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Abstract

This paper addresses the extraction of event
records from documents that describe multi-
ple events. Specifically, we aim to identify
the fields of information contained in a docu-
ment and aggregate together those fields that
describe the same event. To exploit the in-
herent connections between field extraction
and event identification, we propose to model
them jointly. Our model is novel in that it
integrates information from separate sequen-
tial models, using global potentials that en-
courage the extracted event records to have
desired properties. While the model con-
tains high-order potentials, efficient approxi-
mate inference can be performed with dual-
decomposition. We experiment with two data
sets that consist of newspaper articles de-
scribing multiple terrorism events, and show
that our model substantially outperforms tra-
ditional pipeline models.

Introduction

regi naj@sail.mt.edu

Consider, for instance, the New York Times arti-
cle excerpt in Figure 1 that describes three related
terrorist events. As this example illustrates, in order
to populate the corresponding event templates, the
model needs to identify segments that describe indi-
vidual events. Such segmentation is challenging, as
event boundaries are not explicitly demarcated in the
text. Moreover, descriptions of different events are
often intermingled, as in the above example, further
complicating boundary recovery.

In this paper, we consider a model that jointly
performs event segmentation and field extraction.
This model capitalizes on the inherent connection
between the two tasks in order to reduce the ambi-
guity of template-based extraction. For example, the
distribution of field values in the text provides strong
clues about event segmentation, such as the presence
of multiple new fields strongly signaling a segment
boundary. Likewise, knowledge of the boundaries
enables the model to rule out mutually inconsistent
predictions, such as extracting two distinct locations
for the same event.

We formulate our approach as a joint model that

Today, most efforts in information extraction havemarks each word with field and event labels si-
focused on the field extraction task, commonly formultaneously. At the sentence level, segmentation
mulated as a sequence tagging problem. Whenamd field extraction taggers are implemented using
document describes a single event, the list of exseparate sequence models operating over local fea-
tracted fields provides a useful abstraction of the irtures. At the document level, the model encourages
put document. In practice, however, a typical newsglobal consistency via potentials that link the ex-
paper document describes multiple events, and a flaacted event records and their fields. Some of these
list of field values may not contain the sufficientpotentials are limited to fields of an individual event
structure required for many NLP applications. Ousuch as the “single city per event” constraint. Others
goal is therefore to extract event templates which agncode discourse-level properties of the whole doc-
gregate field values for individual events. ument and thus involve records of multiple events,
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A powerful car bomb explodedtoday inBaghdadinside the holiesShiite shrine. As many a®95 people were killed

in the event, according to sources in Washington. Alast came only two days after anothear bomb explodedin a crowded
streetin Mosul in the northern part ofraq, killing 13 pedestrians in an attack carried out b&l Qaeda. Together with the
previous attack byAl Qaeda, theshootingin Najaf three weeks ago that killeth American soldiers violence seemed

to spike to its highest level. THeombing today, happened around 9am, when the roads are crowdedeufhep ...

Organization | Tactic Target Weapon | Fatalities City Country
Eventl | — bombing | Shiite shrine | car bomb | 95 people Baghdad | —
Event2 | Al Qaeda bombing | — car bomb | 13 pedestrians Mosul Iraq
Event 3 | Al Qaeda shooting | —- — 15 American Soldiers| Najaf —

Figure 1:A New York times article describing three terrorist evernig a table demonstrating the corresponding event records.

