
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 295–304,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

The Challenges of Parsing Chinese with Combinatory Categorial Grammar

Daniel Tse and James R. Curran
School of Information Technologies

University of Sydney
Australia

{dtse6695,james}@it.usyd.edu.au

Abstract
We apply Combinatory Categorial Grammar
to wide-coverage parsing in Chinese with the
new Chinese CCGbank, bringing a formalism
capable of transparently recovering non-local
dependencies to a language in which they are
particularly frequent.
We train two state-of-the-art English 
parsers: the parser of Petrov and Klein (P&K),
and the Clark and Curran (C&C) parser, uncov-
ering a surprising performance gap between
them not observed in English — 72.73 (P&K)
and 67.09 (C&C) F -score on  6.
We explore the challenges of Chinese 
parsing through three novel ideas: develop-
ing corpus variants rather than treating the cor-
pus as fixed; controlling noun/verb and other
 ambiguities; and quantifying the impact
of constructions like pro-drop.

1 Introduction
Automatic corpus conversions from the Penn Tree-
bank (Marcus et al., 1994) have driven research in
lexicalised grammar formalisms, such as  (Xia,
1999),  (Miyao et al., 2004) and  (Hock-
enmaier and Steedman, 2007), producing the lexical
resources key to wide-coverage statistical parsing.

The Chinese Penn Treebank (; Xue et al.,
2005) has filled a comparable niche, enabling the
development of a Chinese  (Xia et al., 2000),
a wide-coverage  parser (Yu et al., 2011), and
recently Chinese CCGbank (Tse and Curran, 2010),
a 750 000-word corpus of Combinatory Categorial
Grammar (; Steedman, 2000) derivations.

We train two  parsers, Clark and Curran (C&C;
2007), and the Petrov and Klein (P&K; 2007) 
parser, on Chinese CCGbank. We follow Fowler and
Penn (2010), who treat the English CCGbank (Hock-
enmaier and Steedman, 2007) grammar as a  and
train and evaluate the P&K parser directly on it.

We obtain the first Chinese  parsing results:
F -scores of 72.73 (P&K) and 67.09 (C&C) on la-
belled dependencies computed over the  6 test
set. While the state-of-the-art in Chinese syntactic
parsing has always lagged behind English, this large
gap is surprising, given that Fowler and Penn (2010)
found only a small margin separated the two parsers
on English CCGbank (86.0 versus 85.8).

Levy and Manning (2003) established that prop-
erties of Chinese such as noun/verb ambiguity con-
tribute to the difficulty of Chinese parsing. We focus
on two factors within our control: annotation deci-
sions and parser architecture.

Existing research has varied parsers whilst keep-
ing the corpus fixed. We vary the corpus whilst keep-
ing the parsers fixed by exploring multiple design
choices for particular constructions. By exploiting
the fully automatic CCGbank extraction process, we
can immediately implement these choices and assess
their impact on parsing performance.

Secondly, we contrast the performance of C&C,
with its tagging/parsing pipeline, with P&K, a parser
which performs joint tagging and parsing, and estab-
lish that P&K is less sensitive to the greater lexical
category ambiguity in Chinese CCGbank.

We demonstrate that Chinese  parsing is very
difficult, and propose novel techniques for identify-
ing where the challenges lie.

295

被  困 trap 的  公主 princess 我 I 解救了 rescued
(S[dcl]\NP)/((S[dcl]\NP)/NP) (S[dcl]\NP)/NP (N/N)\(S[dcl]/NP) N NP (S[dcl]\NP)/NP

≻ ≻TS[dcl]\NP S/(S\NP)
≺ ≻BN/N S[dcl]/NP

≻N −→ NP
TS/(S/NP)

≻S[dcl]

Figure 1: 3 types of non-local dependencies in 6 words: “(As for) the trapped princess, I rescued (her).”

2 Background
Bikel and Chiang (2000) developed the first 
parser, demonstrating that Chinese was similar
enough to English for techniques such as a Collins-
style head-driven parser or  to succeed. Later
 parsers used Tree Insertion Grammar (Chi-
ang and Bikel, 2002), s (Levy and Man-
ning, 2003), the Collins models (Bikel, 2004) and
transition-based discriminative models (Wang et al.,
2006; Zhang and Clark, 2009; Huang et al., 2009).
These systems also established the relative difficulty
of parsing Chinese and English; while 
scores over 92% are possible for English (McClosky
et al., 2006), systems for Chinese have achieved only
87% (Zhang and Clark, 2009) on the same metric.

