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Abstract

Conditional Random Fields (CRFs) are a pop-
ular formalism for structured prediction in
NLP. It is well known how to train CRFs with
certain topologies that admit exact inference,
such as linear-chain CRFs. Some NLP phe-
nomena, however, suggest CRFs with more
complex topologies. Should such models be
used, considering that they make exact infer-
ence intractable? Stoyanov et al. (2011) re-
cently argued for training parameters to min-
imize the task-specific loss of whatever ap-
proximate inference and decoding methods
will be used at test time. We apply their
method to three NLP problems, showing that
(i) using more complex CRFs leads to im-
proved performance, and that (ii) minimum-
risk training learns more accurate models.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are often used to model dependencies among
linguistic variables. CRF-based models have im-
proved the state of the art in a number of natural
language processing (NLP) tasks ranging from part-
of-speech tagging to information extraction and sen-
timent analysis (Lafferty et al., 2001; Peng and Mc-
Callum, 2006; Choi et al., 2005).

Robust and theoretically sound training proce-
dures have been developed for CRFs when the
model can be used with exact inference and de-
coding.1 However, some NLP problems seem to

1“Inference” typically refers to computing posterior
marginal or max-marginal probability distributions of output
random variables, given some evidence. “Decoding” derives
a single structured output from the results of inference.

call for higher-treewidth graphical models in which
exact inference is expensive or intractable. These
“loopy” CRFs have cyclic connections among the
output and/or latent variables. Alas, standard learn-
ing procedures assume exact inference: they do not
compensate for approximations that will be used at
test time, and can go surprisingly awry if approxi-
mate inference is used at training time (Kulesza and
Pereira, 2008).

While NLP research has been consistently evolv-
ing toward more richly structured models, one may
hesitate to add dependencies to a graphical model if
there is a danger that this will end up hurting per-
formance through approximations. In this paper we
illustrate how to address this problem, even for ex-
tremely interconnected models in which every pair
of output variables is connected.

Wainwright (2006) showed that if approximate in-
ference will be used at test time, it may be beneficial
to use a learning procedure that does not converge to
the true model but to one that performs well under
the approximations. Stoyanov et al. (2011) argue for
minimizing a certain non-convex training objective,
namely the empirical risk of the entire system com-
prising the CRF together with whatever approximate
inference and decoding procedures will be used at
test time. They regard this entire system as sim-
ply a complex decision rule, analogous to a neu-
ral network, and show how to use back-propagation
to tune its parameters to locally minimize the em-
pirical risk (i.e., the average task-specific loss on
training data). Stoyanov et al. (2011) show that
on certain synthetic-data problems, this frequentist
training regimen significantly reduced test-data loss
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compared to approximate maximum likelihood esti-
mation (MLE). However, this method has not been
evaluated on real-world problems until now.

We will refer to the Stoyanov et al. (2011) ap-
proach as “ERMA”—Empirical Risk Minimization
under Approximations. ERMA is attractive for NLP
because the freedom to use arbitrarily structured
graphical models makes it possible to include latent
linguistic variables, predict complex structures such
as parses (Smith and Eisner, 2008), and do collec-
tive prediction in relational domains (Ji and Grish-
man, 2011; Benson et al., 2011; Dreyer and Eis-
ner, 2009). In training, ERMA considers not only
the approximation method but also the task-specific
loss function. This means that ERMA is careful to
use the additional variables and dependencies only
in ways that help training set performance. (Overfit-
ting on the enlarged parameter set should be avoided
through regularization.)

We have developed a simple syntax for specify-
ing CRFs with complex structures, and a software
package (available from http://www.clsp.
jhu.edu/˜ves/software.html) that allows
ERMA training of these CRFs for several popular
loss functions (e.g., accuracy, mean-squared error,
F-measure). In this paper, we use these tools to re-
visit three previously studied NLP applications that
can be modeled naturally with approximate CRFs
(we will use approximate CRFs to refer to CRF-
based systems that are used with approximations in
inference or decoding). We show that (i) natural lan-
guage can be modeled more effectively with CRFs
that are not restricted to a linear structure and (ii)
that ERMA training represents an improvement over
previous learning methods.