such as the tendency in newspaper reporting to felations between fields and use them to fill event tem-
ture the main event at the beginning and repeatedpfates. Likewise, classifier-based algorithms (Chieu
throughout the document. et al.,, 2003; Xiao et al., 2004; Maslennikov and
While these high-order potentials encode impor€hua, 2007; Patwardhan and Riloff, 2009) gener-
tant linguistic properties of valid assignments, thexlly train individual classifiers for each type of field
greatly complicate learning and inference. Thereand aggregate candidate fillers based on a senten-
fore, our method estimates the parameters of the Ital event classifier. Finally, unsupervised techniques
cal sequence models and the global potentials sefizhambers and Jurafsky, 2011) have combined clus-
arately. Then, at inference time, it finds variablgering, semantic roles, and syntactic relations in or-
assignments that are most consistent with both thier to both construct and fill event templates.
local models and the global potentials. Inference In our work, we also address the sub-tasks of
is implemented via dual-decomposition, an efficientield extraction and event segmentation individu-
algorithm shown to be effective for complex jointally; however, we link them through soft global con-
inference problems. straints and encourage consistency through joint in-
We evaluate our approach for event extraction oference. To facilitate the joint inference, we use a
two data sets, one is a new collection of long newsinear-chain CRF for each sub-task.
paper articles and the other is a subset of the MUGs|obal Constraints Previous work demonstrated
4 documents. Both data sets consist of articles thme benefits of app|y|ng declarative constraints in in-
describe multiple terrorist events (40.3 and 12.4 sefgrmation extraction (Finkel et al., 2005; Roth and
tences and 4.4 and 3.1 events per article for each daggy vin, 2004: Chang et al., 2007; Druck and Mc-
set on average). We demonstrate the benefits of tagyjum, 2010). Constraints have been explored both
joint model for event extraction; it outperforms a tra-at sentence and document level. For example, Finkel
ditional pipeline model by a significant margin. Foret al. (2005) employ document-level constraints to
instance, it yleldS an absolute gain of 8.5% for OUéncourage g|0ba| Consistency of named en'“ty as-
new corpus when measured using document-level Eignments. Likewise, Chang et al. (2007) use con-
score. Our results show the effectiveness of globakraints at multiple levels, such as sentence-level
constraints in the context of template extraction angonstraints to specify field boundaries and global
motivate their exploration in other |E tasks. constraints to ensure relation-level consistency. In
our work we focus on document-level constraints.
We utilize both discourse and record-coherence con-
Event-Template Extraction Event template extrac- Straints to encourage consistency between local se-
tion has been previously explored in the MUC-4juence models.
scenario template task. Work on this task has fo- There has also been unsupervised work that
cused on pipeline models which decouple the taskemonstrates the benefit of domain-specific con-
into the sub-tasks of field extraction and event-basestraints (Chen et al., 2011). In our work we show
text segmentation. For example, rule-based metkhat domain-specific constraints based on the com-
ods (Rau et al., 1992; Chinchor et al., 1993) identifynon structure of newspaper articles are also useful
generalizations both for single field fillers and for reto guide a supervised model.

2 Previous Work
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3 Model

_ _ MAP(6) = 6s(ry)
Problem Formulation Given a document, our goal feF

is to extract field values and aggregate them into

event records. The training data consists of event ans
notations where each word in the document is tagge%l’
with a field and with an event id. If a word is not a3.1 Modeling Local Dependencies

filler for a field, it is annotated with a default NULL ;4 Labeling The first step of the model is tagging
field value. At test time, the number of events is Nof,» \words in the input document with fields. Fol-
given and has to be inferred from the data. lowing traditional approaches, we employ a linear-
Model Structure Our model is built around the .nsin CRE (Lafferty et al., 2001) that operates
connection between local extraction decisions ang\,er standard lexical. POS-based and syntactic fea-
global constraints on event structure. Based Ofjres (Finkel et al., 2005; Finkel and Manning, 2009;
local cues, the model can identify candidate fielgg|iare and McCallum, 2009; Yao et al., 2010).
fillers. However, connecting them to events requiregyent SegmentationAt the local level, event analy-
a broader document context. To effectively capturgis involves identification of event boundaries which
this context, the model needs to group together Pofe model as linear segmentation. To this end, we
tions of the document that describe the same eveRimploy a binary CRF that predicts whether a given
Global constraints are instrumental in this procesgyorg starts a description of a new event or continues
as they drive the aggregation of contiguous segmenige gescription of the current event, based on lex-
computed by a local segmentation model. In adgy and POS-based features. In addition, we add
dition, global constraints coordinate local decisiongaatres obtained from the output of the field extrac-
and thereby enable us to express important disCourgg, CRF, These features capture the intuition that
dependencies between various assignments.  poyndary sentences often contain multiple fields.
To implement these ideas in a computational The potential functions of these components are

framework, we define an undirected graphical modgjiyen py the likelihoods of the corresponding CRFs.
with avertexset = X UY U Z. X is a set of ob-

served nodes;; represents théthe word in a docu- 3.2  Modeling Global Dependencies
ment. Y andZ are sets of unobserved nodes correthe main function of the global constraints is to

sponding to the field and event assignments respagk extracted fields to the corresponding events.
tively of theith word. The number of input words in | addition, the model can use global constraints
a document is denoted by to resolve potentially inconsistent decisions of the
We define three types of potentials: local models by encouraging them to agree with
_ _ _ _ _ global, document-level properties. We consider two
° Fleld-labellng PqtentlaI95300|ate words_ IN @ tyhes of global consistency potentiatiiscourse po-
document with field labels based on their locajgigs that involve interactions between multiple
sentential context. records, andecord coherence potentiathat cap-
ture patterns at the level of individual records.
The general form of a global potentials:

whered; are the potential functions arfa|f C
...,n}, f € F}isthe set of their variables.

e Event-labeling Potentialassociate words in a
document with event boundaries based on the

local surroundings of a candidate boundary. it potential-property holds
Qp -

O (Tf—pYs—pr2f-p) = { 0 otherwi
e Global Consistency Potentialéink the ex- _ . omerise .
tracted event records and their fields to encour- Where f — p is the index set of variables over
age g|oba| Consistency_ These potentia]s are d%lCh the potentlal is defined. Table 1 gives a formal

fined over the entire set of variables related to gescription of all the potentials. Below we describe
document. the linguistic intuition behind these potentials.

