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Abstract

Most existing theory of structured prediction
assumes exact inference, which is often in-
tractable in many practical problems. This
leads to the routine use of approximate infer-
ence such as beam search but there is not much
theory behind it. Based on the structured
perceptron, we propose a general framework
of “violation-fixing” perceptrons for inexact
search with a theoretical guarantee for conver-
gence under new separability conditions. This
framework subsumes and justifies the pop-
ular heuristic “early-update” for perceptron
with beam search (Collins and Roark, 2004).
We also propose several new update meth-
ods within this framework, among which the
“max-violation” method dramatically reduces
training time (by 3 fold as compared to early-
update) on state-of-the-art part-of-speech tag-

tal parsing (Collins and Roark, 2004; Huang and
Sagae, 2010), and bottom-up parsing (McDonald
and Pereira, 2006; Huang, 2008). This leads to
routine use of approximate inference such as beam
search as evidenced in the above-cited papers, but
the inexactness unfortunately abandons existing the-
oretical guarantees of the learning algorithms, and
besides notable exceptions discussed below and in
Section 7, little is known fotheoretical properties
of structured prediction under inexact search.
Among these notable exceptions, many exam-
ine how and which approximations break theoretical
guarantees of existing learning algorithms (Kulesza
and Pereira, 2007; Finley and Joachims, 2008), but
we ask a deeper and practically more useful ques-
tion: can wemodifyexisting learning algorithms to
accommodatehe inexactness in inference, so that
the theoretical properties are still maintained?

ging and incremental parsing systems. For the structured perceptron, Collins and Roark

(2004) provides a partial answer: they suggest vari-
ant called “early update” for beam search, which up-

Discriminative structured ~prediction algorithmsdates on partial hypotheses when the correct solution

such as conditional random fields (Lafferty et al.]caIIS out of the beam. This method works signif-
2001), structured perceptron (Collins, 2002), max'-camIy better than standard perceptron,_and 'S f9"
margin markov networks (Taskar et al., 2003), anb?wed by later incremental parsers, for instance in
structural SVMs (Tsochantaridis et al., 2005) lead?hang and Clark, 2008; Huapq ar_1d Saga(_e, 2010).
to state-of-the-art performance on many structure*Wever, two problems remain: first, up till now

prediction problems such as part-of-speech taggin@ere has been no theoretical justification for early

sequence labeling, and parsing. But despite thelillpdate; and secondly, it makes learning extremely

success, there remains a major problem: these Ieal_sﬂgW as witnessed by the above-cited papers because

ing algorithms all assume exact inference (over ah onAIryt/)Igarnsf on partial examplers]'land oftenl requires
exponentially-large search space), which is needé&_ |terat|on§ to cl%n_vergg w |:(e:n|(|)_rma2 goezrcep—
to ensure their theoretical properties such as convefon converges in > '|terat|ons (Co ms“, _ .)'
gence. This exactness assumption, however, rare!ywe develop a theoretical framework of “violation-

holds in practice since exact inference is often inf-'xIng perceptron that addresses these challenges.

tractable in many important problems such as mAD particular, we make the following contributions:
chine translation (Liang et al., 2006), incremen- e We show that, somewhat surprisingly, exact
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search isnot required by perceptron conver-Algorithm 1 Structured Perceptron (Collins, 2002).

gence. All we need is that each update involves
a “violation”, i.e., the 1-best sequence has a
higher model score than the correct sequence.
Such an update is considered a “valid update”,
and any perceptron variant that maintains this;.
is bound to converge. We call these variants2:

“violation-fixing perceptrons” (Section 3.1). 3

4.
This theory explains why standard perceptron5:
update may fail to work with inexact search, 6:

Input: dataD = {(z®,4®)}*_, and feature ma@
Output: weight vectow
Let: EXACT (z, w) = argmaxcy ) w - ®(z,s)
Let: A®(x,y,2) = ®(z,y) — P(z,2)
repeat
for each example(z, y) in D do
z «— EXACT(z, w)
if z # ythen
w—w+ AP(x,y,2)

until converged

because violation is no longer guaranteed: the
correct structure might indeed be preferred by
the model,
process (Sec. 3.2). Such an update is thus co

but was pruned during the searcR"" notations that will be reused in later sections
for non-exact search. We first define a new concept:

sidered invalid, and experiments show that inDefinition 1. The standard confusion setCs(D)
valid updates lead to bad learning (Sec. 6.2). for training dataD = {(z(*),y®))}7, is the set of
triples(z, y, z) wherez is a wrong label for input:

We show that the early update is always valid

and is thus a special case in our framework; thi€’s(D) = {(z,y,2) | (z,y) € D,z € Y(x) —{y}}.

is the first theoretical justification for early up-

date (Section 4). We also show that (a variant The rest of the theory, including separation and

of) LaSO (Dauré and Marcu, 2005) is another Violation, all builds upon this concept. We call such
special case (Section 7). atriple S = (D,®,C) atraining scenario, and

in the remainder of this section, we assufiie=
We then propose several other update metlf-s(D), though later we will define other confusion
ods within this framework (Section 5). Experi-sets to accommodate other update methods.

ments in Section 6 confirm that among thempefinition 2. The training scenari¢' = (D, ®, C)
the max-violation method can learn equal Ofs said to beinearly separable (i.e., datasetD is
better models with dramatically reduced |eal’nﬁnear|y separable irC by representationP) with
ing times (by 3 fold as compared to earlymargin § > 0 if there exists arpracle vectoru
update) on state-of-the-art part-of-speech tagyith ||u|| = 1 such that it can correctly classify
ging (Collins, 2002) and incremental parsing all examples inD (with a gap of at leas), i.e.,
(Huang and Sagae, 2010) systems. We alsqxjyjz) e C,u- A®(z,y,z) > 5. We define
found strong correlation between search errahe maximal margind(S) to be the maximal such

and invalid updates, suggesting that the adnargin over all unit oracle vectors:
vantage of valid update methods is more pro-

nounced with harder inference problems. 5(S) 2 max min

u-A®(x,y, z).
lul|=1 (z,y,2)eC ( )

Our techniques are widely applicable to other stiygfinition 3. A triple (z,y, 2) is said to be avi-
cutured prediction problems which require inexacf|ation in training scenariaS = (D, ®,C) with
search like machine translation and protein foldingyespect to weight vectow if (z,y Z’) e C and
w AP (z,y,2) <0.

Intuitively, this means modet is possible to mis-
We review the convergence properties of the stamabel example: (though not necessarily tg) since
dard structured perceptron (Collins, 2002) in ouy is not its single highest scoring label under

Lincidentally, we achieve the best POS tagging accuracy €Mma 1. Each update triple(z,y, z) in Algo-
date (97.35%) on English Treebank by early update (Sec. 6.1yithm 1 (line 5) is a violation inS = (D, ®, C(D)).

2 Structured Perceptron
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Proof. = = EXACT(z,w), thus for allz’ € Y(z), Algorithm 2 Local Violation-Fixing Perceptron.
w-P(xr,2) >w-®(z,2),i.e.,w-A®(z,y,2) <O0. Input: training scenari® = (D, ®, C')
On the other handz € Y(z) andz # y, so  1: repeat
(z,y,2) € Cs(D). ] 2. foreachexample(z,y) in D do
3 (x,y’,z) = FINDVIOLATION (2, y, W)

This lemma basically says exact search guarana4: if 2 # y then > (z,y, 2) is a violation
tees violation in each update, but as we will see ins: w—w+ A®(2,y, 2)
the convergence proof, violation itself is more fun- 6: until converged
damental than search exactness.
Definition 4. Thediameter R(S) for scenariaS =
(D,®,C)is max(x,%z)eCHA(I)(x,y, 2)].
Theorem 1(convergence, Collins)For a separable
training scenarioS = (D, ®,Cs(D)) withd(S) > 3 Violation is All We Need
0, the perceptron algorithm in Algorithm 1 will make
finite number of updates (before convergence):

Combining the two bounds, we ha#gs?(S) <
|w*+1)]|2 < kR2(S), thusk < R%(S)/6%(S). O