The first application, predicting congressional
votes, has not been previously modeled with CRFs.
By using a more principled probabilistic approach,
we are able to improve the state-of-the-art accuracy
from 71.2% to 78.2% when training to maximize the
approximate log-likelihood of the training data. By
switching to ERMA training, we improve this result
further to 85.1%.

The second application, information extraction
from seminar announcements, has been modeled
previously with skip-chain CRFs (Sutton and Mc-
Callum, 2005; Finkel et al., 2005). The skip-chain
CRF introduces loops and requires approximate in-

ference, which motivates minimum risk training.
Our results show that ERMA training improves F-
measures from 89.5 to 90.9 (compared to 87.1 for
the model without skip-chains).

Finally, for our third application, we perform col-
lective multi-label text classification. We follow pre-
vious work (Ghamrawi and McCallum, 2005; Finley
and Joachims, 2008) and use a fully connected CRF
to model all pairwise dependencies between labels.
We observe similar trends for this task: switching
from a maximum entropy model that does not model
label dependencies to a loopy CRF leads to an im-
provement in F-measure from 81.6 to 84.0, and us-
ing ERMA leads to additional improvement (84.7).

2 Preliminaries

2.1 Conditional Random Fields

A conditional random field (CRF) is an undirected
graphical model defined by a tuple (X ,Y,F , f, θ).
X = (X1, X2, . . .) is a set of random variables and
Y = (Y1, Y2, . . .) is a set of output random vari-
ables.2 We use x = (x1, x2, . . .), to denote a possi-
ble assignment of values to X , and similarly for y,
with xy denoting the joint assignment. Each α ∈ F
is a subset of the random variables, α ⊆ X ∪ Y ,
and we write xyα to denote the restriction of xy to
α. Finally, for each α ∈ F , the CRF specifies a
function ~fα that extracts a feature vector ∈ Rd from
the restricted assignment xyα. We define the over-
all feature vector ~f(x,y) =

∑
α∈F

~fα(xyα) ∈ Rd.
The model defines conditional probabilities

pθ(y|x) =
exp ~θ · ~f(x,y)∑
y′ exp ~θ · ~f(x,y′)

(1)

where ~θ ∈ Rd is a global weight vector (to be
learned). This is a log-linear model; the denomina-
tor (traditionally denoted Zx) sums over all possible
output assignments to normalize the distribution.

Provided that all probabilities needed at training
or test time are conditioned on an observation of the
form X = x, CRFs can include arbitrary overlap-
ping features of the input without having to explic-
itly model input feature dependencies.

2Stoyanov et al. (2011) distinguished some of the Y vari-
ables as latent (i.e., unsupervised and ignored by the loss func-
tion). We omit this possibility, to simplify the notation.
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2.2 Inference in CRFs
Inference in general CRFs is intractable (Koller and
Friedman, 2009). Nevertheless, there exist several
approximate algorithms that have theoretical moti-
vation and tend to exhibit good performance in prac-
tice. Those include variational methods such as
loopy belief propagation (BP) (Murphy et al., 1999)
and mean-field, as well as Markov Chain Monte
Carlo methods.

ERMA training is applicable to any approxima-
tion that corresponds to a differentiable function,
even if the function has no simple closed form but is
computed by an iterative update algorithm. In this
paper we select BP, which is exact when the fac-
tor graph is a tree, such as a linear-chain CRF, but
whose results can be somewhat distorted by loops
in the factor graph, as in our settings. BP computes
beliefs about the marginal distribution of each ran-
dom variable using iterative updates. We standardly
approximate the posterior CRF marginals given the
input observations by running BP over a CRF that
enforces those observations.

2.3 Decoding
Conditional random fields are models of probabil-
ity. A decoder is a procedure for converting these
probabilities into system outputs. Given x, the de-
coder would ideally choose y to minimize the loss
`(y,y∗), where ` compares a candidate assignment
y to the true assignment y∗. But of course we do not
know the truth at test time. Instead we can average
over possible values y′ of the truth:

argmin
y

∑
y′

p(y′ | x) · `(y,y′) (2)

This is the minimum Bayes risk (MBR) principle
from statistical decision theory: choose y to mini-
mize the expected loss (i.e., the risk) according to
the CRF’s posterior beliefs given x.

