
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 152–161,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Segmentation Similarity and Agreement

Chris Fournier
University of Ottawa
Ottawa, ON, Canada

cfour037@eecs.uottawa.ca

Diana Inkpen
University of Ottawa
Ottawa, ON, Canada

diana@eecs.uottawa.ca

Abstract

We propose a new segmentation evaluation
metric, called segmentation similarity (S), that
quantifies the similarity between two segmen-
tations as the proportion of boundaries that
are not transformed when comparing them us-
ing edit distance, essentially using edit dis-
tance as a penalty function and scaling penal-
ties by segmentation size. We propose several
adapted inter-annotator agreement coefficients
which use S that are suitable for segmenta-
tion. We show that S is configurable enough
to suit a wide variety of segmentation evalua-
tions, and is an improvement upon the state of
the art. We also propose using inter-annotator
agreement coefficients to evaluate automatic
segmenters in terms of human performance.

1 Introduction

Segmentation is the task of splitting up an item, such
as a document, into a sequence of segments by plac-
ing boundaries within. The purpose of segmenting
can vary greatly, but one common objective is to
denote shifts in the topic of a text, where multiple
boundary types can also be present (e.g., major ver-
sus minor topic shifts). Human-competitive auto-
matic segmentation methods can help a wide range
of computational linguistic tasks which depend upon
the identification of segment boundaries in text.

To evaluate automatic segmentation methods, a
method of comparing an automatic segmenter’s per-
formance against the segmentations produced by hu-
man judges (coders) is required. Current meth-
ods of performing this comparison designate only
one coder’s segmentation as a reference to com-
pare against. A single “true” reference segmentation
from a coder should not be trusted, given that inter-
annotator agreement is often reported to be rather

poor (Hearst, 1997, p. 54). Additionally, to en-
sure that an automatic segmenter does not over-fit
to the preference and bias of one particular coder,
an automatic segmenter should be compared directly
against multiple coders.

The state of the art segmentation evaluation met-
rics (Pk and WindowDiff) slide a window across a
designated reference and hypothesis segmentation,
and count the number of windows where the number
of boundaries differ. Window-based methods suffer
from a variety of problems, including: i) unequal
penalization of error types; ii) an arbitrarily defined
window size parameter (whose choice greatly af-
fects outcomes); iii) lack of clear intuition; iv) in-
applicability to multiply-coded corpora; and v) re-
liance upon a “true” reference segmentation.

In this paper, we propose a new method of
comparing two segmentations, called segmentation
similarity 1 (S), that: i) equally penalizes all er-
ror types (unless explicitly configured otherwise);
ii) appropriately responds to scenarios tested; iii) de-
fines no arbitrary parameters; iv) is intuitive; and
v) is adapted for use in a variety of popular inter-
annotator agreement coefficients to handle multiply-
coded corpora; and vi) does not rely upon a “true”
reference segmentation (it is symmetric). Capitaliz-
ing on the adapted inter-annotator agreement coeffi-
cients, the relative difficulty that human segmenters
have with various segmentation tasks can now be
quantified. We also propose that these coefficients
can be used to evaluate and compare automatic seg-
mentation methods in terms of human agreement.

This paper is organized as follows. In Sec-
tion 2, we review segmentation evaluation and inter-
annotator agreement. In Section 3, we present S and

1A software implementation of segmentation similarity (S)
is available at http://nlp.chrisfournier.ca/

152

inter-annotator agreement coefficient adaptations. In
Section 4, we evaluate S and WindowDiff in vari-
ous scenarios and simulations, and upon a multiply-
coded corpus.

2 Related Work

2.1 Segmentation Evaluation

Precision, recall, and their mean (Fβ-measure) have
been previously applied to segmentation evaluation.
Precision is the proportion of boundaries chosen that
agree with a reference segmentation, and recall is
the proportion of boundaries chosen that agree with
a reference segmentation out of all boundaries in the
reference and hypothesis (Pevzner and Hearst, 2002,
p. 3). For segmentation, these metrics are unsuitable
because they penalize near-misses of boundaries as
full-misses, causing them to drastically overestimate
the error. Near-misses are prevalent in segmentation
and can account for a large proportion of the errors
produced by a coder, and as inter-annotator agree-
ment often shows, they do not reflect coder error,
but the difficulty of the task.

Pk (Beeferman and Berger, 1999, pp. 198–200)2

is a window-based metric which attempts to solve
the harsh near-miss penalization of precision, recall,
and Fβ-measure. In Pk, a window of size k, where
k is defined as half of the mean reference segment
size, is slid across the text to compute penalties.
A penalty of 1 is assigned for each window whose
boundaries are detected to be in different segments
of the reference and hypothesis segmentations, and
this count is normalized by the number of windows.

Pevzner and Hearst (2002, pp. 5–10) highlighted
a number of issues with Pk, specifically that: i) False
negatives (FNs) are penalized more than false pos-
itives (FPs); ii) It does not penalize FPs that fall
within k units of a reference boundary; iii) Its sen-
sitivity to variations in segment size can cause it to
linearly decrease the penalty for FPs if the size of
any segments fall below k; and iv) Near-miss errors
are too harshly penalized.