Non-local dependencies (s) are lexical depen-
dencies which hold over unbounded distances. Guo
et al. (2007) observed that despite the importance of
s for correct semantic interpretation, and the fact
that Chinese syntax generates more s than En-
glish, few parsers in Chinese are equipped to recover
the traces which mark s. For instance, extrac-
tion, a common  type, occurs more frequently in
 sentences (38%) compared to  (17%).

A more satisfying approach is to use a grammar
formalism, such as  (Steedman, 2000), which
generates them inherently, enabling a unified parsing
model over local and non-local dependencies. This
approach is taken in the C&C parser (Clark and Cur-
ran, 2007), which can directly and transparently re-
cover s in English (Rimell et al., 2009).

Chinese CCGbank (Tse and Curran, 2010) demon-
strates that a parsimonious account of Chinese syn-
tax with  is possible. Many familiar objects
of Chinese syntax which generate s, including
the 把 ba/被 bei constructions, topicalisation and
extraction receive natural  analyses in Chinese

(a) Derivational

.

.

..S/S

.

.

.

..NP

.NP/N . ..N

(b) Lexical

.

.

..S/S

.(S/S)/N . ..N

Figure 2: Two types of ambiguity

CCGbank. Figure 1 shows the CCGbank analysis
of passivisation, topicalisation and extraction, creat-
ing s between公主 princess and each of被 ,
困 trap and解救 rescue respectively.

We take two state-of-the-art parsers and train them
to establish the difficulty of parsing Chinese with
. The first is the Clark and Curran (C&C; 2007)
parser, which uses supertagging (Clark and Curran,
2004), a local, linear-time tagging technique which
drastically prunes the space of lexical categories
which the polynomial-time parsing algorithm later
considers. The second is the coarse-to-fine parser
of Petrov and Klein (2007) which iteratively refines
its grammar by splitting production rules to uncover
latent distinctions. Fowler and Penn (2010) demon-
strate that the English CCGbank grammar is strongly
context-free, allowing them to treat it as a  and
train the Petrov and Klein (2007) parser directly.
2.1 Derivational vs. lexical ambiguity
The designer of a CCGbank must frequently choose
between derivational and lexical ambiguity (Hock-
enmaier, 2003; Tse and Curran, 2010). Derivational
ambiguity analyses special constructions through ar-
bitrary label-rewriting phrase structure rules, while
lexical ambiguity assigns additional categories to lex-
ical items for when they participate in special con-
structions.

296

Derivational and lexical ambiguity often arise in
 because of the form-function distinction —
when the syntactic form of a constituent does not co-
incide with its semantic function (Honnibal, 2010).
For instance, in English, topicalisation causes an NP
to appear in clause-initial position, fulfilling the func-
tion of a sentential pre-modifier while maintaining
the form of an NP. Figure 2 shows two distinct 
analyses which yield the same dependency edges.

Derivational ambiguity increases the parser search
space, while lexical ambiguity enlarges the tag set,
and hence the complexity of the supertagging task.

3 Three versions of Chinese CCGbank
We extract three versions of Chinese CCGbank to ex-
plore the trade-off between lexical and derivational
ambiguity, training both parsers on each corpus to
determine the impact of the annotation changes. Our
hypothesis is that the scarcity of training data in Chi-
nese means that derivational ambiguity results in bet-
ter coverage and accuracy, at the cost of increasing
time and space requirements of the resulting parser.

3.1 The lexical category LC (localiser)
In the following sentences, the words in bold have of-
ten been analysed as belonging to a lexical category
localiser (Chao, 1968; Li and Thompson, 1989).

(1) a. 屋子
house

里面
inside:

the inside of the house/inside the house
b. 大

big
树
tree
旁边
beside:

(the area) beside the big tree

Localisers, like English prepositions, identify a (tem-
poral, spatial, etc.) extent of their complement. How-
ever, the combination Noun + Localiser is ambigu-
ous between noun function (the inside of the house)
and modifier function (inside the house).

We consider two possibilities to represent localis-
ers in , which trade derivational for lexical am-
biguity. In (2-a), a direct  transfer of the 
analysis, the preposition在 at expects arguments of
type LCP. In (2-b),在 at now expects only NP argu-
ments, and the unary promotion LCP → NP allows
LCP-form constituents to function as NPs.

