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Abstract

Temporal relation classification task has is-
sues of fourteen target relations, skewed dis-
tribution of the target relations, and relatively
small amount of data. To overcome the is-
sues, methods such as merging target relations
and increasing data size with closure algo-
rithm have been used. However, the method
using merged relations has a problem on how
to recover original relations. In this paper,
a new reduced-relation method is proposed.
The method decomposes a target relation into
four pairs of endpoints with three target rela-
tions. After classifying a relation of each end-
point pair, four classified relations are com-
bined into a relation of original fourteen target
relations. In the combining step, two heuris-
tics are examined.

1 Introduction

An interesting task in temporal information process-
ing is how to identify a temporal relation between
a pair of temporal entities such as events (EVENT)
and time expressions (TIMEX) in a narrative. Af-
ter the publication of TimeBank (Pustejovsky et al.,
2003b) annotated in TimeML (Pustejovsky et al.,
2003a), supervised learning techniques have been
tested in the temporal relation identification task
with different types of temporal entity pairs (Cham-
bers et al., 2007; Boguraev and Ando, 2005; Verha-
gen et al., 2007).

There are three issues in applying supervised ma-
chine learning methods to this task. The first issue
is that a temporal entity pair that is defined as a di-
rected temporal link (TLINK) in TimeML should be

classified into a relation among fourteen relations.
The second issue is that the number of TLINKs is
relatively small in spite of the fourteen targets. The
third issue is skewed distributions of the relations.
Without the solutions of the issues, it is impossi-
ble to achieve good performance in temporal relation
identification through machine learning techniques.

Several solutions have been suggested such as in-
creased number of TLINKs with a transitivity clo-
sure algorithm (Mani et al., 2007; Chambers et
al., 2007) and decreased target relations into six
(Mani et al., 2006; Chambers et al., 2007; Tatu and
Srikanth, 2008) or three (Verhagen et al., 2007). An
issue of the reduced-relation method is how to re-
cover original relations. A module for the recovery
can cause performance degeneration and seems in-
tuitively inappropriate.

In this paper, a new reduced-relation method is
presented. The method uses endpoints of tempo-
ral entities. A TimeML relation can be represented
into four endpoint pairs with three relations: before,
equal, and after. This method requires four rela-
tion identification classifiers among endpoints for a
TLINK and each classifier has only three target re-
lations instead of fourteen. The four classified re-
lations need to be combined in order to restore an
interval-based relation. In this study, the perfor-
mance of the proposed method will be evaluated in
identifying TLINK relations between temporal enti-
ties empirically.

Firstly, related studies are described in section 2.
Secondly, the identification of four pointwise rela-
tions is described. Thirdly, methods for the combi-
nation of pointwise relations are explained. Finally,
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the outlook of the proposed method is proposed.

2 Background

Temporal relation identification has three problems:
sparse data, fourteen target relations, and skewed
distribution. To reduce the problems, previous stud-
ies have used techniques such as increasing data size
with closure algorithm and merging target relations.

Mani et al. (2006) used closure algorithm to in-
crease training data size and merged inverse rela-
tions into six main relations. Their study applied
the methods to classify relations of all TLINKs and
showed the benefit of the methods in temporal re-
lation identification. Chambers et al. (2007) re-
ported 67.0% accuracy on the relation identification
task among EVENT-EVENT (EE) TLINKs using
the merged relations. And, the accuracy is the best
performance with EE TLINKs.

The merging method assumes that target relations
of TLINKs is already known. When a TLINK re-
lation from an anchor to a target is AFTER, it can
be changed into BEFORE by conversing the anchor
and the target each other. When unknown instance
is given, the merging process is impossible. When
six merged relations were used as target relations,
we assumes the conversion is already done. And the
assumption is inappropriate.

TempEval07 (Verhagen et al., 2007) integrated
14 TLINK relations into three: before, after, and
overlap. overlap is an extended relation that cov-
ers 12 relations except BEFORE and AFTER. This
approach has a burden to recover 12 relations from
the extensive one.