To attempt to mitigate the shortcomings of Pk,
Pevzner and Hearst (2002, p. 10) proposed a
modified metric which changed how penalties were

2Pk is a modification of Pµ (Beeferman et al., 1997, p. 43).
Other modifications such as TDT Cseg (Doddington, 1998, pp.
5–6) have been proposed, but Pk has seen greater usage.

counted, named WindowDiff (WD). A window of
size k is still slid across the text, but now penal-
ties are attributed to windows where the number of
boundaries in each segmentation differs (see Equa-
tion 1, where b(Rij) and b(Hij) represents the num-
ber of boundaries within the segments in a window
of size k from position i to j, and N the number of
sentences plus one), with the same normalization.

WD(R,H) =
1

N − k

N−k∑
i=1,j=i+k

(|b(Rij)−b(Hij)| > 0) (1)

WindowDiff is able to reduce, but not eliminate,
sensitivity to segment size, gives more equal weights
to both FPs and FNs (FNs are, in effect, penalized
less3), and is able to catch mistakes in both small
and large segments. It is not without issues though;
Lamprier et al. (2007) demonstrated that WindowD-
iff penalizes errors less at the beginning and end of
a segmentation (this is corrected by padding the seg-
mentation at each end by size k). Additionally, vari-
ations in the window size k lead to difficulties in in-
terpreting and comparing WindowDiff’s values, and
the intuition of the method remains vague.

Franz et al. (2007) proposed measuring perfor-
mance in terms of the number of words that are FNs
and FPs, normalized by the number of word posi-
tions present (see Equation 2).

RFN =
1

N

∑
w

FN(w), RFP =
1

N

∑
w

FP (w) (2)

RFN and RFP have the advantage that they take
into account the severity of an error in terms of seg-
ment size, allowing them to reflect the effects of er-
roneously missing, or added, words in a segment
better than window based metrics. Unfortunately,
RFN and RFP suffer from the same flaw as preci-
sion, recall, and Fβ-measure in that they do not ac-
count for near misses.

2.2 Inter-Annotator Agreement
The need to ascertain the agreement and reliabil-
ity between coders for segmentation was recognized

3Georgescul et al. (2006, p. 48) note that both FPs and FNs
are weighted by 1/N−k, and although there are “equiprobable
possibilities to have a [FP] in an interval of k units”, “the total
number of equiprobable possibilities to have a [FN] in an inter-
val of k units is smaller than (N−k)”, making the interpretation
of a full miss as a FN less probable than as a FP.

153

by Passonneau and Litman (1993), who adapted the
percentage agreement metric by Gale et al. (1992,
p. 254) for usage in segmentation. This percentage
agreement metric (Passonneau and Litman, 1993, p.
150) is the ratio of the total observed agreement of a
coder with the majority opinion for each boundary
over the total possible agreements. This measure
failed to take into account chance agreement, or to
less harshly penalize near-misses.

Hearst (1997) collected segmentations from 7
coders while developing the automatic segmenter
TextTiling, and reported mean κ (Siegel and Castel-
lan, 1988) values for coders and automatic seg-
menters (Hearst, 1997, p. 56). Pairwise mean κ
scores were calculated by comparing a coder’s seg-
mentation against a reference segmentation formu-
lated by the majority opinion strategy used in Pas-
sonneau and Litman (1993, p. 150) (Hearst, 1997,
pp. 53–54). Although mean κ scores attempt to
take into account chance agreement, near misses are
still unaccounted for, and use of Siegel and Castel-
lan’s (1988) κ has declined in favour of other coeffi-
cients (Artstein and Poesio, 2008, pp. 555–556).

Artstein and Poesio (2008) briefly touch upon
recommendations for coefficients for segmentation
evaluation, and though they do not propose a mea-
sure, they do conjecture that a modification of a
weighted form of α (Krippendorff, 1980; Krippen-
dorff, 2004) using unification and WindowDiff may
suffice (Artstein and Poesio, 2008, pp. 580–582).

3 Segmentation Similarity

For discussing segmentation, a segment’s size (or
mass) is measured in units, the error is quantified
in potential boundaries (PBs), and we have adopted
a modified form of the notation used by Artstein and
Poesio (2008), where the set of:

• Items is {i|i ∈ I} with cardinality i;
• Categories is {k|k ∈ K} with cardinality k;
• Coders is {c|c ∈ C} with cardinality c;
• Segmentations of an item i by a coder c is {s|s ∈
S}, where when sic is specified with only one sub-
script, it denotes sc, for all relevant items (i); and

• Types of segmentation boundaries is {t|t ∈ T} with
cardinality t.

3.1 Sources of Dissimilarity
Linear segmentation has three main types of errors:

1. s1 contains a boundary that is off by n PBs in s2;
2. s1 contains a boundary that s2 does not; or
3. s2 contains a boundary that s1 does not.