We now draw the central observation of this work

from part 2 of the above proof: note that exact search

err(S) < R*(S5)/6%(9). (argmax) is not required in the proof, instead, it
Proof. Let w(¥) be the weight vectdoefore the kth just needs aiolation, which is a much weaker con-

update:w®) = 0. Suppose théth update happens
on the triple(z, y, z). We will bound||w*+1)]| from

two directions: each update (which we cdilalid update” ), it does

not matter whether or how exact the search is.
1. wbtD) = wk) 1 A®(x,y, 2). Since scenario

S is separable with max margii{S), there ex- 3.1 Violation-Fixing Perceptron

dition.2 Exact search is simply used to ensure viola-
tion. In other words, if we can guarantee violation in

ists a unit oracle vecton that achieves this This observation leads us to two generalized vari-

margin. Dot product both sides with we have  ants of perceptron which we call “violation-fixing
w-whkt) = g w® g u-A®(z,y, 2) perceptrons”. The local version, Algorithm 2 still

> u-w® 4+ §(9)

works on one example at a time, and searches for

= one violation (if any) in that example to update with.
by Lemma 1 thatz, y, 2) € Cs(D) and by the The global version, Algorithm 3, can update on any
definition of margin. By induction, we have violation in the dataset at any time. We state the fol-

u - wk+h) > k5(S). Since for any two vec- lowing generalized theorem:

tors a a}:‘dlb we haVe’}Lale\bH > a-b, thus  Theorem 2. For a separable training scenari®
[ w® V] > u - w +k) 12 kd(S). Asuis  the perceptrons in Algorithms 2 and 3 both con-
a unit vector, we havgw "1 || > k4(S). verge with the same update bounds{ ) /62(S)
2. On the other hand, sind@ + b|2 = |laf|2 + @S long as theFINDYIOLATION and FIND.VIO'-
LATIONINDATA functions always return violation

|b||? +2 a- b for any vectorsa andb,we have -’ :
triples if there are any.

w2 = W+ Ad(,y, 2)|”
Iw® 2 + |A® (2, y, 2)||?

Proof. Same as the proof to Theorem 1, except for
replacing Lemma 1 in part 2 by the fact that the up-

+2wh . A®(z,y,2) date triples are guaranteed to be violations. (Note a

IN

[w® |2+ R%(S) + 0. violation triple is by definition in the confusion set,

o o thus we can still use separation and diameter).]
By Lemma 1, the update triple is a violation so

thatw®).A®(x,y, z) < 0, and tha(z, y, 2) € These generic violation-fixing perceptron algo-
Cy(D) thus || A® (z, y, 2)|

2 < R%(S) by the rithms can been seen as “interfaces” (or APIs),

definition of diameter. By induction, we have  2crammer and Singer (2003) further demonstrates that a

|wF+D 12 < kR2(S). convex combination of violations can also be used for update.
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Algorithm 3 Global Violation-Fixing Perceptron.  Algorithm 4 Greedy Search.

_ Input: training scenarié = (D, ®,C) Let: NEXT(z, 2) A {z0a|a€ Yps(x)} o setof
1. repeat possible one-step extensions (successors)
2. (z,y,z) < FINDVIOLATIONINDATA(C, w) B A & ,
3: if z = e then break > no more violation? EST(2, 2, W) = argmax, cnexi(z,-) W - &(z,2')
> best one-step extension based on history
4 w—w+A®(z,y,2) 1 function G S
5. until converged : function GREEDYSEARCH(z, W)
2. ze¢ > empty sequence
30 foriel...|z|do
dataD = {(z,y)}: 4: z «— BEST(x, z, W)
x| fruit flies fly &  retumn z
y| N N Voo
search spacey(z) = {N} x {N,V} x {N,V} x {.}.
feature map® (z,y) = (F#nony), F#vo.(y)). Theorem 3. For a separable training scenaris =
iter | labelz | A®(z,y,2) | w-A®P | neww (D, ®,C4(D)), iftheargmax in Algorithm 1 is not
0 (0,0) exact, the perceptron might not converge.
1 | NNN. | (=1,+41) 0 v | (—=1,1) —
> | NVN. (1, +1) 0 v | (0,2 Proof. See the example in Figure 1. O
3 |NNN. | (=1,+1) | 2 x | (=1,3) This situation happens very often in NLP: of-
4 [NVN. [ (+1L,41) | 2 x| (0,4) ten the search spagé(x) is too big either because
... infinite loop ... it does not factor locally, or because it is still too