(2) a. 在 at 房子 room 里 in:
PP/LCP NP LCP\NP

≺LCP
≻PP

b. 在 at 房子 room 里 in:
PP/NP NP LCP\NP

≺LCP → NP
≻PP

The analysis in (2-a) exhibits greater lexical ambigu-
ity, with the lexical item在 at carrying at least two
categories, PP/NP and PP/LCP, while (2-b) trades
off derivational for lexical ambiguity: the unary pro-
motion LCP → NP becomes necessary, but 在 at
no longer needs the category PP/LCP.

The base release of Chinese CCGbank, corpus A,
like (2-a), makes the distinction between categories
LCP and NP. However, in corpus B, we test the im-
pact of applying (2-b), in which the unary promotion
LCP → NP is available.
3.2 The bare/non-bare NP distinction
The most frequent unary rule in English CCGbank,
occurring in over 91% of sentences, is the promotion
from bare to non-bare nouns: N → NP. Hocken-
maier (2003) explains that the rule accounts for the
form-function distinction in determiner-less English
nouns which nevertheless have definite reference,
while preventing certain over-generations (e.g. ∗the
the car). The N-NP distinction also separates adjec-
tives and noun modifiers (category N/N), from pre-
determiners (category NP/NP) (Hockenmaier and
Steedman, 2005), a distinction also made in Chinese.

While Chinese has strategies to mark definite or in-
definite reference, they are not obligatory, and a bare
noun is referentially ambiguous, calling into ques-
tion whether the distinction is justified in :
(3) a. 狗

dog
很
very

聪明
clever

Dogs are clever.
b. 我


看到
see

狗
dog

I saw a dog/dogs.
c. 狗

dog
跑走
run-away

了


The dog/dogs ran away.

297

The fact that the Chinese determiner is not necessar-
ily a maximal projection of the noun – in other words,
the determiner does not ‘close off’ a level of NP –
also argues against importing the English analysis.
In contrast, the English CCGbank determiner cate-
gory NP/N reflects the fact that determiners ‘close
off’ NP — further modification by noun modifiers is
blocked after combining with a determiner.

(4) 共和党
Republican Party

这
this
举动
act

this action by the Republican Party

To test its impact on Chinese parsing, we create a
version of Chinese CCGbank (corpus C) which neu-
tralises the distinction. This eliminates the atomic
category N, as well as the promotion rule N → NP.

4 Experiments

While a standard split of  5 exists, as defined
by Zhang and Clark (2008), we are not aware of a
consistently used split for  6. We present a
new split in Table 1 which adds data from the 
broadcast section of  6, maintaining the same
train/dev/test set proportions as the  5 split.

We train C&C using the hybrid model, the best-
performing model for English, which extracts fea-
tures from the dependency structure (Clark and Cur-
ran, 2007). We use β = ⟨0.055, 0.01, 0.05, 0.1⟩ dur-
ing training with a Gaussian smoothing parameter
α = 2.4 (optimised on the corpus A dev set). We
use β = ⟨0.15, 0.075, 0.03, 0.01, 0.005, 0.001⟩ dur-
ing parsing, with the maximum number of supercats
(chart entries) set to 5,000,000, reflecting the greater
supertagging ambiguity of Chinese parsing.

The P&K parser is used “off-the-shelf” and trained
with its default parameters, only varying the number
of split-merge iterations and enabling the Chinese-
specific lexicon features. The P&K parser involves
no explicit  tagging step, as the (super)tags cor-
respond directly to non-terminals in a .

Fowler and Penn (2010) use the C&C tool
generate to convert P&K output to the C&C evalu-
ation dependency format. generate critically does
not depend on the C&C parsing model, permitting a
fair comparison of the parsers’ output.

 5 + 6 #sents
Train 1–815, 1001–1136 2000–2980 22033
Test 816–885, 1137–1147 3030–3145 2758
Dev 900–931, 1148–1151 2981–3029 1101

Table 1:  5 and 6 dev/train/test splits

4.1 Evaluation
Carroll et al. (1998) argued against  in
favour of a dependency-based evaluation. Rimell
et al. (2009) focus on evaluating  recovery,
proposing a dependency-based evaluation and a 
mapping procedure for inter-parser comparison.

Since the P&K parser plus generate produce de-
pendencies in the same format as C&C, we can use
the standard Clark and Curran (2007) dependency-
based evaluation from the  literature: labelled F -
score (LF) over dependency tuples, as used for 
parser evaluation in English. Critically, this metric
is also -sensitive. We also report labelled sen-
tence accuracy (Lsa), the proportion of sentences for
which the parser returned all and only the gold stan-
dard dependencies. Supertagger accuracy compares
leaf categories against the gold standard (stag).