These types of errors can be seen in Figure 1, and
are conceptualized as a pairwise transposition of a
boundary for error 1, and the insertion or deletion
(depending upon your perspective) of a boundary for
errors 2 and 3. Since we do not designate either seg-
mentation as a reference or hypothesis, we refer to
insertions and deletions both as substitutions.

s1

s2

1 3 2

Figure 1: Types of segmentations errors

It is important to not penalize near misses as full
misses in many segmentation tasks because coders
often agree upon the existence of a boundary, but
disagree upon its exact location. In the previous sce-
nario, assigning a full miss would mean that even a
boundary loosely agreed-upon, as in Figure 1, error
1, would be regarded as completely disagreed-upon.

3.2 Edit Distance
In S, concepts from Damereau-Levenshtein edit dis-
tance (Damereau, 1964; Levenshtein, 1966) are ap-
plied to model segmentation edit distance as two op-
erations: substitutions and transpositions.4 These
two operations represent full misses and near misses,
respectively. Using these two operations, a new
globally-optimal minimum edit distance is applied
to a pair of sequences of sets of boundaries to model
the sources of dissimilarity identified earlier.5

Near misses that are remedied by transposition are
penalized as b PBs of error (where b is the number
of boundaries transposed), as opposed to the 2b PBs
of errors by which they would be penalized if they
were considered to be two separate substitution op-
erations. Transpositions can also be considered over
n > 2 PBs (n-wise transpositions). This is useful
if, for a specific task, near misses of up to n PBs are
not to be penalized as full misses (default n = 2).

The error represented by the two operations can
also be scaled (i.e., weighted) from 1 PB each to a

4Beeferman et al. (1997, p. 42) briefly mention using an edit
distance without transpositions, but discard it in favour of Pµ.

5For multiple boundaries, an add/del operation is added, and
transpositions are considered only within boundary types.

154

fraction. The distance over which an n-wise trans-
position occurred can also be used in conjunction
with the scalar operation weighting so that a transpo-
sition is weighted using the function in Equation 3.

te(n, b) = b− (1/b)
n−2 where n ≥ 2 and b > 0 (3)

This transposition error function was chosen so
that, in an n-wise transposition where n = 2 PBs
and the number of boundaries transposed b = 2, the
penalty would be 1 PB, and the maximum penalty as
limn→∞ te(n) would be b PBs, or in this case 2 PBs
(demonstrated later in Figure 5b).

3.3 Method

In S, we conceptualize the entire segmentation, and
individual segments, as having mass (i.e., unit mag-
nitude/length), and quantify similarity between two
segmentations as the proportion of boundaries that
are not transformed when comparing segmentations
using edit distance, essentially using edit distance as
a penalty function and scaling penalties by segmen-
tation size. S is a symmetric function that quantifies
the similarity between two segmentations as a per-
centage, and applies to any granularity or segmenta-
tion unit (e.g., paragraphs, sentences, clauses, etc.).

Consider a somewhat contrived example
containing–for simplicity and brevity–only one
boundary type (t = 1). First, a segmentation must
be converted into a sequence of segment mass
values (see Figure 2).

0 1 2 3 4 5 6
⇒ 1 3 2

Figure 2: Annotation of segmentation mass

Then, a pair of segmentations are converted into
parallel sequences of boundary sets, where each set
contains the types of boundaries present at that po-
tential boundary location (if there is no boundary
present, then the set is empty), as in Figure 3.

s1

s2

1 2 2 3 3 1 2

{1} {} {1} {} {1} {} {} {1} {} {} {1} {1} {}

1 2 1 2 6 2
{1} {} {1} {1} {} {1} {} {} {} {} {} {1} {}

Figure 3: Segmentations annotated with mass and their
corresponding boundary set sequences

The edit distance is calculated by first identify-
ing all potential substitution operations that could
occur (in this case 5). A search for all potential n-
wise transpositions that can be made over n adja-
cent sets between the sequences is then performed,
searching from the beginning of the sequence to the
end, keeping only those transpositions which do not
overlap and which result in transposing the most
boundaries between the sequences (to minimize the
edit distance). In this case, we have only one non-
overlapping 2-wise transposition. We then subtract
the number of boundaries involved in transpositions
between the sequences (2 boundaries) from the num-
ber of substitutions, giving us an edit distance of 4
PBs: 1 transposition PB and 3 substitution PBs.

s1

s2

1 2 2 3 3 1 2

{1} {} {1} {} {1} {} {} {1} {} {} {1} {1} {}

1 2 1 2 6 2
{1} {} {1} {1} {} {1} {} {} {} {} {} {1} {}

Transposition

Sub. Sub. Sub.

Figure 4: Edit operations performed on boundary sets

Edit distance, and especially the number of oper-
ations of each type performed, is useful in identi-
fying the number of full and near misses that have
occurred–which indicates whether one’s choice of
transposition window size n is either too generous
or too harsh. Edit distance as a penalty does not
incorporate information on the severity of an error
with respect to the size of a segment, and is not an
easily comparable value without some form of nor-
malization. To account for these issues, we define
S so that boundary edit distance is used to subtract
penalties for each edit operation that occurs, from
the number of potential boundaries in a segmenta-
tion, normalizing this value by the total number of
potential boundaries in a segmentation.