Discourse Potentials To populate event records
The resulting maximum aposteriori problem is: with extracted information, the model needs to
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Discourse
MAIN EVENT Two consecutive sentences without fields indicate a tiansit
to the main event:
(ESZ', Si+1 s.t. (Vk S Siyyk = NULL) A\ (Vk € Si+1, Yk = NULL)) —
(VI >ist (Vu,u>d,u<l 1y, ,5,)=1),Yp € S1,2, = CENTRAL)
SEGMENT BOUNDARY | Event changes should take place in multi-field sentences:
Vi,jel,((i=7+1) A (z!l=2)) —
(Eil ... €ISt 1[fs—SB(i7i17---it):1] A 1[ff—SB(i17»»»it):1])
EVENT REDUNDANCY | Events should not significantly overlap:
Vi,j€{1,...,|Z]}, 3k, l e Is.t.
((yr =y) A (ye! = NULL) A (2 = ) A (20 = J) A (! = a))
Record Coherence

FIELD SPARSITY Some fields take a single unique value per record:
VK,LCI,Ce f,((YK = C)/\ (YL =C)A (ZK = ZL)) — (XK :XL)
RECORDDENSITY Words associated with a field should fill the field if it is othiEe empty:

Vie(,Ceg& (3kelst (l[cmd(wk)zl]) ANizrp=1)—3lelst(yy=C)AN (7 =1))

Table 1: Logical formulations of the properties encouraljgdhe global potentialssS; is the set of indexes corre-
sponding the théth sentencefy £ (S,,) = 1 iff there is no event change in sentes¢e fs_sp(i1, ..., i) = 1iff the
corresponding words appear in the same sentefice; 5 (i1, . . . ,4:) = 1 iff the corresponding words have different,
non-NULL, field values.C,q(zx) = 1iff 24 is assigned td@ in a training event record” ENT RAL is the central
event of the document, defined to be its firstevént {1,...,n}, £ ={1,...|Y|}, ¢ =11,...,|Z]|}.

group together sentences that describe the sarnmethis group —Field Sparsity Potential— is ap-
event. The local boundary model can only predicplied to fields, such as City, that tend to take a single
contiguous blocks of event descriptions, but it candnique value per event recotdThis potential dis-
not link together blocks that appear in different parteourages assignments that link this field with multi-
of the document. Our approach towards this tashle values within the same event. Similar constraints
is informed by regularity in the discourse organizahave been effectively used in information extraction
tion of news articles. A typical news story is de-in the past (Finkel et al., 2005). In our work, we ap-
voted to a single event, mixed with short descripply this constraint at the event level, rather than at
tions of other events. Therefore, we prefer event ashe document level, thereby enabling multiple vari-
signments where long segments with no field valuegble values for multi-event documents.

—e.g., background descriptions — are associated WithThe second record coherence potentiaRecord

the main event. This intuition is formalized in theDensity Potential— aims to reduce empty fields in
Main Event Potentiashown in Table 1. the event record. This potential turns on when a lo-
~ The second discourse constraint concerns detegs eyiractor fails to identify a filler for a field when
tion of event boundaries. We prefer assignments ifycossing a given event segment. If this segment
which the boundary sentence contains a large Nurlgnains words that are labeled as potential fillers in
ber of fields. This preference is expressed in3Bg-  yhe context of other events in the training data, we
ment Boundary Potentiahown in Table 1. refer assignments that associate them with the field
The final discourse constraint favors as&gnmen&at otherwise would have been empty. This poten-
tha_t reduce redundancy in gengrated records. It iSis inspired by theone sense per discoursen-
unlikely that a document describes several eveni§aint (Gale et al., 1992) that associates all the oc-

with significant factual overlap. This constraintCurrences of the word in a document with the same
is implemented in thé&cvent Redundancy Potential semantic meaning

shown in Table 1.
Record Coherence PotentialsThese potentials

capture properties of valid field assignments in the ithe potential is defined for the following fields: Terrorist
context of a given event record. The first potentiabrganization, Weapon, City, and Country.
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4 Inference Setg), — Oforallj € J,f € F
for k =1to K do