Figure 1: Example that standard perceptron does nggg after factorization, which requires some approxi-

converge with greedy search onsaparablescenario mate search. In either case, updating the madei

(e.g.u = (1,2) can separat® with exact search). a non-violation (i.e., “invalid”) triple(z, y, z) does
not make sense: it inot the model's problemw

_ _ _ _ does score the correct labghigher than the incor-

tations of the MNDVIOLATION and ANDVIOLA-  jnteraction with the model that prunes away the cor-
TIONINDATA subroutines, thus establishing alternarect (sub)sequence during the search.

tive update methods for inexact search as special\yhat shall we do in this case? Collins and

cases in this general framework. Roark (2004) suggest that instead of the standard
full update, we should only update on the prefix
(7, Y[1:4)5 211:)) UP to the pointi where the correct
What if we can not guarantee valid updates? Welkequence falls off the beam. This intuitively makes
the convergence proof in Theorems 1 and 2 would lot of sense, since up towe can still guarantee
break in part 2. This is exactly why standard strucviolation, but afteri we may not. The next section
tured perceptron may not work well with inexactformalizes this intuition.

search: with search errors it is no longer possible

to guarantee violation in each update. For examplé, Early Update is Violation-Fixing

an inexact search method explores a (proper) sub
of the search spa¢¥, (z) C Y(z), and finds a label

3.2 Non-Convergence with Inexact Search

WIE now proceed to show that early update is always

valid and it is thus a special case of the violation-

> — argmax w - B(z, ) fixing perceptron framework. First, let us study the
N segygv(x) T simplest special case, greedy search (beam=1).

It is possible that the correct labglis outside of 41 Greedy Search and Early Update

the explored subspace, and yet has a higher scofereedy search is the simplest form of inexact search.
A®(x,y,z) > 0buty ¢ Y. (x). In this case, Shown in Algorithm 4, at each position, we com-
(z,y, z) is not a violation, which breaks the proof. mit to the single best action (e.g., tag for the current
We show below that this situation actually exists. word) given the previous actions and continue to the
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VIVv] V] x Algorithm 6 Alternative presentation of Alg. 5 as a
«— update —| skip— Local Violation-Fixing Perceptron (Alg. 2).

i . ) 1: function FINDVIOLATION (x, y, W)
Figure 2: Early update at the first error in greedy search.,. . . > empty sequence

i 30 foriel...|z|do
Algorithm 5 Early update for greedy search adapteds: z «— BEST(z,2, W)

from Collins and Roark (2004). 5: if z; # y; then > first wrong action
Input: training scenarié = (D, ®, Cy (D)) 6: return (z,y1.4,2) > return for early update
1: repeat 7. return (z,y,y) >succesgz = y), no violation
2: for eachexample(z,y) in D do
3 Z ¢ > empty sequence
4 foricl...|z[do We now express early update for greedy search
2' 2 = BEST(z, 2, W) (Algorithm 5) in terms of violation-fixing percep-
7
8
9:

if z; # y; then > first wrong action . .
w — w+ A®(z,y..2) > early update tron. Algorithm 6 implements theIRDV IOLATION

break > skip the rest of this example function for the generic Local Violation-Fixing Per-
ceptron in Algorithm 2. Thus Algorithm 5 is equiv-

until converged ) _ _
alent to Algorithm 6 plugged into Algorithm 2.

Lemma 2. Each triple(x, y[1.5, z) returned at line 6
next position. The notatio;(x) denotes the set of jn Algorithm 6 is a greedy violation.

possible actions at positianfor examplez (for in-

stance, the set of possible tags for a word). Proof. Lety' = y;1,;. Clearly atline 6y'| =i =
The early update heuristic, originally proposed fot?| @ndy; # zi. Buty; = z; forall j < i otherwise it

beam search (Collins and Roark, 2004), now simplivould have returned before positiorso(z, ', z) €

fies into “update at the first wrong action”, since thiCe (D). Also z = BEST(z, 2, w), sow - ®(z, 2) >

is exactly the place where the correct sequence fal¥s - ®(z,y), thusw - A®(z,y/, 2) < 0. O

off the singleton beam (see Algorithm 5 for pseUTheorem 4 (convergence of greedy search with

docode and Fig. 2). Informally, it is easy t0 ShOWearly update) For a separable training scenario