S(si1, si2) =
t ·mass(i)− t− d(si1, si1, T)

t ·mass(i)− t
(4)

S, as shown in Equation 4, scales the mass of the
item by the cardinality of the set of boundary types
(t) because the edit distance function d(si1, si1, T)
will return a value of [0, t · mass(i)] PBs, where
t ∈ Z+–while subtracting the edit distance and t.6

6The number of potential boundaries in a segmentation si

155

The numerator is normalized by the total number
of potential boundaries per boundary type. This re-
sults in a function with a range of [0, 1]. It returns 0
when one segmentation contains no boundaries, and
the other contains the maximum number of possible
boundaries. It returns 1 when both segmentations
are identical.

Using the default configuration of this equation,
S = 9/13 = 0.6923, a very low similarity, which
WindowDiff also agrees upon (1−WD = 0.6154).
The edit-distance function d(si1, si1, T) can also be
assigned values of the range [0, 1] as scalar weights
(wsub, wtrp) to reduce the penalty attributed to par-
ticular edit operations, and configured to use a trans-
position error function (Equation 3, used by default).

3.4 Evaluating Automatic Segmenters

Coders often disagree in segmentation tasks (Hearst,
1997, p. 56), making it improbable that a single,
correct, reference segmentation could be identified
from human codings. This improbability is the re-
sult of individual coders adopting slightly differ-
ent segmentation strategies (i.e., different granular-
ity). In light of this, we propose that the best avail-
able evaluation strategy for automatic segmentation
methods is to compare performance against multiple
coders directly, so that performance can be quanti-
fied relative to human reliability and agreement.

To evaluate whether an automatic segmenter
performs on par with human performance, inter-
annotator agreement can be calculated with and
without the inclusion of an automatic segmenter,
where an observed drop in the coefficients would
signify that the automatic segmenter does not per-
form as reliably as the group of human coders.7 This
can be performed independently for multiple auto-
matic segmenters to compare them to each other–
assuming that the coefficients model chance agree-
ment appropriately–because agreement is calculated
(and quantifies reliability) over all segmentations.

3.5 Inter-Annotator Agreement

Similarity alone is not a sufficiently insightful mea-
sure of reliability, or agreement, between coders.

with t boundary types is t ·mass(i)− t.
7Similar to how human competitiveness is ascertained by

Medelyan et al. (2009, pp. 1324–1325) and Medelyan (2009,
pp. 143–145) by comparing drops in inter-indexer consistency.

Chance agreement occurs in segmentation when
coders operating at slightly different granularities
agree due to their codings, and not their own in-
nate segmentation heuristics. Inter-annotator agree-
ment coefficients have been developed that assume a
variety of prior distributions to characterize chance
agreement, and to attempt to offer a way to iden-
tify whether agreement is primarily due to chance,
or not, and to quantify reliability.

Artstein and Poesio (2008) note that most of a
coder’s judgements are non-boundaries. The class
imbalance caused by segmentations often contain-
ing few boundaries, paired with no handling of near
misses, causes most inter-annotator agreement co-
efficients to drastically underestimate agreement on
segmentations. To allow for agreement coefficients
to account for near misses, we have adapted S for use
with Cohen’s κ, Scott’s π, Fleiss’s multi-π (π∗), and
Fleiss’s multi-κ (κ∗), which are all coefficients that
range from [Ae/1−Ae , 1], where 0 indicates chance
agreement, and 1 perfect agreement. All four coeffi-
cients have the general form:

κ, π, κ∗, and π∗ =
Aa − Ae
1− Ae

(5)

For each agreement coefficient, the set of cate-
gories is defined as solely the presence of a bound-
ary (K = {segt|t ∈ T}), per boundary type (t).
This category choice is similar to those chosen by
Hearst (1997, p. 53), who computed chance agree-
ment in terms of the probability that coders would
say that a segment boundary exists (segt), and the
probability that they would not (unsegt). We have
chosen to model chance agreement only in terms of
the presence of a boundary, and not the absence,
because coders have only two choices when seg-
menting: to place a boundary, or not. Coders do
not place non-boundaries. If they do not make a
choice, then the default choice is used: no boundary.
This default option makes it impossible to determine
whether a segmenter is making a choice by not plac-
ing a boundary, or whether they are not sure whether
a boundary is to be placed.8 For this reason, we
only characterize chance agreement between coders
in terms of one boundary presence category per type.

8This could be modelled as another boundary type, which
would be modelled in S by the set of boundary types T .

156

3.5.1 Scott’s π
Proposed by Scott (1955), π assumes that chance

agreement between coders can be characterized as
the proportion of items that have been assigned to
category k by both coders (Equation 7). We cal-
culate agreement (Aπ

a) as pairwise mean S (scaled
by each item’s size) to enable agreement to quantify
near misses leniently, and chance agreement (Aπ

e)
can be calculated as in Artstein and Poesio (2008).

Aπa =

∑
i∈I mass(i) · S(si1, si2)∑

i∈I mass(i)
(6)

Aπe =
∑
k∈K

(
Pπe (k)

)2 (7)

We calculate chance agreement per category as
the proportion of boundaries (segt) assigned by all
coders over the total number of potential boundaries
for segmentations, as shown in Equation 8.