Dual DecompositionThe global potentials encode for j € J do

important document level information that links to- rik = argmax(0;(r;) + > 855(rs)]
gether the extracted event records and their fields. . .. Jaed
Introducing these potentials, however, greatly comt  for f € F do

plicates inference. Consider the MAP equation of oy ~ e ax [0 (rp) =D 675(ry)]
Section 3. If the intersection between each pair of for j € fdo i
subsetsf;, f; € F', had been empty, we could have if 7% # rpk; then

found the MAP assignment by solving each potent g5l +=1

tial separately. However, since many subset pairs do gjri éTﬁgAESzl
overlap, we must enforce agreement among the as- S =5k By gf;
signments which results in an NP-hard problem. if egitg:ﬁan

In order to avoid this computational bottleneck we B — 1/k
turn to dual-decomposition (Rush et al., 2010; Kog retum (RX)
et al., 2010), an inference technique that enables ef- @
ficient computation of a tight upper bound on the
MAP objective, while preserving the original depen-
dencies of the model. Dual decomposition has been
recently applied to a joint model for biomedical en-| MM A% —: Minimum-Message assignment
tity and event extraction by Riedel and McCallum PRA «: Property-Respecting assignment
(2011). In their work, however, events are defined in " (@, sum(0r(PRA) > (1)« sum(3; (MM A)) then

rif:sort[0;(r;) + Y 87;(r;)]. Retun the minimizing ;.
faef

] ) rpf PRAf
the sentence level. Here we show how this techniquie else
can be applied to a model which involves document; rpf = MMA}
level potentials. (b)

We first re-write the MAP equation, such that it
contains a local potential for each of the unobservegigure 2: The inference algorithm. (a): The dual-

variables, as required by the inference algorithm: decomposition algorithm. (b): Algorithms for the
arg max operations of the dual-decomposition algorithm.
MAP(6 maxze )+ > 0s(ry)

jes FeF therefore searches for its minimum, i.e. the tightest
where we denote the set of indexes of all unobupper bound of the original MAP objectivé.(6) is
served variables witlhy and refer to each of them convex and non-differentiable and can therefore be

with ;. We then define the dual problem: minimized by the subgradient descent algorithm in
Figure 2 (a).
min L(3) Zmax{@ () + > 055(ry)] Individual Potentials Maximization The inference
JjeJ f: 7ef . . .. .
Z max[ef r) = 3850 algorithm requires gfflClent s.olvers for itsg max
feF jer problems. For the field labeling and event segmen-

where for everyf € F andj € f, ds; is a vector of tation potentials, the messages are encoded into the
Lagrange multipliers with an entry for each possifeature space of the CRF, and exact maximization is
ble assignment of;. We add the notatiofi; for the achieved through standard CRF decoding. For the
matrix of Lagrange multipliers for all the variableslocal potentials, 7(l’“) the maximizing assignments
in £, and for an assignmet/ of the variables inf are computed by sortlng the messages for each un-
we defined (M) to be the corresponding vector ofobserved variable (Figure 2 (b)).
Lagrange multipliers. The multipliers can be viewed The global potentials are more challenging. Ide-
as messages transferred between the potentials to ally, we could find the optimal assignmenp}, that
courage agreement between their assignments. agrees with the assignments of the other potentials
The dual objectiveL(d), forms an upper bound ( rp} = argmin}_;.,dr;(rp;)) and at the same
on the MAP objective. Our inference algorithmtime respects the property encouraged by its own po-
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tential (Gp(rp}) > 0). In practice, however, there events in the document, some of the event vertices

may be no such assignment, in which case the agill be assigned to new events. The edge weights

signment conflict needs to be resolved. are the sum of message changes corresponding to
We first compute theninimum-message assign-relabeling the word or phrase with the new event.

ment (MMA) the assignment that minimizes theWe solve this problem efficiently(n?)) using the

message sum. If this assignment respects the potéfuthn-Munkres algorithm (Kuhn, 1955).

tial property then it is the optimal assignment. Oth-

erwise, we compute thagroperty-respecting assign- 5 Experiments

ment (PRA)the assignment with the (approximate) _ _ _

lowest message sum under the condition that the IOQ_ata This work focuses on multi-event extraction.