For C&C, we report on two configurations: ,
evaluated using gold standard  tags; and ,
with automatic  tags provided by the C&C tagger
(Curran and Clark, 2003). For P&K, we vary the num-
ber of split-merge iterations from one to six (follow-
ing Fowler and Penn (2010), the k-iterations model
is called I-k). Because the P&K parser does not use
 tags, the most appropriate comparison is against
the  configuration of C&C. For C&C, we use the
average of the logarithm of the chart size (log C) as
a measure of ambiguity, that is, the number of alter-
native analyses the parser must choose between.

Following Fowler and Penn (2010), we perform
two sets of experiments: one evaluated over all sen-
tences in a section, and another evaluated only over
sentences for which both parsers successfully parse
and generate dependencies.

We define the size of a  grammar as the num-
ber of categories it contains. The size of a grammar
affects the difficulty of the supertagging task (as the
size of a grammar is the size of the supertag set). We
also consider the number of categories of each shape,
as defined in Table 2. Decomposing the category in-

298

Shape Pattern
V (predicate-like) (S[dcl]\NP)$
M (modifier) X|X
P (preposition-like) (X|X)|Y
N (noun-like) N or NP
O (all others)

Table 2: Shapes of categories

model LF Lsa % stag cov log C

A
I-3 68.97 13.45 83.64 95.7 -
I-6 71.67 15.70 85.00 96.4 -

 75.45 16.70 89.43 99.4 14.55
 66.32 12.81 83.88 98.6 14.69

B
I-3 69.75 14.15 84.07 96.0 -
I-5 71.40 14.83 84.97 96.4 -

 75.41 16.67 89.50 99.6 14.74
 66.24 12.61 83.95 98.7 14.75

C
I-3 70.22 16.49 84.37 96.5 -
I-5 72.74 18.59 85.61 96.5 -

 76.73 20.56 89.66 99.5 13.58
 66.95 14.62 83.90 99.2 13.86

Table 3: Dev set evaluation for P&K and C&C

ventory into shapes demonstrates how changes to the
corpus annotation affect the distribution of types of
category. Finally, we calculate the average number
of tags per lexical item (Avg. Tags/Word), as a metric
of the degree of lexical ambiguity in each corpus.

5 Results
Table 3 shows the performance of P&K and C&C on
the three dev sets, and Table 4 only over sentences
parsed by both parsers. (A is the base release, B
includes the unary rule LCP → NP, and C also
collapses the N-NP distinction.) For P&K on corpus
A, F -score and supertagger accuracy increase mono-
tonically as further split-merge iterations refine the
model. P&K on B and C overfits at 6 iterations, con-
sistent with Fowler and Penn’s findings for English.

The ∼9% drop in F -score between the  and
 figures shows that C&C is highly sensitive to
 tagging accuracy (92.56% on the dev set, com-
pared to 96.82% on English). Considering Table 4,
each best P&K model outperforms the corresponding
 model by 3-5%. However, while P&K is sub-
stantially better without gold-standard information,
gold  tags allow C&C to outperform P&K, again

model LF Lsa % stag cov
A I-6 71.74 15.87 85.29 100.0

 67.50 15.36 84.52 100.0
B I-5 71.40 14.97 85.26 100.0

 67.72 14.97 84.68 100.0
C I-5 72.84 18.69 86.04 100.0

 68.43 16.17 84.57 100.0

Table 4: Dev set evaluation for P&K and C&C on
 6 sentences parsed by both parsers

model LF Lsa % stag cov log C

C
I-5 72.73 20.28 85.43 97.1 -

 76.89 22.90 89.63 99.1 14.53
 67.09 15.28 83.95 98.7 14.89

Table 5: Test set evaluation for P&K and C&C

demonstrating the impact of incorrect  tags.
Supertagging and parsing accuracy are not en-

tirely correlated between the parsers – in corpora A
and B,  supertagging is comparable or better
than I-3, but F -score is substantially worse.

Comparing A and B in Table 3, C&C receives
small increases in supertagger accuracy and cover-
age, but parsing performance remains largely un-
changed; P&K performance degrades slightly. On
both parsers, C yields the best results out of the three
corpora, with LF gains of 1.07 (P&K), 1.28 ()
and 0.63 () over the base Chinese CCGbank.
We select C for our remaining parser experiments.