Pπe (segt) =

∑
c∈C

∑
i∈I |boundaries(t, sic)|

c ·
∑
i∈I
(
mass(i)− 1

) (8)

This adapted coefficient appropriately estimates
chance agreement in situations where there no in-
dividual coder bias.

3.5.2 Cohen’s κ
Proposed by Cohen (1960), κ characterizes

chance agreement as individual distributions per
coder, calculated as shown in Equations 9-10 using
our definition of agreement (Aπ

a) as shown earlier.

Aκa = Aπa (9)

Aκe =
∑
k∈K

Pκe (k|c1) · Pκe (k|c2) (10)

We calculate category probabilities as in Scott’s
π, but per coder, as shown in Equation 11.

Pκe (segt|c) =

∑
i∈I |boundaries(t, sic)|∑
i∈I
(
mass(i)− 1

) (11)

This adapted coefficient appropriately estimates
chance agreement for segmentation evaluations
where coder bias is present.

3.5.3 Fleiss’s Multi-π
Proposed by Fleiss (1971), multi-π (π∗) adapts

Scott’s π for multiple annotators. We use Artstein
and Poesio’s (2008, p. 564) proposal for calculat-
ing actual and expected agreement, and because all

coders rate all items, we express agreement as pair-
wise mean S between all coders as shown in Equa-
tions 12-13, adapting only Equation 12.

Aπ
∗
a =

1(c
2

) c−1∑
m=1

c∑
n=m+1

∑
i∈I mass(i) · S(sim, sin)∑

i∈I
(
mass(i)− 1

) (12)

Aπ
∗
e =

∑
k∈K

(
Pπe (k)

)2 (13)

3.5.4 Fleiss’s Multi-κ
Proposed by Davies and Fleiss (1982), multi-κ

(κ∗) adapts Cohen’s κ for multiple annotators. We
use Artstein and Poesio’s (2008, extended version)
proposal for calculating agreement just as in π∗, but
with separate distributions per coder as shown in
Equations 14-15.

Aκ
∗
a = Aπ

∗
a (14)

Aκ
∗
e =

∑
k∈K

(
1(c
2

) c−1∑
m=1

c∑
n=m+1

Pκe (k|cm) · Pκe (k|cn)

)
(15)

3.6 Annotator Bias

To identify the degree of bias in a group of coders’
segmentations, we can use a measure of variance
proposed by Artstein and Poesio (2008, p. 572) that
is quantified in terms of the difference between ex-
pected agreement when chance is assumed to vary
between coders, and when it is assumed to not.

B = Aπ
∗
e −Aκ

∗
e (16)

4 Experiments

To demonstrate the advantages of using S, as op-
posed to WindowDiff (WD), we compare both met-
rics using a variety of contrived scenarios, and then
compare our adapted agreement coefficients against
pairwise meanWD9 for the segmentations collected
by Kazantseva and Szpakowicz (2012).

In this section, because WD is a penalty-based
metric, it is reported as 1−WD so that it is easier
to compare against S values. When reported in this
way, 1−WD and S both range from [0, 1], where 1
represents no errors and 0 represents maximal error.

9Permuted, and with window size recalculated for each pair.

157

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Number of full misses / false positives

1−WD

S

(a) Increasing the number of full misses,
or FPs, where k = 25 for WD

0 2 4 6 8 10

0.7

0.8

0.9

1

Distance between boundaries in each seg. (units)

1−WD

S(n = 3)
S(n = 5,scale)

S(n = 5,wtrp = 0)

(b) Increasing the distance between two
boundaries considered to be a near miss
until metrics consider them a full miss

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Segmentation mass (m)

1−WD

S
k/m

(c) Increasing the mass m of segmenta-
tions configured as shown in Figure 10
showing the effect of k on 1−WD

Figure 5: Responses of 1−WD and S to various segmentation scenarios

4.1 Segmentation Cases
Maximal versus minimal segmentation When
proposing a new metric, its reactions to extrema
must be illustrated, for example when a maximal
segmentation is compared to a minimal segmenta-
tion, as shown in Figure 6. In this scenario, both
1−WD and S appropriately identify that this case
represents maximal error, or 0. Though not shown
here, both metrics also report a similarity of 1.0
when identical segmentations are compared.

s1

s2

14

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 6: Maximal versus minimal seg. masses

Full misses For the most serious source of error,
full misses (i.e., FPs and FNs), both metrics appro-
priately report a reduction in similarity for cases
such as Figure 7 that is very similar (1−WD =
0.8462, S= 0.8461). Where the two metrics differ
is when this type of error is increased.

s1

s2

1 2 2 2 4 2 1

1 2 8 2 1

Figure 7: Full misses in seg. masses

S reacts to increasing full misses linearly, whereas
WindowDiff can prematurely report a maximal
number of errors. Figure 5a demonstrates this ef-
fect, where for each iteration we have taken seg-
mentations of 100 units of mass with one matching
boundary at the first hypothesis boundary position,

and uniformly increased the number of internal hy-
pothesis segments, giving us 1 matching boundary,
and [0, 98] FPs. This premature report of maximal
error (at 7 FP) by WD is caused by the window size
(k = 25) being greater than all of the internal hy-
pothesis segment sizes, making all windows penal-
ized for containing errors.