In this study, a TLINK is decomposed into four
pairs of endpoint links in the step of applying ma-
chine learning approaches. Then, four classified
endpoint relations are combined into a TimeML re-
lation. Allen (1983) showed a relative order between
intervals can be decomposed into relative orders of
four endpoint pairs. In TimeML, temporal entities,
EVENT and TIMEX, are intervals. An interval has
a pair of endpoints: start and end. A relation be-
tween two intervals can be represented into relations
of four pairs of starts and ends as in Table 2. A
relative order between endpoints can be represented
with three relations: before, equal, and after. The
proposed method will be empirically investigated in

this study.

3 Resources and Data Preparation

3.1 Temporal Corpora

TimeBank and Opinion corpora consist of 183 and
73 documents respectively. Among the documents,
it is found that 42 documents have inconsistent
TLINKs. The inconsistencies make it impossible to
apply closure algorithm to the documents. There-
fore, the 42 documents with inconsistent TLINKs
are excluded. This study focuses on classifying re-
lations of three types of TLINKs: TLINKs between
EVENTs (EE), between an EVENT and a TIMEX
(ET), and between an EVENT and Document Cre-
ation Time (ED).

As a preparation step, fourteen relations are
merged into eleven relations (TimeML relations).
SIMULTANEOUS, IDENTITY, DURING, and DU-
RUNG BY relations are identical in relative order
between entities. Therfore, the relations are inte-
grated into SIMULTANEOUS1. Then, closure algo-
rithm is run on the documents to increase the num-
ber of TLINKs. The distribution of relations of three
types is given in Table 1.

A document with merged relations is divided into
four documents with endpoint relations: start of an-
chor and start of target, start of anchor and end of
target, end of anchor and start of target, and end of
anchor and end of target documents. The conversion
table of a TimeML relation into four endpoint rela-
tions is given in Table 2 and the distribution of three
relations after the conversion is given in 3.

4 Relation identification with end points

In endpoint relation identification experiment, sup-
port vector machine (SVM) and maximum entropy
classifiers are built to classify three relations: be-
fore, equal, and after. First, feature vectors are
constructed. When four endpoint links are from a
TLINK, their feature vectors are identical except tar-
get endpoint relations.

1Mani et al. (2006) said DURING was merged into
IS INCLUSED. However, DURING, SIMULTANEOUS, and
IDENTITY are converted into = of Allen’s relations in
Tarski Toolkit (Verhagen et al., 2005). In this paper, the
implementation is followed.
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Relation EVENT-EVENT EVENT-TIMEX EVENT-DCT
Original Closed Original Closed Original Closed

AFTER 735 11083 86 2016 169 259
BEFORE 1239 12445 160 1603 721 1291
BEGINS 35 75 23 36 0 0

BEGUN BY 38 74 51 58 10 11
ENDS 15 64 65 128 0 0

ENDED BY 87 132 43 61 6 6
IAFTER 38 138 3 8 1 1

IBEFORE 49 132 2 9 0 0
INCLUDES 246 3987 122 166 417 469

IS INCLUDED 327 4360 1495 2741 435 467
SIMULTANEOUS 1370 2348 201 321 75 90

Table 1: Distribution of TimeML relations

TimeML Relation Inverse Endpoint Relations
x BEFORE y y AFTER x x− < y−, x− < y+,

x+ < y−, x+ < y+

x SIMULTANEOUS y y SIMULTANEOUS x x− = y−, x− < y+,
x+ > y−, x+ = y+

x IBEFORE y y IAFTER x x− < y−, x− < y+,
x+ = y−, x+ < y+

x BEGINS y y BEGUN BY x x− = y−, x− < y+,
x+ > y−, x+ < y+

x ENDS y y ENDED BY x x− > y−, x− < y+,
x+ > y−, x+ = y+

x INCLUDES y y IS INCLUDED x x− < y−, x− < y+,
x+ > y−, x+ > y+

Table 2: Relation conversion table

End pairs EVENT-EVENT EVENT-TIMEX EVENT-DCT
before equal after before equal after before equal after

start-start 1621 (39%) 1443 (35%) 1115 (27%) 327 (15%) 275 (12%) 1649 (73%) 1144 (62%) 85 (5%) 605 (33%)
start-end 3406 (82%) 38 (1%) 735 (18%) 2162 (96%) 3 86 (4%) 1664 (91%) 1 169 (9%)
end-start 1239 (30%) 49 (1%) 2891 (69%) 160 (7%) 2 2089 (93%) 721 (39%) 0 1113 (61%)
end-end 1650 (39%) 1472 (35%) 1057 (25%) 1680 (75%) 309 (14%) 262 (12%) 1156 (63%) 81 (4%) 597 (33%)