Both C&C’s  and  results show higher
coverage than P&K (a combination of parse failures
in P&K itself, and in generate). Since F -score is
only computed over successful parses, it is possible
that P&K is avoiding harder sentences. In Table 4,
evaluated only over sentences parsed by both parsers
shows that as expected, C&C gains more (1.15%)
than P&K on the common sentences.

Table 5 shows that the behaviour of both parsers
on the test section is consistent with the dev section.

corpus Avg. Grammar size
tags/word all f ≥ 10

A 1.84 1177 324
B 1.83 1084 303
C 1.79 964 274

Table 6: Corpus statistics

299

corpus V P M N O Total
A 791 158 56 2 170 1177
B 712 149 55 2 166 1084
C 670 119 41 1 133 964

Table 7: Grammar size, categorised by shape

5.1 Corpus ambiguity
To understand why corpus C is superior for parsing,
we compare the ambiguity and sparsity characteris-
tics of the three corpora. Examining log C, the aver-
age log-chart size (Table 3) shows that the corpus B
changes (the addition of the unary rule LCP → NP)
increase ambiguity, while the additional corpus C
changes (eliminating the N-NP distinction, resulting
in the removal of the unary rule N → NP) have the
net effect of reducing ambiguity.

Table 6 shows that the changes reduce the size
of the lexicon, thus reducing the average number of
tags each word can potentially receive, and therefore
the difficulty of the supertagging task. This, in part,
contributes to the reduced log C values in Table 3.
While the size of the lexicon is reduced in B, the cor-
responding log C figure in Table 3 increases slightly,
because of the additional unary rule.

Table 7 breaks down the size of each lexicon
according to category shape. Introducing the rule
LCP → NP reduces the number of V-shaped cat-
egories by 10%, while not substantially affecting the
quantity of other category shapes, because the sub-
categorisation frames which previously referred to
LCP are no longer necessary. Eliminating the N-NP
distinction, however, reduces the number of P and
M-shaped categories by over 20%, as the distinction
is no longer made between attachment at N and NP.

6 Error analysis
The well-known noun/verb ambiguity in Chinese
(where, e.g., 设计建设 ‘design-build’ is both a ver-
bal compound ‘design and build’ and a noun com-
pound ‘design and construction’) greatly affects
parsing accuracy (Levy and Manning, 2003).

However, little work has quantified the impact of
noun/verb ambiguity on parsing, and for that mat-
ter, the impact of other frequent confusion types.
To quantify C&C’s sensitivity to  tagging errors,

Confusion LF ∆LF stag cov
Base () 76.73 89.66 99.50

NR ▷◁ NN 76.72 -0.01 89.64 99.37
JJ ▷◁ NN 76.60 -0.12 89.57 99.37

DEC ▷◁ DEG 75.10 -1.50 89.07 98.83
VV ▷◁ NN 73.35 -1.75 87.68 98.74

All () 66.95 83.90 99.20

Table 8: Corrupting C&C gold  tags piecemeal on
 6 dev set of corpus C. ∆LF is the change in
LF when each additional confusion type is allowed.

which we saw in Table 3, we perform an experiment
where we corrupt the gold  tags, by gradually re-
introducing automatic  errors on a cumulative ba-
sis, one confusion type at a time.

The notation X ▷◁ Y indicates that the  tags X
and Y are frequently confused with each other by the
 tagger. For example, VV ▷◁ NN represents the
problematic noun/verb ambiguity, allowing the in-
clusion of noun/verb confusion errors.

Table 8 shows that while the confusion types
NR ▷◁ NN and JJ ▷◁ NN have no impact on the evalua-
tion, the confusions DEC ▷◁ DEG and VV ▷◁ NN, intro-
duced one at a time, cause reductions in F -score of
1.50 and 1.75% respectively. This is expected; Chi-
nese CCGbank does not distinguish between noun
modifiers (NN) and adjectives (JJ). On the other
hand, the critical noun/verb ambiguity, and the con-
fusion between DEC/DEG (two senses of the particle
的 de) adversely impact F -score. We performed an
experiment with C&C to merge DEC and DEG into a
single tag, but found that this increased category am-
biguity without improving accuracy.

The VV ▷◁ NN confusion is particularly damag-
ing to the  labelled dependency evaluation, be-
cause verbs generate a large number of dependencies.
While Fowler and Penn (2010) report a gap of 6.31%
between C&C’s labelled and unlabelled F -score on
the development set in English, we observe a gap of
10.35% for Chinese.