Near misses When dealing with near misses, the
values of both metrics drop (1−WD = 0.8182,
S = 0.9231), but to greatly varying degrees. In
comparison to full misses, WindowDiff penalizes a
near miss, like that in Figure 8, far more than S.
This difference is due to the distance between the
two boundaries involved in a near miss; S shows,
in this case, 1 PB of error until it is outside of the
n-wise transposition window (where n = 2 PBs),
at which point it is considered an error of not one
transposition, but two substitutions (2 PBs).

s1

s2

6 8

7 7

Figure 8: Near misses in seg. masses

If we wanted to completely forgive near misses
up to n PBs, we could set the weighting of trans-
positions in S to wtrp = 0. This is useful if a spe-
cific segmentation task accepts that near misses are
very probable, and that there is little cost associated
with a near miss in a window of n PBs. We can
also set n to a high number, i.e., 5 PBs, and use the
scaled transposition error (te) function (Equation 3)
to slowly increase the error from b = 1 PB to b = 2
PBs, as shown in Figure 5b, which shows how both

158

Scenario 1: FN, p = 0.5 Scenario 2: FP, p = 0.5 Scenario 3: FP and FN, p = 0.5
(20,30) (15,35) (20,30) (15,35) (20,30) (15,35)

WD 0.2340± 0.0113 0.2292± 0.0104 0.2265± 0.0114 0.2265± 0.0111 0.3635± 0.0126 0.3599± 0.0117
S 0.9801± 0.0006 0.9801± 0.0006 0.9800± 0.0006 0.9800± 0.0006 0.9605± 0.0009 0.9603± 0.0009

(10,40) (5,45) (10,40) (5,45) (10,40) (5,45)
WD 0.2297± 0.0105 0.2206± 0.0079 0.2256± 0.0102 0.2184± 0.0069 0.3516± 0.0110 0.3254± 0.0087

S 0.9799± 0.0007 0.9796± 0.0007 0.9800± 0.0006 0.9796± 0.0007 0.9606± 0.0010 0.9598± 0.0011

Table 1: Stability of mean (with standard deviation) values of WD and S in three different scenarios, each defining
the: probability of a false positive (FP), false negative (FN), or both. Each scenario varies the range of internal
segment sizes (e.g., (20, 30)). Low standard deviation and similar within-scenario means demonstrates low sensitivity
to variations in internal segment size.

metrics react to increases in the distance between a
near miss in a segment of 25 units. These configura-
tions are all preferable to the drop of 1−WD.

4.2 Segmentation Mass Scale Effects

It is important for a segmentation evaluation met-
ric to take into account the severity of an error in
terms of segment size. An error in a 100 unit seg-
ment should be considered less severe than an er-
ror in a 2 unit segment, because an extra boundary
placed within a 100 unit segment (e.g., Figure 9 with
m = 100) could probably indicate a weak boundary,
whereas in a 4 unit segment the probability that an
extra boundary exists right next to two agreed-upon
boundaries should be small for most tasks, meaning
that it is probable that the extra boundary is an error,
and not a weak boundary.

s1

s2

m/4
m/2

m/4

m/4
m/4

m/4
m/4

Figure 9: Two segmentations of mass m with a full miss

To demonstrate that S is sensitive to segment size,
Figure 5c shows how S and 1−WD respond when
comparing segmentations configured as shown in
Figure 10 (containing one match and one full miss)
with linearly increasing mass (4 ≤ m ≤ 100).
1−WD will eventually indicate 0.68, whereas S ap-
propriately discounts the error as mass is increased,
approaching 1 as limm→∞. 1−WD behaves in this
way because of how it calculates its window size pa-
rameter, k, which is plotted as k/m to show how its
value influences 1−WD.

s1

s2

m/4 m− (m/4)

m/4
m/4

m/2

Figure 10: Two segmentations of mass m compared with
increasing m in Figure 5c (s1 as reference)

4.3 Variation in Segment Sizes

When Pevzner and Hearst (2002) proposed WD,
they demonstrated that it was not as sensitive as
Pk to variations in the size of segments inside a
segmentation. To show this, they simulated how
WD performs upon a segmentation comprised of
1000 segments with four different uniformly dis-
tributed ranges of internal segment sizes (keeping
the mean at approximately 25 units) in compari-
son to a hypothesis segmentation with errors (false
positives, false negatives, and both) uniformly dis-
tributed within segments (Pevzner and Hearst, 2002,
pp. 11–12). 10 trials were performed for each seg-
ment size range and error probability, with 100 hy-
potheses generated per trial. Recreating this simu-
lation, we compare the stability of S in comparison
to WD, as shown in Table 1. We can see that WD
values show substantial within-scenario variation for
each segment size range, and larger standard devia-
tions, than S.

4.4 Inter-Annotator Agreement Coefficients

Here, we demonstrate the adapted inter-annotator
agreement coefficients upon topical paragraph-level
segmentations produced by 27 coders of 20 chapters
from the novel The Moonstone by Wilkie Collins
collected by Kazantseva and Szpakowicz (2012).
Figure 11 shows a heat map of each chapter where
the percentage of coders who agreed upon each po-
tential boundary is represented. Comparing this heat
map to the inter-annotator agreement coefficients in
Table 2 allows us to better understand why certain
chapters have lower reliability.