In the NLP literature, CRFs are often decoded by
choosing y to be the maximum posterior probabil-
ity assignment (e.g., Sha and Pereira (2003), Sutton
et al. (2007)). This is the MBR procedure for the
0-1 loss function that simply tests whether y = y∗.
For other loss functions, however, the corresponding
MBR procedure is preferable. For some loss func-
tions it is tractable given the posterior marginals of
p, while in other cases approximations are needed.

In our experiments we use MBR decoding (or a
tractable approximation) but substitute the approx-
imate posterior marginals of p as computed by BP.
For example, if the loss of y is the number of incor-
rectly recovered output variables, MBR says to sep-
arately pick the most probable value for each output
variable, according to its (approximate) marginal.

3 Minimum-Risk CRF Training

This section briefly describes the ERMA training al-
gorithm from Stoyanov et al. (2011) and compares it
to related structured learning methods. We assume
a standard ML setting, with a set of training inputs
xi and corresponding correct outputs yi∗. All the
methods below are regularized in practice, but we
omit mention of regularizers for simplicity.

3.1 Related Structured Learning Methods

When inference and decoding can be performed ex-
actly, the CRF parameters ~θ are often trained by
maximum likelihood estimation (MLE):

argmax
θ

∑
i

log pθ(y
i∗ | xi) (3)

The gradient of each summand log pθ(y
i∗ | xi)

can be computed by performing inference in two set-
tings, one with xi,yi∗ observed and one with only
the conditioning events xi observed. The gradient
emerges as the difference between the feature ex-
pectations in the two cases. If exact inference is
intractable, one can compute approximate feature
expectations by loopy BP. Computing the approx-
imate gradient in this way, and training the CRF
with some gradient-based optimization method, has
been shown to work relatively well in practice (Vish-
wanathan et al., 2006; Sutton and McCallum, 2005).

The above method takes into account neither the
loss function that will be used for evaluation, nor
the approximate algorithms that have been selected
for inference and decoding at test time. Other struc-
ture learning methods do consider loss, though it is
not obvious how to make them consider approxima-
tions. Those include maximum margin (Taskar et
al., 2003; Finley and Joachims, 2008) and softmax-
margin (Gimpel and Smith, 2010). The idea of
margin-based methods is to choose weights ~θ so that
the correct alternative yi∗ always gets a better score
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than each possible alternative yi ∈ Y . The loss is
incorporated in these methods by requiring the mar-
gin (~θ · ~f(xi,yi∗)− ~θ · ~f(xi,yi)) ≥ `(yi,yi∗), with
penalized slack in these constraints. The softmax-
margin method uses a different criterion—it resem-
bles MLE but modifies the denominator of (1) to
Zx =

∑
y′∈Y exp(~θ · ~f(x,y′) + `(y′,y∗)).

In our experiments we compare against MLE
training (which is common) and softmax-margin,
which incorporates loss and which Gimpel and
Smith (2010) show is either better or competitive
when compared to other margin methods on an NLP
task. We adapt these methods to the loopy case in
the obvious way, by replacing exact inference with
loopy BP and keeping everything else the same.

3.2 Minimum-Risk Training

We wish to consider the approximate inference and
decoding algorithms and the loss function that will
be used during testing. Thus, we want θ to minimize
the expected loss under the true data distribution P :

argmin
θ

Exy∼P [`(δθ(x),y)] (4)

where δθ is the decision rule (parameterized by θ),
which decodes the results of inference under pθ.

In practice, we do not know the true data distri-
bution, but we can do empirical risk minimization
(ERM), instead averaging the loss over our sample
of (xi,yi) pairs. ERM for structured prediction was
first introduced in the speech community (Bahl et
al., 1988) and later used in NLP (Och, 2003; Kakade
et al., 2002; Suzuki et al., 2006; Li and Eisner, 2009,
etc.). Previous applications of risk minimization as-
sume exact inference, having defined the hypothe-
sis space by a precomputed n-best list, lattice, or
packed forest over which exact inference is possible.