Table 10 breaks down the 8,414 false positives
generated by C&C on the dev set, according to
whether the head of each dependency was incorrectly
-tagged and/or supertagged. The top-left cell
shows that despite the correct  and supertag, C&C
makes a large number of pure attachment location er-
rors. The vast majority of false positives, though, are

300

C&C  P&K I-5 category ? dependency function
LF freq LF freq

0.78 4204 0.78 3106 NP/NP noun modifier attachment
0.73 2173 0.81 1765 (S[dcl]\NP)/NP transitive object
0.65 1717 0.72 1459 (S[dcl]\NP)/NP transitive subject
0.68 870 0.74 643 (S[dcl]\NP)/(S[dcl]\NP) control/raising S complement
0.70 862 0.67 697 S[dcl]\NP intransitive subject
0.60 670 0.69 499 (S[dcl]\NP)/(S[dcl]\NP) ✓ control/raising subject
0.55 626 0.54 412 (NP/NP)/(NP/NP) noun modifier modifier attachment
0.57 370 0.68 321 (NP/NP)\(S[dcl]\NP) subject extraction S complement
0.59 343 0.70 314 (NP/NP)\(S[dcl]\NP) ✓ subject extraction modifier attachment
0.59 110 0.69 84 (NP/NP)\(S[dcl]/NP) object extraction S complement
0.63 106 0.75 86 (NP/NP)\(S[dcl]/NP) ✓ object extraction modifier attachment

Table 9: Accuracy per dependency, for selected dependency types

correct  incorrect 
correct stag 2307 (27.42%) 51 (0.61%)

incorrect stag 4493 (53.40%) 1563 (18.58%)

Table 10: Analysis of the 8,414 false positive depen-
dencies from C&C on  6 dev set

caused by supertagging errors (the bottom row), but
most of these are not a result of incorrect  tags,
demonstrating that supertagging and parsing are dif-
ficult even with correct  tags.

The sensitivity of C&C to tagging errors, and
the higher performance of the P&K parser, which
does not directly use  tags, calls into question
whether  tagging yields a net gain in a language
where distinctions such as the noun/verb ambiguity
are often difficult to resolve using local tagging ap-
proaches. The approach of Auli and Lopez (2011),
which achieves superior results in English  pars-
ing with a joint supertagging/parsing model, may be
promising in light of the performance difference be-
tween P&K and C&C.

6.1 Non-local dependencies
Table 9 shows how well the best models of each
parser recovered selected local and non-local depen-
dencies. The slot represented by each row appears
in boldface. While C&C and P&K perform similarly
recovering NP-internal structure, the ability of P&K
to recover verbal arguments, unbounded long-range
dependencies such as subject and object extraction,
and bounded long-range dependencies such as con-
trol/raising constructions, is superior.

The C&C  parser appears to be biased to-
wards generating far more of the frequent depen-
dency types, yet does not typically have a higher re-
call for these dependency types than P&K.

6.2 Pro-drop and its impact on  parsing
One of the most common types of unary rules in
Chinese CCGbank, occurring in 36% of Chinese
CCGbank sentences, is the subject pro-drop rule
S[dcl]\NP → S[dcl], which accounts for the op-
tional absence of the subject pronoun of a verb for
pragmatic reasons where the referent can be recov-
ered from the discourse (Li and Thompson, 1989).

The subject pro-drop rule is problematic in Chi-
nese parsing because its left hand side, S[dcl]\NP, is
a very common category, and also because several
syntactic distinctions in Chinese CCGbank hinge on
the difference between S[dcl]\NP and S[dcl].

The latter point is illustrated by two of the senses
of 的 de, the Chinese subordinating particle. Two
categories which 的 de receives in the grammar
are (NP/NP)\(S[dcl]\NP) (introducing a relative
clause) and (NP/NP)\S[dcl] (in the construction S de
NP). Because subject pro-drop promotes any unsatu-
rated S[dcl]\NP to S[dcl], whenever the supertagger
returns both of the above categories for the lexical
item的 de, the parser must consider two alternative
analyses which yield different dependencies:

(5) a. ti
ti

出来
come out

的

问题i

questioni

the questions which arise

301

English Chinese
PTB/PCTB-based 92.1% (McClosky et al., 2006) 86.8% (Zhang and Clark, 2009)
CCGbank-based 86.0% (Fowler and Penn, 2010) 72.7% (this work)

85.8% (Clark and Curran, 2007) 67.1% (this work)