tential property holds. From these two assignmenté/hile some of the articles in the MUC test corpus
we select the one with the higher score. do have multiple events, the majority contain only
Finding the MMA is simple, as it is the minimum- On€ (77.5%) or two (12%). We therefore created two

message assignment of each unobserved varialfgPora for our experiments. The first is a new cor-
separately. However, finding the global optimaPus of 70 articles from New York Times (NYT) LDC
PRA is computationally demanding, as it require§OrPUS, gach describing one or more terrorist events
searching over a very large assignment space. \{fom various parts of the world. The second, also of
therefore trade accuracy for efficiency and restricfO articles, consists of a subset of the MUC articles
each potential to modify the MMA assignment forthat describe more than one e\_/ent. We stripped thIS
only one type of variablest” (fields) orZ (events). COrPUS from the MUC annotation and annotated it
The discourse potentials and theeEp SparsiTy — according to our scheme.
potential are restricted to changes of the event vari- Annotations were provided by two annotators
ables, while the RCORD DENSITY potential is re- with graduate school educations. Every word was
stricted to changes of the field variables. tagged with a field and an event id. The 8 fields
For the MaIN EVENT potential, consecutive sen-We use are: Terrorist Organization, Target, Tactic,
tences with no fields trigger a return to the mairYVeapon, Fatalities, Injuries, Country and City.
event. For the BGMENT BOUNDARY potential, We compared the agreement between annotators
event changes that take place in sentences witho& 10 articles by computing the percentage of words
small number of fields are removed. For our workfor which the annotators gave the same labeling.
this threshold is set to three. For thesBvT Re-  The inter-annotator agreement was 90.9% (kappa =
DUNDANCY potential, redundant events are inte0.9) when fields and events are evaluated together
grated with the largest event in which they are conf.€., the annotators are considered to agree only
tained. For the RCORD DENSITY potential, words When they assign the same field and event id to the
seen in both training records and event text are us#rd), 97.8% (kappa = 0.97) for events only, and
to fill empty fields. For each empty field in each92% (kappa = 0.91) for fields only.
event, words labeled with event are scanned for can- The two corpora differ from each other with re-
didate fillers, and those with the minimal impact orspect to several important properties. The New-York
the message sum are assigned to that field. Times articles are longer (40.3 compared to 12.4
Finally, for the HELD SPARSITY potential, if a sentences per article) and describe a larger number
field contains more than one word or phrase pesf events (4.4 compared to 3.1 events per article on
event, the event assignments of these words awerage). In addition, while our hypothesis about
phrases are recomputed. This computation is impléie predominance of the main (first) event cover-
mented as a minimum matching problem in a biparage holds for both corpora, it better characterizes the
tite graph. One side of the graph consists of a vertgtew-York Times corpus, as is demonstrated by the
for every word or phrase assigned to the addresséellowing two statistics.
field, and the other side consists of one vertex for First, in the NYT corpus the average number of
each event in the document. If the number of phrasegntences containing field fillers for the main event
assigned to the field is larger than the number a§ 14.7, while for any other event the average number
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is 3.2. In the MUC corpus the corresponding numflect global dependencies (Liang et al., 2008). We
bers are 5.3 and 2.0. Second, in the NYT corputherefore constructed a second baseline, the bidirec-
the number of times an article goes back to a prdional pipeline model €1-PIPELINE), that considers
viously described event is 182 (average of 2.6 timeglobal features which encode similar properties to
per article), of which 154 (84.6%) are transitions tdhose encouraged by our global potentials. We im-
the main event. In the MUC corpus the number oplement this by incorporating event-based features
times an article goes back to a previously describedto the feature set of the field labeling CRF, while
event is only 38 (average of 0.54 times per articlekipping the event segmentation CRF fixédAs in
but, similarly to the NYT, in as much as 32 (84.2%)the pipeline model, each CRF is trained separately
of these cases the transitions are to the main evenbn the training data. Thei-PIPELINE model, how-
Experimental Setup For both corpora, we used 30ever, emulates our joint inference procedure by it-
articles for training (1218 sentences in NYT, 423 ireratively running a field labeling and an event seg-
MUC), 7 articles for development (358 sentences imentation CRFs. The number of iterations for this
NYT, 79 in MUC) and 33 articles for test (1244 sen-model was estimated on development data.
tences in NYT, 367 in MUC). The sentences were Evaluation Measures We follow the MUC-4
POS tagged with the MXPOST tagger (Ratnaparkhicoring guidelines (Chinchor, 1992). To compare
1996) and parsed with the Charniak parser (Chabetween a learned and a gold standard event, we
niak and Johnson, 2005). compute the word-level F-score between each of
We trained our model with a two steps proceduretheir fields and average the results. If a field is empty
First, the local CRFs were separately trained on th@ both event records, it is not counted in the mutual
training articles. Then, we trained the parameters @fvent score, while if it is empty in only one of the
the global potentials using the structured perceptrasvent records, its F-score is 0.
algorithm (Collins, 2002) on the development data. |deally, the measure should be able to capture
We perform joint inference over the local CRFsparaphrases. For example, if tAeactic field in
as well as the global potentials with dual decompog gold event record contains the words “bombing”
sition. This algorithm is guaranteed to give the MAPand “blast”, the measure is expected to give a per-
assignment if it converges to a solution in which alfect score to a learned record that contains one of
the potentials agree on the label assignment for theese words. Therefore, as in the MUC-4 guidelines,
variables in their scope. To deal with disagreementgye count pre-specified synonyms and morphologi-
we ran the algorithm for 200 iterations past the poingal derivations of the same word only once.
of fluctuations around the dual minimum. The final For every document, we then map the learned
label assignment is determined by a majority vot@yents to the gold events in a greedy 1-1 manner
between the potentials in the 10 iterations with thgsing the Kuhn-Munkres algorithm (Kuhn, 1955).
highest total inter potential agreement (Sontag et alpnce we have an event mapping, we can report
2010). an average recall, precision and F-score across the
BaselinesWe compare our algorithm to two base-est set for all fields, events and documents (where
line models. The first baseline is related to previoughe document F-score is the average F-score of its
techniques that decompose the task into field extragyents). We use the sign test to measure the statis-
tion and event segmentation sub-tasks (Jean-Louyjga| significance for our results. Since the number
etal., 2011; Patwardhan and Riloff, 2007; Patwardsf events described in a document is not given to the
han and Riloff, 2009). For thigIPELINE baseline, models as input, we also report the average ratio be-