The ERMA approach (Stoyanov et al., 2011)
works with approximate inference and computes ex-
act gradients of the output loss (or a differentiable
surrogate) in the context of the approximate infer-
ence and decoding algorithms. To determine the gra-
dient of `(δθ(xi),yi) with respect to θ, the method
relies on automatic differentiation in the reverse
mode (Griewank and Corliss, 1991), a general tech-
nique for sensitivity analysis in computations. The
intuition behind automatic differentiation is that the

entire computation is a sequence of elementary dif-
ferentiable operations. For each elementary opera-
tion, given that we know the input and result values,
and the partial derivative of the loss with respect to
the result, we can compute the partial derivative of
the loss with respect to the inputs to the step. Dif-
ferentiating the whole complicated computation can
be carried out in backward pass in this step-by-step
manner as long as we record intermediate results
during the computation of the function (the forward
pass). At the end, we accumulate the partials of the
loss with respect to each parameter θi.

ERMA is similar to back-propagation used in re-
current neural networks, which involve cyclic up-
dates like those in belief propagation (Williams and
Zipser, 1989). It considers an “unrolled” version of
the forward pass, in which “snapshots” of a vari-
able at times t and t + 1 are treated as distinct vari-
ables, with one perhaps influencing the other. The
forward pass computes `(δθ(xi),yi) by performing
approximate inference, then decoding, then evalu-
ation. These steps convert (xi, θ) → marginals →
decision→ loss. The backward pass rewinds the en-
tire computation, differentiating each phase in term.
The total time required by this algorithm is roughly
twice the time of the forward pass, so its complexity
is comparable to approximate inference.

In this paper, we do not advocate any particular
test-time inference or decoding procedures. It is rea-
sonable to experiment with several choices that may
produce faster or more accurate systems. We sim-
ply recommend doing ERMA training to match each
selected test-time condition. Stoyanov et al. (2011)
specifically showed how to train a system that will
use sum-product BP for inference at test time (un-
like margin-based methods). This may be advanta-
geous for some tasks because it marginalizes over la-
tent variables. However, it is popular and sometimes
faster to do 1-best decoding, so we also include ex-
periments where the test-time system returns a 1-
best value of y (or an approximation to this if the
CRF is loopy), based on max-product BP inference.
Although 1-best systems are not differentiable func-
tions, we can approach their behavior during ERM
training by annealing the training objective (Smith
and Eisner, 2006). In the annealed case we evaluate
(4) and its gradient under sum-product BP, except
that we perform inference under p(θ/T ) instead of pθ.
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We gradually reduce the temperature T ∈ R from 1
to 0 as training proceeds, which turns sum-product
inference into max-product by moving all the prob-
ability mass toward the highest-scoring assignment.

4 Modeling Natural Language with CRFs

This section describes three NLP problems that can
be naturally modeled with approximate CRFs. The
first problem, modeling congressional votes, has not
been previously modeled with a CRF. We show that
by switching to the principled CRF framework we
can learn models that are much more accurate when
evaluated on test data, though using the same (or less
expressive) features as previous work. The other
two problems, information extraction from semi-
structured text and collective multi-label classifica-
tion, have been modeled with loopy CRFs before.
For all three models, we show that ERMA training
results in better test set performance.3

4.1 Modeling Congressional Votes

The Congressional Vote (ConVote) corpus was cre-
ated by Thomas et al. (2006) to study whether votes
of U.S. congressional representatives can be pre-
dicted from the speeches they gave when debating
a bill. The corpus consists of transcripts of con-
gressional floor debates split into speech segments.
Each speech segment is labeled with the represen-
tative who is speaking and the recorded vote of that
representative on the bill. We aim to predict a high
percentage of the recorded votes correctly.

Speakers often reference one another (e.g., “I
thank the gentleman from Utah”), to indicate agree-
ment or disagreement. The ConVote corpus manu-
ally annotates each phrase such as “the gentleman
from Utah” with the representative that it denotes.