(belpw) that this kind of upda_te is always avalid vi-g _ (D, ®,C,(D)), the early update perceptron

olation, but we need to redefine confusion set. by plugging Algorithm 6 into Algorithm 2 will make

Definition 5. Thegreedy confusion set, (D) for  finite number of updates (before convergence):

training dataD = {(z®,y®)}7_, is the set of

triples (z, yj1.4, 2p1.7) Whereyy,.; is ai-prefix of the err(S) < R*(S5)/6%(9).

correct labely, andz(;; is an incorrect-prefix that

agrees with the correct prefix on all decisions exce

the last one: 4.2 Beam Search and Early Update

A
Cg(D) = {(xvy[lzi]vz[l:i]) ‘ ($,y,2) € CS(D)’
1< <|yl, 2[i—1) = Y[ui-1]s 2 7# Yi}-

rﬁroof. By Lemma 2 and Theorem 2. O

To formalize beam search, we need some notations:

Definition 6 (k-best) We denoteargtop”.  f(z)
to return (a sorted list of) the tdpunique z in terms

We can see intuitively that this new defintion®f /(2), i-€., itreturns alis = [, 2®), .. 20]
is specially tailored to the early updates in greethereZ(z) € zand f(:) > f(z) > ... >
search. The concepts of separation/margin, viold (") = f() forall 2’ € Z - B.
tion, and diameter all change accordingly with this By unique we mean that no two elements are
new confusion set. In particular, we say that aquivalentwith respectto some equivalence relation,
datasetD is greedily separablein representation i.e., 2 = 20 = § = j. This equivalence rela-
® if and only if (D, ®,C, (D)) is linearly separa- tion is useful for dynamic programming (when used
ble, and we sayz,y’, z’) is agreedy violation if  with beam search). For example, in trigram tagging,
(x,y,7) € Cg(D) andw - A®(x,y/,2") <O0. two tag sequences are equivalent if they are of the
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Algorithm 7 Beam-Search.

best in the beam

full
(standard)

A k

BEST,(x, B, W) = argtop? . sNexr() w-®(z,2) -

> top k& (unique) extensions from the beam COMmect seque 2 %2 7

. . . ! —= +=
1: function BEAMSEARCH(z, w, k) > k is beam width e ole E2 X
2 By — €] > initial beam  worst in the beam \ last valid invalid
3 foricl...|z|do ;a”smgest update  updatel
t

4. B; — BEST; (1‘7 B,j_l, W) e beam violation
5. return B, [0] > bestsequence in the final beam

Figure 3: lllustration of various update methods: early,
_ . max-violation, latest, and standard (full) update, in the
Algorithm 8 Early update for beam search (Collinsgase when standard update is invalid (shown in red). The
and Roark 04) as Local Violation-Fixing Perceptronrectangle denotes the beam and the blue line segments

1: function FINDVIOLATION (x, y, W) denote the trajectory of the correct sequence.

2: Bo — [6]

30 foriel...|z|do

4: B; «— BEST(z,Bi—1,w) (D, ®,C (D)) is linearly separable, and we say
5: if yj1.y € Bi then > correct seq. falls off beam (., ¢/, ') is abeam violationif (z,y/,2") € C,(D)

6 return (z,yp1.,Bi[0]) > update on prefix gndw - A®(z,y/,2") < 0.