first the field CRF and then the event CRF. The field-

based features of the event CRF are extracted from ?Example additional features are: (1) whether a word with
the output of the field CRF. the same most frequent field (MFF) as the encoded word previ-

. .. _.ously appeared in its event; (2) whether a new event is starte
Our model incorporates global dependencies m_lﬁﬁ the sentence of the encoded word; and (3) whether the event

a document !e\/_e| mOde_|- An alternative approach ig the encoded word contains at least one word annotated with
to encode this information as local features that r@he MFF of the encoded word.
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NYT Documents Events Fields Event Number
R P F R P F R P F Ratio

Joint Model 38.7| 424 | 385 | 36.2 | 40.8 | 36.4 | 43.6 | 49.1 | 43.8 | 0.95
Bi-pipeline Model | 33.3 | 30.8 | 30.2 | 31.9| 30.1 | 29.4 | 388 | 36.6 | 35.7 | 1.14

Pipeline Model 283 | 270 | 26.2| 27.1| 268 | 255 | 354 | 348 | 332 | 15

MUC Documents Events Fields Event Number
R P F R P F R P F Ratio
Joint Model 49.8 | 43.2 | 43.5| 48.7 | 43.0 | 42.7 | 53.6 | 459 | 46.2 | 0.88

Bi-pipeline Model | 38.1 | 38.6 | 36.3 | 34.3 | 33.9 | 32.2 | 41.5| 40.5| 38.6 | 0.92
Pipeline Model 30.8 | 328 | 29.7| 299 | 320 | 28,9 | 379 | 40.1 | 36.6 | 0.89

Table 2: Performance of the joint model and the pipeline reodie the event record extraction task. Top table is for
the New-York Times data. Bottom table is for the MUC data. r&Bults are statistically significant with< 0.05.

NYT TO | TAR | TAC | WEAP | INJ | FAT | CO [ cny
Joint Model 219 | 234 | 490 | 396 408 | 491 | 431 | 466
Bi-pipeline Model | 84 | 19.7 | 475 | 209 259 | 183 | 388 | 38.1
Pipeline Model 71 | 181 | 419 | 369 191 | 165 | 380 | 461
MUC TO | TAR | TAC | WEAP [ INJ | FAT | CO [ Chy
Joint Model 490 | 252 | 636 | 620 433 | 211 | 19.7 | 383
Bi-pipeline Model | 28.0 | 24.7 | 382 | 558 427 | 256 | 375 | 372
Pipeline Model 349 | 234 | 503 | 565 104 | 124 | 300 | 320

Table 3: Comparison between the joint model and the pipefiodels for the different fields. When the joint model is
superior results are statistically significance witk: 0.05.

(a) (b)
NYT Fields Events MUC Fields Events
R P F GF LF R P F GF LF
Joint model 47.3 | 51.3 | 49.2 | 54.8 | 61.3 Joint model 47.3 | 51.3 | 49.2 | 62.8 | 70.0
Bi-Pipeline 31.0| 43.8 | 36.3 | 48.8 | 56.2 Bi-Pipeline 495 | 36.1 | 41.8 | 62.2 | 62.0
Pipeline Model | 39.2 | 55.4 | 45.9 | 51.3 | 52.9 Pipeline Model | 31.0 | 43.8 | 36.3 | 65.5 | 70.3

Table 4: Performance of the joint and the pipeline modelsheradbeling tasks of assigning words to fields (left) and
to events (right). Field values are computed for words tdgmi¢h the non-NULL field. Events values are computed
for words that are assigned to a non-NULL field by the goldd#ad (GF) or by the model (LF). When the joint model
is superior, results for fields are statistically significaith p < 0.01 and for events withy < 0.05.