Thomas et al. (2006) show that classification us-
ing the agreement/disagreement information in the
local context of such references, together with the
rest of the language in the speeches, can lead to sig-
nificant improvement over using either of these two

3We also experimented with a fourth application, joint POS
tagging and shallow parsing (Sutton et al., 2007) and observed
the same overall trend (i.e., minimum risk training improved
performance significantly). We do not include those experi-
ments, however, because we were unable to make our baseline
results replicate (Sutton et al., 2007).

sources of information in isolation. The original ap-
proach of Thomas et al. (2006) is based on training
two Support Vector Machine (SVM) classifiers—
one for classifying speeches as supporting/opposing
the legislation and another for classifying references
as agreement/disagreement. Both classifiers rely on
bag-of-word (unigram) features of the document and
the context surrounding the link respectively. The
scores produced by the two SVMs are used to weight
a global graph whose vertices are the representa-
tives; then the min-cut algorithm is applied to par-
tition the vertices into “yea” and “nay” voters.

While the approach of Thomas et al. (2006)
leads to significant improvement over using the first
SVM alone, it does not admit a probabilistic in-
terpretation and the two classifiers are not trained
jointly. We also remark that the min-cut technique
would not generalize beyond binary random vari-
ables (yea/nay).

We observe that congressional votes together with
references between speakers can be naturally mod-
eled with a CRF. Figure 1 depicts the CRF con-
structed for one of the debates in the development
part of the ConVote corpus. It contains a random
variable for each representative’s vote. In addition,
each speech is an observed input random variable:
it is connected by a factor to its speaker’s vote and
encourages it to be “yea” or “nay” according to fea-
tures of the text of the speech. Finally, each ref-
erence in each speech is an observed input random
variable connected by a factor to two votes—those
of the speaker and the referent—which it encourages
to agree or disagree according to features of the text
surrounding the reference. Just as in (Thomas et al.,
2006), the score of a global assignment to all votes is
defined by considering both kinds of factors. How-
ever, unlike min-cut, CRF inference finds a proba-
bility distribution over assignments, not just a sin-
gle best assignment. This fact allows us to train the
two kinds of factors jointly (on the set of training
debates where the votes are known) to predict the
correct votes accurately (as defined by accuracy).

As Figure 1 shows, the reference factors introduce
arbitrary loops, making exact inference intractable
and thus motivating ERMA. Our experiments de-
scribed in section 5.2 show that switching to a CRF
model (keeping the same features) leads to a sizable
improvement over the previous state of the art—
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Figure 1: An example of a debate structure from the Con-
Vote corpus. Each black square node represents a factor
and is connected to the variables in that factor, shown
as round nodes. Unshaded variables correspond to the
representatives’ votes and depict the output variables that
we learn to jointly predict. Shaded variables correspond
to the observed input data— the text of all speeches of a
representative (in dark gray) or all local contexts of refer-
ences between two representatives (in light gray).

and that ERMA further significantly improves per-
formance, particularly when it properly trains with
the same inference algorithm (max-product vs. sum-
product) to be used at test time.

Baseline. As an exact baseline, we compare
against the results of Thomas et al. (2006). Their
test-time Min-Cut algorithm is exact in this case: bi-
nary variables and a two-way classification.

4.2 Information Extraction from
Semi-Structured Text

We utilize the CMU seminar announcement corpus
of Freitag (2000) consisting of emails with seminar
announcements. The task is to extract four fields that
describe each seminar: speaker, location, start time
and end time. The corpus annotates the document
with all mentions of these four fields.

Sequential CRFs have been used successfully for
semi-structured information extraction (Sutton and
McCallum, 2005; Finkel et al., 2005). However,
they cannot model non-local dependencies in the
data. For example, in the seminar announcements
corpus, if “Sutner” is mentioned once in an email
in a context that identifies him as a speaker, it is

Sutner

S

Who:

O

Prof.

S

Klaus

S

will

O

Prof.

S

Sutner

S… …

… …

Figure 2: Skip-chain CRF for semi-structured informa-
tion extraction.

likely that other occurrences of “Sutner” in the same
email should be marked as speaker. Hence Finkel et
al. (2005) and Sutton and McCallum (2005) propose
adding non-local edges to a sequential CRF to repre-
sent soft consistency constraints. The model, called
a “skip-chain CRF” and shown in Figure 2, contains
a factor linking each pair of capitalized words with
the same lexical form. The skip-chain CRF model
exhibits better empirical performance than its se-
quential counterpart (Sutton and McCallum, 2005;
Finkel et al., 2005).