Table 11: Summary of Chinese parsing approaches

model LF Lsa % stag cov log C

C

 74.99 7.42 89.36 98.6 18.35
(76.73 20.56 89.66 99.5 13.58)

 65.42 4.82 83.73 97.9 18.67
(66.95 14.62 83.90 99.2 13.86)

I-5 70.67 8.62 84.99 93.8 -
(72.74 18.59 85.61 96.5 -)

Table 12: Dev set evaluation for C&C over pro-drop
sentences only (and over full set in parentheses)

b. pro出来
pro come out

的

问题
question

the question of (him, her) coming out
38.1% of sentences in the development set contain
at least one instance of pro-drop. The evaluation
over only these sentences is given in Table 12. This
restricted evaluation shows that while we cannot
conclude that pro-drop is the causative factor, sen-
tences with pro-drop are much more difficult for both
parsers to analyse correctly, although the drops in F -
score and supertagging accuracy are largest for P&K.

Critically, the fact that supertagging performance
on these more difficult sentences is reasonably com-
parable with performance on the full set suggests
that the bottleneck is in the parser rather than the
supertagger. One measure of the complexity of pro-
drop sentences is the substantial increase in the log C
value of these sentences. This suggests that a key to
bringing parser performance on Chinese in line with
English lies in reining in the ambiguity caused by
very productive unary rules such as pro-drop.

7 Conclusion
Using Chinese CCGbank (Tse and Curran, 2010), we
have trained and evaluated the first  parsers for
Chinese in the literature: the Clark and Curran (C&C;
2007) and Petrov and Klein (P&K; 2007) parsers.
The P&K parser substantially outperformed (72.73)
C&C with automatic  tags (67.09).

Table 11 summarises the best performance of

parsers on  and CCGbank, for English and Chi-
nese. We observe a drop in performance between En-
glish and Chinese  parsers which is much larger
than, but consistent with,  parsers. To close this
gap, future research in Chinese parsing should be in-
formed by quantifying the aspects of Chinese which
account most for the deficit.

We start by using corpus conversion to compare
different linguistic representation choices, rather
than for generating a single immutable resource.
This can also be exploited to develop syntactic cor-
pora parameterised for particular applications. We
found that collapsing categorial distinctions moti-
vated by theory can yield less ambiguous corpora,
and hence, more accurate parsers. We have also
taken a novel approach to investigating the impact
of noun/verb and other  ambiguities on parsing.

The large gap between Chinese C&C and P&K is
surprising, given that Fowler and Penn (2010) found
only a small gap for English. We found that C&C
is very sensitive to  tagging performance, which
leads to its inferior performance given automatically
assigned  tags. This suggests that joint supertag-
ging/parsing approaches, as performed by P&K, are
more suitable for Chinese. Finally, we have shown
that pro-drop is correlated with poor performance
on both parsers, suggesting an avenue to closing the
Chinese-English parsing gap.

While developing the first wide-coverage Chinese
 parsers, we have shed light on the nature of the
Chinese-English parsing gap, and identified new and
significant challenges for  parsing.

Acknowledgements

We thank our anonymous reviewers for their insight-
ful and detailed feedback. James R. Curran was sup-
ported by Australian Research Council () Dis-
covery grant DP1097291 and the Capital Markets
Cooperative Research Centre.

302

References
Michael Auli and Adam Lopez. 2011. A comparison

of loopy belief propagation and dual decomposition
for integrated ccg supertagging and parsing. In 49th
Annual Meeting of the Association for Computational
Linguistics, pages 470–480. Association for Computa-
tional Linguistics.

Daniel M. Bikel. 2004. On the parameter space of genera-
tive lexicalized statistical parsing models. Ph.D. thesis,
Citeseer.

Daniel M. Bikel and David Chiang. 2000. Two statisti-
cal parsing models applied to the Chinese Treebank. In
Second workshop on Chinese language processing, vol-
ume 12, pages 1–6. Morristown, NJ, USA.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: a survey and a new proposal. In Pro-
ceedings of the 1st International Conference on Lan-
guage Resources and Evaluation, pages 447–454.

Yuen-Ren Chao. 1968. A grammar of spoken Chinese.
University of California Press.

David Chiang and Daniel M. Bikel. 2002. Recovering la-
tent information in treebanks. In Proceedings of the
19th international conference on Computational lin-
guistics, volume 1, pages 1–7. Association for Compu-
tational Linguistics.