6 Results and 11% respectively). These differences are ex-

~ pected as the baselines cannot combine different text
Event-RecordsResults for event record extraction,segments that describe the same event.

the main task addressed in this paper, are presente

in Table 2. For all measures, the model outperfor dTabIe 3 presents per-field F-score performance.

o . : . he joint model outperforms the pipeline baselines
the pipeline baselines, with an F-score difference c%or 7 out of the 8 fields in the NYT experiments, and

0
up fo 13.'8 . for 6 out of 8 fields in the MUC experiments.
The rightmost column of the table demonstrates

the tendency of our model to under-segment. For Model ComponentsTable 6 presents the perfor-
both corpora our model extracts a smaller numbdpance of variants of the joint model created by ex-
of events than the gold standard on average (5% f&tding ach potential type. The results demonstrate
NYT, 12% for MUC). The pipeline baselines extracithe significance of both discourse and record co-
more events than our model on average. For nyference potentials for the performance of the full
they over-segment (14% for bi-pipeline, 53% for thénodel.

pipeline) while for MUC they under-segment (8% Sub-tasks PerformanceA model for our task
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(a) (b)

Gold Fields Gold Events Gold Fields Gold Events
NYT Doc. Events | Fields Ratio Doc. Events | Fields MUC Doc. Events | Fields Ratio Doc. Events | Fields
Joint 69.1 62.5 64.4 1.05 45.7 46.5 50.0 Joint 785 75.0 745 0.76 50.8 479 51.4
Model model
Bi- — — — — 41.7 40.8 46.1 Bi- — — — — 37.0 343 39.9
Pipeline Pipeline
Pipeline 47.9 43.9 51.3 1.56 40.8 40.4 43.9 Pipeline 76.1 71.1 72.0 0.78 32.6 31.2 36.0

Table 5: Performance of the joint model and the pipeline reodben the gold standard for one of the labeling tasks
is given at test time. Results are statistically significaith p < 0.05.

NYT , of our model.
Excluded Component Documents| Events | Fields | Event o
Rat. Accuracy and EfficiencyWhen we ran our algo-
Record Coherence | 32.1 310 [377 | 104 rithm on the joint task of the NYT data-set it con-
Discourse 207 263 | 343 |15 verged after 89 iterations. For the MUC joint task
Record Coherence | 37.4 336 | 396 | 088 and the ablation analysis experiments we ran the al-
Discourse 37.7 36.6 | 42.7 | 0.89 gorithm for 200 iterations past the point of fluctua-

Table 6: The effect of the record coherence potentials arﬂ?ns around the dual minimum.
of the discourse potentials on the performance of the joint On a 2GHz CPU, 2GB RAM machine, it took
model. Results are presented for F-scores, each line is four dual-decomposition algorithm 15 minutes and
the full model when potentials of one type are excluded10 seconds to complete its run on the entire NYT test
] ) . set. For the MUC joint task experiment, in the 10
thOUId determme both when aword IS a g°°d_f'elﬂerations considered for the majority vote, there is
filler ar?d to Wh'cfh event the field belongs. SInCE’full agreement between the potentials for 97.77% of
our main evaluation collapses the effect of these d?ﬁe unobserved variables. That s, the voting scheme

cisions together, we performed two additional SetSttacts the assignment of only 2.23% of the unob-
of experiments to analyze the model’s accuracy Olarved variables

each sub-task separately.

Figure 4 presents the performance of the diﬁeren} Conclusions
models on the labeling tasks of assigning words to

fields and to events. The number of words associatgd thjs paper we presented a joint model for identify-
with a field differs between the gold standard an@hg fields of information and aggregating them into
the models’ output. For fields, we therefore reporgyent records. We experimented with two data sets
word level recall, precision and F-score between thgs newspaper articles containing multiple event de-
set of words assigned a non-NULL field by a modekcriptions. Our results demonstrate the importance

and the corresponding gold standard set. For evengg,q effectiveness of global constraints for event
we compute the fraction of words assigned the COfxcord extraction.

rect event among the words assigned to a non-NULL
field in either the gold standard or the output of th
model.