The non-local skip links make exact inference
intractable. To train the full model, Finkel et al.
(2005) estimate the parameters of a sequential CRF
and then manually select values for the weights of
the non-local edges. At test time, they use Gibbs
sampling to perform inference. Sutton and McCal-
lum (2005) use max-product loopy belief propaga-
tion for test-time inference, and compare a train-
ing procedure that uses a piecewise approximation
of the partition function against using sum-product
loopy belief propagation to compute output variable
marginals. They find that the two training regimens
perform similarly on the overall task. All of these
training procedures try to approximately maximize
conditional likelihood, whereas we will aim to mini-
mize the empirical loss of the approximate inference
and decoding procedures.

Baseline. As an exact (non-loopy) baseline, we
train a model without the skip chains. We give two
baseline numbers in Table 1—for training the exact
CRF with MLE and with ERM. The ERM setting re-
sulted in a statistically significant improvement even
in the exact case, thanks to the use of the loss func-
tion at training time.

4.3 Multi-Label Classification

Multi-label classification is the problem of assign-
ing multiple labels to a document. For example, a
news article can be about both “Libya” and “civil
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war.” The most straightforward approach to multi-
label classification employs a binary classifier for
each class separately. However, previous work has
shown that incorporating information about label de-
pendencies can lead to improvement in performance
(Elisseeff and Weston, 2001; Ghamrawi and McCal-
lum, 2005; Finley and Joachims, 2008).

For this task we follow Ghamrawi and McCallum
(2005) and Finley and Joachims (2008) and model
the label interactions by constructing a fully con-
nected CRF between the output labels. That is, for
every document, we construct a CRF that contains
a binary random variable for each label (indicating
that the corresponding label is on/off for the doc-
ument) and one binary edge for every unique pair
of labels. This architecture can represent dependen-
cies between labels, but leads to a setting in which
the output variables form one massive clique. The
resulting intractability of inference (and decoding)
motivates the use of ERMA training.

Baseline. We train a model without any of the
pairwise edges (i.e., a separate logistic regression
model for each class). We report the single best
baseline number, since MLE and ERM training re-
sulted in statistically indistinguishable results.

5 Experiments

5.1 Learning Methodology

For all experiments we split the data into
train/development/test sets using the standard splits
when available. We tune optimization algorithm pa-
rameters (initial learning rate, batch size and meta-
parameters λ and µ for stochastic meta descent) on
the training set based on training objective conver-
gence rates. We tune the regularization parameter
β (below) on development data when available, oth-
erwise we use a default value of 0.1—performance
was generally robust for small changes in the value
of β. All statistical significance testing is performed
using paired permutation tests (Good, 2000).

Gradient-based Optimization. Gradient infor-
mation from the back-propagation procedure can be
used in a local optimization method to minimize em-
pirical loss. In this paper we use stochastic meta
descent (SMD) (Schraudolph, 1999). SMD is a
second-order method that requires vector-Hessian

products. For computing those, we do not need to
maintain the full Hessian matrix. Instead, we apply
more automatic differentiation magic—this time in
the forward mode. Computing the vector-Hessian
product and utilizing it in SMD does not add to the
asymptotic runtime, it requires about twice as many
arithmetic operations, and leads to much faster con-
vergence of the learner in our experience. See Stoy-
anov et al. (2011) for details.

Since the empirical risk objective could overfit
the training data, we add an L2 regularizer β

∑
j θ

2
j

that prefers parameter values close to 0. This im-
proves generalization, like the margin constraints in
margin-based methods.

Training Procedure Stoyanov et al. (2011) ob-
served that the minimum-risk objective tends to be
highly non-convex in practice. The usual approx-
imate log likelihood training objective appeared to
be smoother over the parameter space, but exhibited
global maxima at parameter values that were rela-
tively good, but sub-optimal for other loss functions.
Mean-squared error (MSE) also gave a smoother ob-
jective than other loss functions. These observations
motivated Stoyanov et al. (2011) to use a contin-
uation method. They optimized approximate log-
likelihood for a few iterations to get to a good part of
the parameter space, then switched to using the hy-
brid loss function λ`(y, y′)+(1−λ)`MSE(y, y′). The
coefficient λ changed gradually from 0 to 1 during
training, which morphs from optimizing a smoother
loss to optimizing the desired bumpy test loss. We
follow the same procedure.