Chapter 1 has the lowest π∗S score in the table, and
also the highest bias (BS). One of the reasons for
this low reliability can be attributed to the chapter’s
small mass (m) and few coders (|c|), which makes
it more sensitive to chance agreement. Visually, the

159

1
2
3
4
5
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1.0

0.0

C
ha

pt
er

s

Potential boundary positions (between paragraphs)

C
oderagreem

entperpotentialboundary
(%

)

Figure 11: Heat maps for the segmentations of each chap-
ter showing the percentage of coders who agree upon
boundary positions (darker shows higher agreement)

predominance of grey indicates that, although there
are probably two boundaries, their exact location is
not very well agreed upon. In this case, 1−WD
incorrectly indicates the opposite, that this chapter
may have relatively moderate reliability, because it
is not corrected for chance agreement.

1−WD indicates that the lowest reliability is
found in Chapter 19. π∗S indicates that this is one
of the higher agreement chapters, and looking at the
heat map, we can see that it does not contain any
strongly agreed upon boundaries. In this chapter,
there is little opportunity to agree by chance due to
the low number of boundaries (|b|) placed, and be-
cause the judgements are tightly clustered in a fair
amount of mass, the S component of π∗S appropri-
ately takes into account the near misses observed
and gives it a high reliability score.

Chapter 17 received the highest π∗S in the table,
which is another example of how tight clustering of
boundary choices in a large mass leads π∗S to appro-
priately indicate high reliability despite that there are
not as many individual highly-agreed-upon bound-
aries, whereas 1−WD indicates that there is low re-
liability. 1−WD and π∗S both agree, however, that
chapter 16 has high reliability.

Despite WindowDiff’s sensitivity to near misses,
it is evident that its pairwise mean cannot be used
to consistently judge inter-annotator agreement, or
reliability. S demonstrates better versatility when
accounting for near misses, and when used as part
of inter-annotator agreement coefficients, it prop-
erly takes into account chance agreement. Follow-
ing Artstein and Poesio’s (2008, pp. 590–591) rec-

Ch. π∗S κ∗S BS 1−WD |c| |b| m
1 0.7452 0.7463 0.0039 0.6641± 0.1307 4 13 13
2 0.8839 0.8840 0.0009 0.7619± 0.1743 6 20 15
3 0.8338 0.8340 0.0013 0.6732± 0.1559 4 23 38
4 0.8414 0.8417 0.0019 0.6019± 0.2245 4 25 46
5 0.8773 0.8774 0.0003 0.6965± 0.1106 6 34 42
7 0.8132 0.8133 0.0002 0.6945± 0.1822 6 20 15
8 0.8495 0.8496 0.0006 0.7505± 0.0911 6 48 39
9 0.8104 0.8105 0.0009 0.6502± 0.1319 6 35 33

10 0.9077 0.9078 0.0002 0.7729± 0.0770 6 56 83
11 0.8130 0.8135 0.0022 0.6189± 0.1294 4 73 111
12 0.9178 0.9178 0.0001 0.6504± 0.1277 6 40 102
13 0.9354 0.9354 0.0002 0.5660± 0.2187 6 21 58
14 0.9367 0.9367 0.0001 0.7128± 0.1744 6 35 70
15 0.9344 0.9344 0.0001 0.7291± 0.0856 6 40 97
16 0.9356 0.9356 0.0000 0.8016± 0.0648 6 41 69
17 0.9447 0.9447 0.0002 0.6717± 0.2044 5 23 70
18 0.8921 0.8922 0.0005 0.5998± 0.1614 5 28 59
19 0.9021 0.9022 0.0009 0.4796± 0.2666 5 15 36
20 0.8590 0.8591 0.0003 0.6657± 0.1221 6 21 21
21 0.9286 0.9286 0.0004 0.6255± 0.2003 5 17 60

Table 2: S-based inter-annotator agreements and pairwise
mean 1−WD and standard deviation with the number of
coders, boundaries, and mass per chapter

ommendation, and given the low bias (mean coder
groupBS = 0.0061±0.0035), we propose reporting
reliability using π∗ for this corpus, where the mean
coder group π∗S for the corpus is 0.8904 ± 0.0392
(counting 1039 full and 212 near misses).

5 Conclusion and Future Work

We have proposed a segmentation evaluation met-
ric which solves the key problems facing segmenta-
tion analysis today, including an inability to: appro-
priately quantify near misses when evaluating auto-
matic segmenters and human performance; penalize
errors equally (or, with configuration, in a manner
that suits a specific segmentation task); compare an
automatic segmenter directly against human perfor-
mance; require a “true” reference; and handle mul-
tiple boundary types. Using S, task-specific eval-
uation of automatic and human segmenters can be
performed using multiple human judgements unhin-
dered by the quirks of window-based metrics.

In current and future work, we will show how S
can be used to analyze hierarchical segmentations,
and illustrate how to apply S to linear segmentations
containing multiple boundary types.