7. retumn (z,y,B);[0]) >fullupdateifwrongfinal |t js easy to verify that beam confusion set is su-

perset of both greedy and standard confusion sets:
) for all datasetD, Cy(D) C Cy(D), andCy(D) €
same length and if they agree on the last two taggy (p). This means that beam separability is the
le.z = 2'iff. |2| = [2'] andz._15 = 2, _1..- N strongest condition among the three separabilities:
incremental parsing this equivalence relation could

be relevant bits of information on the last few treed heorem 5. If a datasetD is beam separable, then

on the stack (depending on feature templates), Hds also greedily and (standard) linear separable.

suggested in (Huang and Sagae, 20%0). We now present early update for beam search as

Algorithm 7 shows the pseudocode for beamy  ocal Violation Fixing Perceptron in Algorithm 8.
search. It is trivial to verify that greedy search issee Figure 3 for an illustration.

a special case of beam search with- 1. However,

the definition of confusion set changes considerably-€Mma 3. Each update (lines 6 or 7 in Algorithm 8)

i _ Involves a beam violation.
Definition 7. The beam confusion setC},(D) for

training dataD = {(z®,y®)}7_, is the set of
triples (z, y[1.4), 2[1.1)) Wherey,;) is ai-prefix of the _ / _
correct labely, andz(.; is an incorrect-prefix that andy’ = yp.;). Case 2: full update (line 8): Let =

!/ /
differs from the correct prefix (in at least one place)Blz|[0] andy’ = y. In both cases we have # y
and|Z’'| = ||, thus(z,y',2") € C,(D). Also we

havew - ®(x,2') > w - ®(z,y’) by defintion of
argtop, sow - A®(z,y/,2") <0. O

Proof. Case 1: early update (line 6): Let= B;[0]

A

Cb(D) {(3773/[1:1']72[1:1']) ‘ (xvyaz) € CS(D)a

L<i<|yl, 2p4) # Y }-

Theorem 6(convergence of beam search with early
update) For a separable training scenarié =
(D, ®,Cy(D)), the early update perceptron by

3Note that when checking whether the correct sequencﬁugging Algorithm 8 into Algorithm 2 will make fi-
falls off the beam (line 5), we could either store the whole_. .
(sub)sequence for each candidate in the beam (which is whdll€ NUMber of updates (before convergence):
we do for non-DP anyway), or check if the equivalence class of
the correct sequence is in the beam, [ig;.q]= € B;, and if err(S) < R2(S)/52(S),
its backpointer points tfy;.,,_1;]=. For example, in trigram

tagging, we just check ify;—1,v:) € B; and if its backpointer
poINts t0(y:— 2, yi—1). Proof. By Lemma 3 and Theorem 2. O

Similarly, we say that a datasdd is beam
separable in representation® if and only if
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5 New Update Methods for Inexact Search

We now propose three novel update methods for
inexact search within the framework of violation-
fixing perceptron. These methods are inspired by
early update but addresses its very limitation of slow
learning. See Figure 3 for an illustration.

max-violation —+—
early ———- -
sltandlard

96.4

1
1 2 3 4 5 6 7 8 9 10
beam size

best tagging accuracy on held-out

1. “hybrid” update. When the standard update
is valid (i.e., a violation), we perform it, other-
wise we perform the early update.

Figure 4: POS tagging using beam search with various

2. "max-violation” upc!ate " Wh”e there are update methods (hybrid/latest similar to early; omitted).
more than one possible violations on one exam-

plez, we choose the triple that is most violated:

b=1 b=2 b="17
(x,y*, 2%) = argmin w-A®(x,y, 7). method | it dev |it dev |it dev
(z,y,2")€C,2" €U {Bi[0]} standard| 12 96.27| 6 97.07| 4 97.17

early 13 96.97|6 97.15 7 97.19

A ” . I , !
3. “latest” update. Contrary to early update, we maxviol. | 7 969713 9720l 4 97.20

can also choose the latest point where the up-
date is still a violation: Table 1: Convergence rate of part-of-speech tagging. In

o wy ;1 general, max-violation converges faster and better than
(z, 9", 2%) = arginax 2. early and standard updates, esp. in smallest beams.