Experiments in this paper use two evaluation met-
rics: percentage accuracy and F-measure. For both
of these losses we decode by selecting the most
probable value under the marginal distribution of
each random variable. This is an exact MBR de-
code for accuracy but an approximate one for the
F-measure; our ERMA training will try to compen-
sate for this approximate decoder. This decoding
procedure is not differentiable due to the use of the
argmax function. To make the decoder differen-
tiable, we replace argmax with a stochastic (soft-
max) version during training, averaging loss over all
possible values v in proportion to their exponenti-
ated probability p(yi = v | x)1/Tdecode . This de-
coder loses smoothness and approaches an argmax
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Problem Congressional Vote Semi-structured IE Multi-label class.
Loss function Accuracy Token-wise F-score F-score

Non-loopy Baseline 71.2 86.2 (87.1) 81.6
Loopy CRF models INFERENCE:

T
R

A
IN

IN
G

: maxprod sumprod maxprod sumprod maxprod sumprod
MLE 78.2 78.2 89.0 89.5 84.2 84.0

Softmax-margin 79.0 79.0 90.1 90.2 84.3 83.8
Min-risk (maxprod) 85.1 80.1 90.9 90.7 84.5 84.4
Min-risk (sumprod) 83.6 84.5 90.3 90.9 84.7 84.6

Table 1: Results. The top of the table lists the loss function used for each problem and the score for the best exact
baseline. The bottom lists results for the full models used with loopy BP. Models are tested with either sum-product
BP (sumprod) or max-product BP (maxprod) and trained with MLE or the minimum risk criterion. Min-risk training
runs are either annealed (maxprod), which matches max-product test, or not (sumprod), which matches sum-product
test; grey cells in the table indicate matched training and test settings. In each column, we boldface the best result as
well as all results that are not significantly worse (paired permutation test, p < 0.05).

decoder as Tdecode decreases toward 0. For simplic-
ity, our experiments just use a single fixed value of
0.1 for Tdecode. Annealing the decoder slowly did not
lead to significant differences in early experiments
on development data.

5.2 Results

Table 1 lists results of our evaluation. For all three
of our problems, using approximate CRFs results
in statistically significant improvement over the ex-
act baselines, for any of the training procedures.
But among the training procedures for approximate
CRFs, our ERMA procedure—minimizing empiri-
cal risk with the training setting matched to the test
setting—improves over the two baselines, namely
MLE and softmax-margin. MLE and softmax-
margin training were statistically indistinguishable
in our experiments with the exception of semi-
structured IE. ERMA’s improvements over them are
statistically significant at the p < .05 level for the
Congressional Vote and Semi-Structured IE prob-
lems and at the p < .1 level for the Multi-label clas-
sification problem (comparing each matched min-
risk setting shown in a gray cell in Table 1 vs. MLE).

When minimizing risk, we also observe that
matching training and test-time procedures can re-
sult in improved performance in one of the three
problems, Congressional Vote. For this problem, the
matched training condition performs better than the
alternatives (accuracy of 85.1 vs. 83.6 for the an-
nealed max-product testing and 84.5 vs 80.1 for the

sum-product setting), significant at p < .01). We
observe the same effect for semi-structured IE when
testing using max-product inference. For the other
remaining three problem setting training with either
minimal risk training regiment.

Finally, we hypothesized that sum-product infer-
ence may produce more accurate results in certain
cases as it allows more information about differ-
ent parts of the model to be exchanged. How-
ever, our results show that for these three problems,
sum-product and max-product inference yield statis-
tically indistinguishable results. This may be be-
cause the particular CRFs we used included no la-
tent variables (in constrast to the synthetic CRFs
in Stoyanov et al. (2011)). As expected, we found
that max-product BP converges in fewer iterations—
sum-product BP required as many as twice the num-
ber of iterations for some of the runs.

