷB , then
with probability ε/2 the feedback was that ŷB is pre-
ferred and with probability ε/2 that both are equal.

The accuracy vs. noise level for both settings is
presented in the right panel of Fig. 4. The black line
shows the baseline performance after training an ini-
tial parser on 1% of annotated data. Performance
of the parser trained using the Binary-Multi setting
drops by only 1% from 81.4% to 80.4% at error rate
of 5% and eventually as the feedback noise increase
to 30% the performance drops to 70% - the perfor-
mance level achieved by the initial trained model.

The accuracy of the parser trained in the richer
Ternary-Multi setting suffers only 1% performance
decrease at error rate of 10%, and eventually 5% de-
crease from 82.5% to 77.5% as the feedback noise
increase to 30%, still a 7.5% improvement over the
initial trained parser.

We hypothesize that learning with ternary feed-
back is more robust to noise, as in half of the noisy
feedbacks when there is a strict preference between
the alternatives, the effect of the noise is not to
update the model and practically ignore the input.
Clearly, this is preferable than the other outcome
of the noise, that forces the algorithm to make the
wrong update with respect to the true preference.

We also experimented with sentence depended
noise by training a secondary parser on a subset of
the training set, and emulating the feedback-bit us-
ing its output. Its averaged test error (=noise level)
is 22%. Yet, the accuracy obtained by our algo-
rithm with it is 77%, about the same as achieving
with 30% random annotation noise. We hypothesize
this is since the light-feedbacks are requested specif-
ically on the edges harder to predict, where the error
rate is higher than the 22% average error rate of the
secondary parser.

7 Related work

Weak-supervision, semi-supervised and active
learning (e.g. (Chapelle et al., 2006), (Tong and
Koller, 2001)) are general approaches related to the
light-feedback approach. These approaches build
on access to a small set of labeled examples and a
large set of unlabeled examples.

The work of Hall et al. (2011) is the most simi-
lar to the light feedback settings we propose. They
apply an automatic implicit feedback approach for
improving the performance of dependency parsers.
The parser produces the k-best parse trees and an
external system that uses these parse trees provides
feedback as a score for each of the parses. In our
work, we focus on minimal updates by both restrict-
ing the number of compared parses to two, and hav-
ing them being almost identical (up to a single edge).

Hwa (1999) investigates training a phrase struc-
ture parser using partially labeled data in several set-
tings. In one of the settings, a parser is first trained
using a large fully labeled dataset from one domain
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and then adapted to another domain using partial la-
beling. The parts of the data that are labeled are se-
lected in one of two approaches. In the first approach
phrases are randomly selected to be annotated. In
the second approach the phrases are selected accord-
ing to their linguistic categories based on predefined
rules. In both cases, the true phrases are provided. In
our work, we train the initial parser on small subset
of the data from the same domain. Additionally, the
feedback queries are selected dynamically according
to the edges estimated to be hardest for the parser.
Finally, we request only limited feedback and the
true parse is never provided directly.

Chang et al. (2007) use a set of domain specific
rules as automatic implicit feedback for training in-
formation extraction system. For example, they use
a set of 15 simple rules to specify the expected for-
mats of fields to be extracted from advertisements.
The light feedback regarding a prediction is the
number of rules that are broken. That feedback is
used to update the prediction model.

Baldridge and Osborne (2004) learns an HPSG
parser using active learning to choose sentences to
be annotated from a large unlabeled pool. Then,
like our algorithm the annotator is presented with a
proposed parse with several local alternatives sub-
parse-trees. Yet, the annotator manually provides
the correct parse, if it is not found within the pro-
posed alternatives. Kristjansson et al. (2004) em-
ploy similar approach of combining active learning
with corrective feedback for information extraction.
Instances with lowest confidence using the current
model are chosen to be annotated. Few alternative
labels are shown to the user, yet again, the correct
labeling is added manually if needed. The alterna-
tives shown to the user are intended to reduce the
effort of obtaining the right label, but eventually the
algorithm receives the correct prediction. Our al-
gorithm is passive about examples (and active only
about subset of the labels), while their algorithm
uses active learning to also choose examples. We
plan to extend our work in this direction. Addition-
ally, in these works, the feedback requests involve
many alternatives and providing the true annotation,
in oppose to the limited binary or ternary feedback.
Yet our results show that despite of these limitations
the trained parser achieved performance nor far from
the performance of a parser training using the entire

annotated dataset.
Finally, our setting is related to bandits (Cesa-

Bianchi and Lugosi, 2006) where the feedback is
extremely limited, a binary success-failure bit.

8 Summary

We showed in a series of experimental simulations
that using light-feedback it is possible to train a de-
pendency parser that achieves parsing performance
not far from standard supervised training. Further-
more, very little amount of fully annotated data,
even few tens of sentences, is sufficient for build-
ing an initial parser which can then be significantly
improved using light-feedbacks.

While light-feedback training and standard super-
vised training with about the same number of to-
tal annotated edges may achieve close performance,
we still view it as a possible alternative training
framework. The reduction of the general annota-
tion task into focused and small feedback requests,
opens possibilities for receiving these feedbacks be-
yond expert labeling. In our ongoing work we study
feedbacks from a large group of non-experts, and
possibly even automatically. Additionally, we inves-
tigate methods for selecting light-feedback queries
that are not necessarily derived from the highest
scoring parse and the best alternative parse. For ex-
ample, selecting queries that would be easy to an-
swer by non-experts.
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