Table 3: Distribution of end point relations.
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10-fold cross validation is applied at document-
level. In some previous studies, all temporal links
were collected into a set and the set was split into
training and test data without the distinction on
sources. However, the approach could boost system
performance as shown in Tatu and Srikanth (2008).

When TLINKs in a file are split in training and
test data, links in training data can be composed of
similar words in test data. In that case, the links in
training can play a role of background knowledge.
Therefore, document-level 10-fold cross validation
is exploited.

4.1 Features

In constructing feature vectors of three TLINK
types, features that were used in order to identify
TimeML relations in previous studies are adopted.
The features have been proved useful in identifying
a TimeML relation in the studies. Moreover, the fea-
tures still seem helpful for endpoint relation identifi-
cation task. For example, past and present tenses of
two EVENTs could be a clue to make a prediction
that present tensed EVENT is probably after past
tensed EVENT.

Annotated information of EVENT and TIMEX in
the temporal corpora is used in the feature vector
construction. This proposed approach to use end-
point conversion in relation identification task is the
first attempt. Therefore, the annotated values are
used as features in order to see the effect of this ap-
proach. However, state-of-the-arts natural language
processing programs such as Charniak parser and
Porter Stemmer are sometimes used to extract ad-
ditional features such as stems of event words, the
existence of both entities in the same phrase, and
etc.

The company has reported declines in op-
erating profit in the past three years

Features for EVENT TENSE, ASPECT,
MODAL, POS, and CLASS annotations are bor-
rowed from temporal corpora as features. And,
a stem of an EVENT word is added as a feature
instead of a word itself in order to normalize it.
reported is represented as <(TENSE:present),
(ASPECT:perferce), (MODAL:none), (POS: verb),
(CLASS: reporting), (STEM:report)>.

Features for TIMEX In the extraction of TIMEX
features, it tries to capture if specific words are in a
time expression to normalize temporal expressions.
The time point of an expression can be inferred
through the specific words such as ago, coming, cur-
rent, earlier and etc. Additionally, the existence of
plural words such as seconds, minutes, hours, days,
months, and years is added as a feature. The specific
words are:

• ago, coming, current, currently, earlier, early,
every, following, future, last, later, latest, next,
now, once, past, previously, recent, recently,
soon, that, the, then, these, this, today, tomor-
row, within, yesterday, and yet

the past three years are represented as <(AGO:0),
(COMING:0), (CURRENT:0), (CURRENTLY:0),
(EARLIER:0), (EARLY:0), (EVERY:0), (FOL-
LOWING:0), (FUTURE:0), (LAST:1), (LATER:0),
(LASTED:0), (NEXT:0), (NOW:0), (ONCE:0),
(PAST:1), (PREVIOUSLY:0), (RECENT:0), (RE-
CENTLY:0), (SOON:0), (THAT:0), (THE:1),
(THEN:0), (THESE:0), (THIS:0), (TODAY:0),
(TOMORRWO:0), (WITHIN:0), (YESTERDAY:0),
(YET:0), (PLURAL:1)>.