(z,y’,2")€C,z' €U {B; 0]}, w-A®(z,y’,2')>0
All these three methods go beyond early update

but can be represented in the Local Violation Fixingt993) for training, sections 19-21 as a held-out
Perceptron (Algorithm 2), and are thus all guarandevelopment set, and sections 22-24 for testing.
teed to converge. As we will see in the experimentQUF baseline system is a faithful implementation of
these new methods are motivated to address the nthe perceptron tagger in Collins (2002), i.e., a tri-
jor limitation of early update, that is, it learns toogram model with spelling features from Ratnaparkhi
slowly since it only updates on prefixes and negledil996), except that we replace one-count words as
the rest of the examples. Hybrid update is tryingcunk>. With standard perceptron and exact search,
to do as much standard (“full”) updates as possibl@ur baseline system performs slightly better than
and latest update further addresses the case wHefllins (2002) with a beam of 20 (M. Collins, p.c.).

standard update is invalid: instead of backing-off to  Wwe then implemented beam search on top of dy-
early update, it uses the longest possible update. namic programming and experimented with stan-
dard, early, hybrid, and max-violation update meth-
ods with various beam settings € 1,2,4,7,10).

We conduct experiments on two typical structuredfigure 4(a) summarizes these experiments. We ob-
learning tasks: part-of-speech tagging with a trigrargerve that, first of all, the standard update performs
model where exact search is possible, and incremepeorly with the smallest beams, esp. lat= 1

tal dependency parsing with arbitrary non-local featgreedy search), when search error is the most se-
tures where exact search is intractable. We run bougre causing lots of invalid updates (see Figure 5).
experiments on state-of-the-art implementations. Secondly,max-violation is almost consistently the
best-performing method (except fore= 4). Table 1
shows convergence rates, where max-violation up-
Following the standard split for part-of-speech tageate also converges faster than early and standard
ging introduced by Collins (2002), we use seciethods. In particular, & = 1, it achieves a 19%
tions 00-18 of the Penn Treebank (Marcus et alerror reduction over standard update, while converg-

6 Experiments

6.1 Part-of-Speech Tagging
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100 —————— method | b | it time dev test

) P T early* 38 154h 92.24] 92.09
g 7 standard 1 04h 7899 |79.14
A hybrid | 8|11 56h 9226 91.95
latest 9 45h 92.06]| 91.96
;f, 25 max-viol. 12 55h 9232 | 92.18
; \\¥ L early | 8| Huang & Sagae 2010 92.1

2 4 6 8 10 12 14 16 . ) ) ]
beam size Table 3: Final results on incremental parsing. *: baseline.

Figure 5: Percentages of invalid updates for standard up-

date. In tagging it quickly drops t@% while in parsing it = B SO B
converges te- 50%. This means search-wise, parsing is g 9225 W
much harder than tagging, which explains why standard 2 92
update does OK in tagging but terribly in parsing. The § fﬁ
harder the search is, the more needed valid updates are. g 9175 /f
3 91.5
method | b | it time dev | test 5 Ul
£ 9125 -
standard*| oo | 6 162m 97.17 97.28 & f max-violatlon ——
ealy | 4 |6 37m 97.22] 97.35 T, 4 6 8 10 12 14 16 18
hybrid 5 5 30m 97.18| 97.19 training time (hours)
latest 715 45m 97.17| 97.13
max-viol. | 2 1|3 26m 97.20| 97.33 Figure 6: Training progress curves for incremental pars-
- ing b = 8). Max-violation learns faster and better: it
standard 20 Collins (2002) 97.11 takes 4.6 hours (10 iterations) to reach 92.25 on held-out,
guided | 3 | Shenetal. (2007) 97.33 compared with early update’s 15.4 hours (38 iterations),

even though the latter is faster in each iteration due to

. 1 1 * H
Table 2: Final test results on POS tagging. *:baseline. early stopping (esp. at the first few iterations).

ing twice as fast as early updateThis agrees with et a1, (2007), the best tagging accuracy reported on
our intuition that by choosing the “most-violated” the Penn Treebank to daté. To conclude, with
triple for update, the perceptron should learn fasterya|id update methods, we can learn a better tagging