Stephen Clark and James R. Curran. 2004. The impor-
tance of supertagging for wide-coverage CCG parsing.
In Proceedings of the 20th international conference on
Computational Linguistics. Association for Computa-
tional Linguistics.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. In Computational Linguistics, vol-
ume 33, pages 493–552.

James R. Curran and Stephen Clark. 2003. Investigating
GIS and smoothing for maximum entropy taggers. In
Proceedings of the 10th Meeting of the EACL, pages
91–98. Budapest, Hungary.

Timothy A.D. Fowler and Gerald Penn. 2010. Accu-
rate context-free parsing with combinatory categorial
grammar. Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages
335–344.

Yuqing Guo, Haifeng Wang, and Josef Van Genabith.
2007. Recovering non-local dependencies for Chinese.
In EMNLP/CoNLL, pages 257–266.

Julia Hockenmaier. 2003. Data and Models for Statistical
Parsing with Combinatory Categorial Grammar. Ph.D.
thesis, University of Edinburgh.

Julia Hockenmaier and Mark Steedman. 2005. CCGbank:
Users’ manual. Technical report, MS-CIS-05-09, Com-
puter and Information Science, University of Pennsyl-
vania.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank:
A Corpus of CCG Derivations and Dependency Struc-
tures Extracted from the Penn Treebank. Computa-
tional Linguistics, 33(3):355–396.

Matthew Honnibal. 2010. Hat Categories: Represent-
ing Form and Function Simultaneously in Combinatory
Categorial Grammar. Ph.D. thesis, University of Syd-
ney.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Process-
ing, volume 3, pages 1222–1231. Association for
Computational Linguistics.

Roger Levy and Christopher Manning. 2003. Is it harder
to parse Chinese, or the Chinese Treebank? In Annual
Meeting of the Association for Computational Linguis-
tics, volume 1, pages 439–446. Morristown, NJ, USA.

Charles N. Li and Sandra A. Thompson. 1989. Mandarin
Chinese: A functional reference grammar. University
of California Press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a Large Annotated Cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the main conference on Human Language Tech-
nology Conference of the North American Chapter of
the Association of Computational Linguistics, pages
152–159. Association for Computational Linguistics.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii.
2004. Corpus-Oriented Grammar Development for Ac-
quiring a Head-Driven Phrase Structure Grammar from
the Penn Treebank. pages 684–693.

Slav Petrov and Dan Klein. 2007. Improved inference for
unlexicalized parsing. In Proceedings of NAACL HLT
2007, pages 404–411.

Laura Rimell, Stephen Clark, and Mark Steedman. 2009.
Unbounded dependency recovery for parser evaluation.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2-
Volume 2, pages 813–821. Association for Computa-
tional Linguistics.

Mark Steedman. 2000. The Syntactic Process. MIT Press.
Cambridge, MA, USA.

303

Daniel Tse and James R. Curran. 2010. Chinese CCG-
bank: extracting CCG derivations from the Penn Chi-
nese Treebank. Proceedings of the 23rd International
Conference on Computational Linguistics (COLING
2010), pages 1083–1091.

Mengqiu Wang, Kenji Sagae, and Teruko Mitamura. 2006.
A fast, accurate deterministic parser for Chinese. In
Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meet-
ing of the Association for Computational Linguistics,
pages 425–432. Association for Computational Lin-
guistics.

Fei Xia. 1999. Extracting tree adjoining grammars from
bracketed corpora. In Proceedings of Natural Lan-
guage Processing Pacific Rim Symposium ’99, pages
398–403.

Fei Xia, Chung-hye Han, Martha Palmer, and Aravind
Joshi. 2000. Comparing lexicalized treebank grammars
extracted from Chinese, Korean, and English corpora.
In Proceedings of the second workshop on Chinese lan-
guage processing: held in conjunction with the 38th
Annual Meeting of the Association for Computational
Linguistics, volume 12, pages 52–59. Association for
Computational Linguistics.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese TreeBank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(02):207–238.

Kun Yu, Yusuke Miyao, Takuya Matsuzaki, Xiangli
Wang, and Jun’ichi Tsujii. 2011. Analysis of the dif-
ficulties in chinese deep parsing. In 12th International
Conference on Parsing Technologies, page 48.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
562–571. Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2009. Transition-based
parsing of the Chinese treebank using a global discrim-
inative model. In Proceedings of the 11th International
Conference on Parsing Technologies, pages 162–171.
Association for Computational Linguistics.

304