Relational features between entities In addition,
relational information between two entities is used
as features. It is represented if two entities are in the
same sentence. To get the other relational informa-
tion, a sentence is parsed with Charniak parser. Syn-
tactic path from an anchor to a target is calculated
from the parsed tree. A syntactic path from reported
to the past three years is “VBN‖VP‖PP‖NP”. It is
represented if two entities are in the same phrase
and clause with the path. When only one clause
or phrase exists in the path except part-of-speeches
of both entities, the features are marked as 1s. The
counts of words, phrases, and clauses between tem-
poral entities are also used as features. When two
entities are not in the same sentence, 0s are given
as the values of the features except the word count.
Some prepositions and conjunctions are used as fea-
tures when the words are used as a head word of
syntactic path from an entity to the other entity. In
the example of “VBN‖VP‖PP‖NP”, “in” in “in the
past three years” is the head word of PP. So, in is
marked 1. The head words that are used as features
are:
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• after, as, at, before, between, by, during, for, in,
once, on, over, since, then, through, throughout,
until, when, and while

EE and ET types have feature vectors that consist
of features of both entities and relational features.
ED type has only features of EVENT.

5 Restoration of original relations

Four endpoint relations of a TLINK are classified in
the previous section. The combination of the clas-
sified relations needs to be restored into a relation
among the eleven merged TimeML relations. How-
ever, due to the independence of four classifiers, it is
not guaranteed that a TimeML relation can be gener-
ated from four endpoint relations. When the restora-
tion fails, the existence of errors in the four predic-
tions is implied. In this step, two methods to restore
a TimeML relation are investigated: Minimum Edit
Distance (MED) and Highest Score (HS).

MED checks how many substitutions are needed
to restore a TimeML relation. A TimeML relation
with the minimum changes is defined as the restored
relation. Let’s suppose four endpoint relations are
given such as x− before y−, x− after y+, x+ be-
fore y−, and x+ before y+. Among other possible
ways to get a TimeML relation, BEFORE could be
recovered with a change of before in x− after y+

into before. Therefore, BEFORE is chosen as a re-
stored TimeML relation. When several candidates
are available, a method is examined in selecting one.
The method is to give weight on classifiers that show
better performance. If two candidates are available
by changing before of start-start or before of start-
end in ET type, this method selects a candidate by
changing before when before of start-end shows bet-
ter performance.

HS uses the sum of confidence scores from clas-
sifiers. Each classifier of the four endpoint pairs
generates confidence scores of three relations (be-
fore, equal, and after). Among 81 possible com-
binations of four classifiers with three target rela-
tions, the highest-scored one that can be restored
into a TimeML relation is chosen as a prediction.
When several candidates exist, the selection method
of MED is also adopted.

6 Expectations and future plans

First, I will show how beneficial four endpoint
systems are at identifying endpoint relations. F-
measure will be used to show the performance of an
endpoint relation classifier in identifying each end-
point relation. And, accuracy is used to report over-
all performance of the classifier. Second, I will show
how effective the endpoint method is in identifying
TLINK relations. I will build a base classifier with
eleven TimeML relations and feature vectors that
are identical with the endpoint systems. The perfor-
mance difference in identifying TimeML relations
between this proposed system and the base system
will be presented to show whether this proposed ap-
proach is successful.

Previous research such as Verhagen et al. (2007)
using three reltions as target relations showed from
60% to 80% performance according to TLINK
types. Moreover, some distributions of endpoint re-
lations show over 90% such as before of end-start
in ET and ED TLINKs, and after of end-start in ET
TLINK in Table 3. Therefore, we can expect each
endpoint identification system will perform well in
classifying endpoint relations.

The success of this new approach will depend on
the restoration step. The excessively skewed dis-
tributions can make similar predicted sequences of
endpoint relations. It can weaken the advantage of
this endpoint approach that every TimeML relation
can be generated through combining endpoint rela-
tions. For example, equal shows very small dis-
tributions in start-end and end-start endpoint pairs.
Therefore, it is probable that TimeML relations such
as IAFTER and IBEFORE cannot be classified cor-
rectly. It can be a challenge how to correctly classify
endpoint relations with small distribution.

One possible solution for the challenge is to check
global consistency among classified relations such
as Bramsen et al. (2006) and Chambers and Juraf-
sky (2008). The global consistency restoration can
give a chance to replace excessively distributed rela-
tions with sparse relations. However, equal is used
additionally in this study. Therefore, modifications
in the method of Bramsen et al. (2006) and Cham-
bers and Jurafsky (2008) are needed before applying
their method.
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