Table 2 presents the final tagging results on thgodel with 5 times faster training than exact search.
test set. For each of the five update methods, we

choose the beam size at which it achieves the higR-2 Incremental Parsing
est accuracy on the held-out. For standard update, i#ghile part-of-speech tagging is mainly a proof of
best held-out accuracy 97.17 is indeed achieved lyncept, incremental parsing is much harder since
exact search (i.eb = +o0) since it does not work non-local features rules out exact inference.
well with beam search, but it costs 2.7 hours (162 We use the standard split for parsing: secs 02—
minutes) to train. By contrast, the four valid up-21 for training, 22 as held-out, and 23 for testing.
date methods handle beam search better. The maur baseline system is a faithful reimplementation
violation method achieves its highest held-out/tesif the beam-search dynamic programming parser of
accuracies of 97.20 / 97.33 with a beam size afjuang and Sagae (2010). Like most incremental
only 2, and only 26 minutes to train. Early up-parsers, it used early update as search error is severe.
g?tg Za/CE;]?Ie;/ ;Zc:[rhoeszlglrlllej)t dr;?(ledrr?(lejtt:c?j; th:irl:;at():(lae:m Zaccordlng to ACL Wiki: http://aclweb.org/aclwiki/.

o o ) Note that Shen et al. (2007) employ contextual features
size of 4. This test accuracy is even better than Sheg to 5-gram which go beyond our local trigram window. We

suspect that addingenuinelynon-local features would demon-
2 - . . . . . . .
for tagging (but not parsing) the difference in per-iterationstrate even better the advantages of valid update methods with
speed between early update and max-violation update is smalleam search, since exact inference will no longer be tractable.
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We first confirm that, as reported by Huang and.aSO as a special case within our framewbrk.
Sagae, early update learns very slowly, reaching More interestingly, it is easy to verify that the
92.24 on held-out with 38 iterations (15.4 hours). greedy case of LaSO update is equivalent to training

We then experimented with the other updat@ local unstructured perceptron whichindepen-
methods: standard, hybrid, latest, and maxdently classifies at each position based on history,
violation, with beam sizé = 1,2,4,8. We found Wwhich is related to 8ARN (Daune et al., 2009).
that, first of all, the standard update performs horri- Kulesza and Pereira (2007) study perceptron
bly on this task: ab = 1 it only achieves 60.04% learning with approximate inference thavergen-
on held-out, while ab = 8 it improves to 78.99% eratesinstead ofundergeneratess in our work,
but is still vastly below all other methods. This isbut the underlying idea is similar: by learning in a
because search error is much more severe in inctegarder setting (LP-relaxed version in their case and
mental parsing (than in part-of-speech tagging), thyyefix-augmented version in our case) we can learn
standard update produces an enormous amounttbf simpler original setting. Our “beam separabil-
invalid updates even @& = 8 (see Figure 5). This ity” can be viewed as an instance of their “algorith-
suggests that the advantage of valid update methtpic separability”. Finley and Joachims (2008) study
ods is more pronounced with tougher search protsimilar approximate inference for structural SVMs.
lems. Secondly, max-violation learns much faster Our max-violation update is also related to other
(and better) than early update: it takes only 10 ittraining methods for large-margin structured predic-
erations (4.6 hours) to reach 92.25, compared witlion, in particular the cutting-plane (Joachims et al.,
early update’s 15.4 hours (see Fig. 6). At its peak009) and subgradient (Ratliff et al., 2007) methods,
max-violation achieves 92.18 on test which is betbut detailed exploration is left to future work.
ter than (Huang and Sagae, 2010). To conclude, we _
can train a parser with only 1/3 of training time with8 ~ Conclusions

max-violation update, and the harder the search i§\’/e have presented a unifying framework of
the more needed the valid update methods are. “violation-fixing” perceptron which guarantees con-

vergence with inexact search. This theory satisfin-
gly explained why standard perceptron might not
\c/york well with inexact search, and why the early

Besides the early update method of Collins an dat ks. We al d .
Roark (2004) which inspired us, this work is alsg Pdate WOrks. - We alSo proposed some new varl-

related to the.aSO method of Dauré and Marcu ants within this framework, among which the max-
(2005). LaSO is similar to early update, except tha‘f'?l?tlon. methc()jd perfp fms thte bestlon d_state—o[;the—
after each update, instead of skipping the rest of tg " 1adging and parsing systems, leading to better
example, LaS@ontinueson the same example with models with greatly Teduced training tm1_es. Lastly,
the correct hypothesis. For example, in the greecﬁ/]e advzntert]ge of Va“g upda‘Fe methods is more pro-
case LaSO is just replacing theeak statement in ouncedwhen search error s severe.

Algorithm 5 by

7 Related Work and Discussions
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