Results in this paper represent a new state-of-the-
art for the first two of the problems, Congressional
Vote and Semi-structured IE. For Multi-Label classi-
fication, comparing against the SVM-based method
of Finley and Joachims (2008) goes beyond the
scope of this paper.

6 Related Work

Minimum-risk training has been used in speech
recognition (Bahl et al., 1988), machine translation
(Och, 2003), and energy-based models generally
(LeCun et al., 2006). In graphical models, methods
have been proposed to directly minimize loss in tree-
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shaped or linear chain MRFs and CRFs (Kakade et
al., 2002; Suzuki et al., 2006; Gross et al., 2007).

All of the above focus on exact inference. Our
approach can be seen as generalizing these methods
to arbitrary graph structures, arbitrary loss functions
and approximate inference.

Lacoste-Julien et al. (2011) also consider the ef-
fects of approximate inference on loss. However,
they assume the parameters are given, and modify
the approximate inference algorithm at test time to
consider the loss function.

Using empirical risk minimization to train graph-
ical models was independently proposed by Domke
(2010; 2011). Just as in our own paper (Stoy-
anov et al., 2011), Domke took a decision-theoretic
stance and proposed ERM as a way of calibrating
the graphical model for use with approximate infer-
ence, or for use with data that do not quite match the
modeling assumptions.4

In particular, (Domke, 2011) is similar to (Stoy-
anov et al., 2011) in using ERMA to train model pa-
rameters to be used with “truncated” inference that
will be run for only a fixed number of iterations. For
a common pixel-labeling benchmark in computer vi-
sion, Domke (2011) shows that this procedure im-
proves training time by orders of magnitude, and
slightly improves accuracy if the same number of
message-passing iterations is used at test time.

Stoyanov and Eisner (2011) extend the ERMA
objective function by adding an explicit runtime
term. This allows them to tune model parameters
and stopping criteria to learn models that obtain a
given speed-accuracy tradeoff. Their approach im-
proves this hybrid objective over a range of coeffi-
cients when compared to the traditional way of in-
ducing sparse structures through L1 regularization.
Eisner and Daumé III (2011) propose the same lin-
ear combination of speed and accuracy as a rein-
forcement learning objective. In general, our pro-
posed ERMA setting resembles the reinforcement
learning problem of trying to directly learn a policy
that minimizes loss or maximizes reward.

We have been concerned with the fact that ERMA
training objectives may suffer from local optima and
non-differentiability. Stoyanov et al. (2011) studied

4However, he is less focused than we are on matching train-
ing conditions to test conditions (by including the decoder and
task loss in the ERMA objective).

several such settings, graphed the difficult objective,
and identified some practical workarounds that are
used in the present paper. Although these methods
have enabled us to get strong results by reducing the
empirical risk, we suspect that ERMA training ob-
jectives will benefit from more sophisticated opti-
mization methods. This is true even when the ap-
proximate inference itself is restricted to be some-
thing as simple as a convex minimization. While
that simplified setting can make it slightly more con-
venient to compute the gradient of the inference re-
sult with respect to the parameters (Domke, 2008;
Domke, 2012), there is still no guarantee that follow-
ing that gradient will minimize the empirical risk.
Convex inference does not imply convex training.

7 Conclusions

Motivated by the recently proposed method of Stoy-
anov et al. (2011) for minimum-risk training of
CRF-based systems, we revisited three NLP do-
mains that can naturally be modeled with approx-
imate CRF-based systems. These include appli-
cations that have not been modeled with CRFs
before (the ConVote corpus), as well as applica-
tions that have been modeled with loopy CRFs
trained to minimize the approximate log-likelihood
(semi-structured information extraction and collec-
tive multi-label classification). We show that (i)
the NLP models are improved by moving to richer
CRFs that require approximate inference, and (ii)
empirical performance is always significantly im-
proved by training to reduce the loss that would be
achieved by approximate inference, even compared
to another state-of-the-art training method (softmax-
margin) that also considers loss and uses approxi-
mate inference. The general software package that
implements the algorithms in this paper is avail-
able at http://www.clsp.jhu.edu/˜ves/
software.html.
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