Figure 5 presents the document F-score when thighe authors gratefully acknowledge the support of
gold-standard fields (left) or events (right) of the testhe DARPA Machine Reading Program under AFRL
set are known at test time. Note that when the golgrime contract no. FA8750-09-C0172. Any opin-
standard fields are known, tiee-PIPELINE model jons, findings and conclusions expressed in the ma-
is not applicable anymore since it is designed teerial are those of the author(s) and do not neces-
improve field assignment using event-informed feasarily reflect the views of DARPA, AFRL or the US
tures. The results demonstrate that encoding fielgbvernment. Thanks also to the members of the MIT
information to the models is more valuable than enNLP group and to Amir Globerson for their sugges-
coding information about events. This provides usions and comments.
with an important direction for future improvement

PAcknowIedgements

78



References John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models

Kedar Bellare and Andrew McCallum. 2009. General- for segmenting and labeling sequence datdCML.

ized expectation criteria for bootstrapping extractor]gerCy Liang, Hal Daume, and Dan Klein. 2008. Struc-

using record-text alignment. BMNLP. ture compilation: trading structure for features. In
Nathanael Chambers and Dan Jurafsky. 2011. Template-I ML P ' 9 '

based information extraction without the templates. I?\/Istislav Maslennikov and Tat-Seng Chua. 2007. A

ACL multi-resolution framework for information extraction
Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007.
from free text. INnACL

Egdllrr:gAéimhsuperwsmn with constraint driven Ieam_Siddharth Patwardhan and Ellen Riloff. 2007. Effective

Eugene Charniak and Mark Johnson. 2005. Coarse-to- :i Vé'&NsLegn antic affinity patterns and relevant regions.

fine n-best parsing and maxent discriminative rerankg; o 'oatwardhan and Ellen Riloff. 2009. A unified

ing. InACL. . . .
. ._model of phrasal and sentential evidence for informa-
Harr Chen, Edward Benson, Tahira Naseem, and Regina,. :
tion extraction. IEMNLP.

Barzilay. 2011. In-domain relation discovery with . . .
meta-constraints via posterior regularization AdL Adwait Ratnaparkhi. 1996. A maximum entropy part-
of-speech tagger. WVLC

Hai L Chieu, H Tou Ng, and Y Keok Lee, . .
al —eohg Lnisu, Fwee 16U g, and Yoong neo ee'],rlsa Rau, George Krupka, Paul Jacobs, Ira Sider, and

2003. Closing th i L ing-based inf ti
0SINg e gap: -eaming=nased informato Lois Childs. 1992. Muc-4 test results and analysis.

extraction rivaling knowledge-engineering methods. )
In ACL. g g g g In Fourth Message Understanding Conference (MUC-

4).
ﬁbastian Riedel and Andrew McCallum. 2011. Fast and
robust joint models for biomedical event extraction. In
EMNLP.
InDan Roth and Wen tau Yih. 2004. A linear programming

Fourth Message Understanding Conference (MUC-4) formulation for global inference in natural language
Michael Collins. 2002. Discriminative training methods tasks. INCONLL . . .

for hidden markov models: Theory and experiment@lexander M. Rush, David Sontag, Michael Collins, and

with perceptron algorithms. IEMNLP. Tommi Jaakkola. 2010. On dual decomposition and
Gregory Druck and Andrew McCallum. 2010. High- linear programming relaxations for natural language

performance semi-supervised learning using discrimi- processmg. "EM_NLP‘ .

natively constrained generative models]@ML. David Sontag, Amir Globerson, and Tommi Jaakkola.

Jenny Rose Finkel and Christopher D. Manning. 2009 2010. Introduction to dual decomposition for infer-
Joint parsing and named entity recoanition. In ©€nNce- InOpt|m|zgt|on for Machm_e Learning, editors
NAACE g y g S. Sra, S. Nowozin, and S. J. Wright: MIT Press

ding Xiao, Tat-Seng Chua, and Hang Cui. 2004. Cas-

" cading use of soft and hard matching pattern rules for

weakly supervised information extraction. GOL-

ING.

Limin Yao, Sebastian Riedel, and Andrew McCallum.

2010. Collective cross-document relation extraction-

without labelled data. lEMNLP.

Nancy Chinchor, David Lewis, and Lynette Hirschman,
1993. Evaluating message understanding systems: §
analysis of the third message understanding confer-
ence.Computational Linguistigs19(3):409-449.

Nancy Chinchor. 1992. Muc-4 evaluation metrics.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In ACL

William Gale, Kenneth Church, and David Yarowsky.
1992. One sense per discourse Phoceedings of the
4th DARPA Speech and Natural Language Workshop

Ludovic Jean-Louis, Romaric Besancon, and Olivier Fer-
ret. 2011. Text segmentation and graph-based meth-
ods for template filling in information extraction. In
IJCNLP.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi
Jaakkola, and David Sontag. 2010. Dual decomposi-
tion for parsing with non-projective head automata. In
EMNLP.

Harold W. Kuhn. 1955. The hungarian method for the
assignment problenNaval Research Logistics Quar-
terly, 2:83-97.

79