Acknowledgments

We thank Anna Kazantseva for her invaluable feed-
back and corpora, and Stan Szpakowicz, Martin Sca-
iano, and James Cracknell for their feedback.

160

References
Ron Artstein and Massimo Poesio. 2008. Inter-coder

agreement for computational linguistics. Computa-
tional Linguistics, 34(4):555–596. MIT Press, Cam-
bridge, MA, USA.

Doug Beeferman, Adam Berger, and John Lafferty.
1997. Text Segmentation Using Exponential Models.
Proceedings of the Second Conference on Empirical
Methods in Natural Language Processing, 2:35–46.
Association for Computational Linguistics, Strouds-
burg, PA, USA.

Doug Beeferman and Adam Berger. 1999. Statisti-
cal models for text segmentation. Machine learning,
34(1–3):177–210. Springer Netherlands, NL.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and Psychological Mea-
surement, 20(1):37–46. Sage, Beverly Hills, CA, USA.

Frederick J. Damerau. 1964. A technique for computer
detection and correction of spelling errors. Commu-
nications of the ACM, 7(3):171–176. Association for
Computing Machinery, Stroudsburg, PA, USA.

Mark Davies and Joseph L. Fleiss. 1982. Measur-
ing agreement for multinomial data. Biometrics,
38(4):1047–1051. Blackwell Publishing Inc, Oxford,
UK.

George R. Doddington. 1998. The topic detection and
tracking phase 2 (TDT2) evaluation plan. DARPA
Broadcast News Transcription and Understanding
Workshop, pp. 223–229. Morgan Kaufmann, Waltham,
MA, USA.

Joseph L. Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological Bulletin,
76(5):378–382. American Psychological Association,
Washington, DC, USA.

Martin, Franz, J. Scott McCarley, and Jian-Ming Xu.
2007. User-oriented text segmentation evaluation
measure. Proceedings of the 30th annual international
ACM SIGIR conference on Research and development
in information retrieval, pp. 701–702. Association for
Computing Machinery, Stroudsburg, PA, USA.

William Gale, Kenneth Ward Church, and David
Yarowsky. 1992. Estimating upper and lower bounds
on the performance of word-sense disambiguation pro-
grams. Proceedings of the 30th annual meeting of
the Association for Computational Linguistics, pp.
249–256. Association for Computational Linguistics,
Stroudsburg, PA, USA.

Maria Georgescul, Alexander Clark, and Susan Arm-
strong. 2006. An analysis of quantitative aspects in
the evaluation of thematic segmentation algorithms.
Proceedings of the 7th SIGdial Workshop on Dis-
course and Dialogue, pp. 144–151. Association for
Computational Linguistics, Stroudsburg, PA, USA.

Marti A. Hearst. 1997. TextTiling: Segmenting Text into
Multi-paragraph Subtopic Passages. Computational
Linguistics, 23(1):33–64. MIT Press, Cambridge, MA,
USA.

Anna Kazantseva and Stan Szpakowicz. 2012. Topical
Segmentation: a Study of Human Performance. Pro-
ceedings of Human Language Technologies: The 2012
Annual Conference of the North American Chapter
of the Association for Computational Linguistics. As-
sociation for Computational Linguistics, Stroudsburg,
PA, USA.

Klaus Krippendorff. 1980. Content Analysis: An Intro-
duction to Its Methodology, Chapter 12. Sage, Beverly
Hills, CA, USA.

Klaus Krippendorff. 2004. Content Analysis: An Intro-
duction to Its Methodology, Chapter 11. Sage, Beverly
Hills, CA, USA.

Sylvain Lamprier, Tassadit Amghar, Bernard Levrat, and
Frederic Saubion 2007. On evaluation methodologies
for text segmentation algorithms. Proceedings of the
19th IEEE International Conference on Tools with Ar-
tificial Intelligence, 2:19–26. IEEE Computer Society,
Washington, DC, USA.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710. American Institute
of Physics, College Park, MD, USA.

Olena Medelyan. 2009. Human-competitive automatic
topic indexing. PhD Thesis. University of Waikato,
Waikato, NZ.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pp. 1318–1327. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA.

Rebecca J. Passonneau and Diane J. Litman. 1993.
Intention-based segmentation: human reliability and
correlation with linguistic cues. Proceedings of the
31st annual meeting of the Association for Computa-
tional Linguistics, pp. 148–155). Association for Com-
putational Linguistics, Stroudsburg, PA, USA.

Lev Pevzner and Marti A. Hearst. 2002. A critique and
improvement of an evaluation metric for text segmen-
tation. Computational Linguistics, 28(1):19–36. MIT
Press, Cambridge, MA, USA.

William A. Scott. 1955. Reliability of content analy-
sis: The case of nominal scale coding. Public Opinion
Quarterly, 19(3):321–325. American Association for
Public Opinion Research, Deerfield, IL, USA.

Sidney Siegel and N. John Castellan, Jr. 1988. Non-
parametric Statistics for the Behavioral Sciences. 2nd
Edition, Chapter 9.8. McGraw-Hill, New York, USA.

161

