
Proceedings of the NAACL HLT 2010: Demonstration Session, pages 25–28,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

An Interactive Tool for Supporting Error Analysis for Text Mining

Elijah Mayfield
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15216, USA
elijah@cmu.edu

Carolyn Penstein-Rosé
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15216, USA
cprose@cs.cmu.edu

Abstract

This demo abstract presents an interactive tool
for supporting error analysis for text mining,
which is situated within the Summarization
Integrated Development Environment (SIDE).
This freely downloadable tool was designed
based on repeated experience teaching text
mining over a number of years, and has been
successfully tested in that context as a tool for
students to use in conjunction with machine
learning projects.

1 Introduction

In the past decade, more and more work in the
language technologies community has shifted from
work on formal, rule-based methods to work involv-
ing some form of text categorization or text mining
technology. At the same time, use of this technology
has expanded; where it was once accessible only to
those within studying core language technologies,
it is now almost ubiquitous. Papers involving text
mining can currently be found even in core social
science and humanities conferences.

The authors of this demonstration are involved
in regular teaching of an applied machine learning
course, which attracts students from virtually every
field, including a variety of computer science related
fields, the humanities and social sciences, and the
arts. In five years of teaching this course, what has
emerged is the finding that the hardest skill to impart
to students is the ability to do a good error analysis.
In response to this issue, the interactive error analy-
sis tool presented here was designed, developed, and
successfully tested with students.

In the remainder of this demo abstract, we offer an
overview of the development environment that pro-
vides the context for this work. We then describe
on a conceptual level the error analysis process that
the tool seeks to support. Next, we step through the
process of conducting an error analysis with the in-
terface. We conclude with some directions for our
continued work, based on observation of students’
use of this interface.

2 Overview of SIDE

The interactive error analysis interface is situated
within an integrated development environment for
building summarization systems. Note that the
SIDE (Kang et al., 2008) software and comprehen-
sive user’s manual are freely available for down-
load1. We will first discuss the design of SIDE from
a theoretical standpoint, and then explore the details
of practical implementation.

2.1 Design Goals

SIDE was designed with the idea that documents,
whether they are logs of chat discussions, sets of
posts to a discussion board, or notes taken in a
course, can be considered relatively unstructured.
Nevertheless, when one thinks about their interpre-
tation of a document, or how they would use the in-
formation found within a document, then a structure
emerges. For example, an argument written in a pa-
per often begins with a thesis statement, followed by
supporting points, and finally a conclusion. A reader

1SIDE and its documentation are downloadable from
http://www.cs.cmu.edu/˜cprose/SIDE.html

25



can identify with this structure even if there is noth-
ing in the layout of the text that indicates that certain
sentences within the argument have a different sta-
tus from the others. Subtle cues in the language can
be used to identify those distinct roles that sentences
might play.

Conceptually, then, the use of SIDE proceeds in
two main parts. The first part is to construct filters
that can impose that structure on the texts to be sum-
marized, to identify the role a sentence is playing
in a document; and the second part is constructing
specifications of summaries that refer to that struc-
ture, such as subsets of extracted text or data visu-
alizations. This demo is primarily concerned with
supporting error analysis for text mining. Thus, the
first of these two stages will be the primary focus.

This approach to summarization was inspired by
the process described in (Teufel and Moens, 2002).
That work focused on the summarization of scien-
tific articles to describe a new work in a way which
rhetorically situates that work’s contribution within
the context of related prior work. This is done by
first overlaying structure onto the documents to be
summarized, categorizing the sentences they contain
into one of a number of rhetorical functions. Once
this structure is imposed, using the information it
provides was shown to increase the quality of gener-
ated summaries.

2.2 Building Text Mining Models with SIDE
This demo assumes the user has already interacted
with the SIDE text mining interface for model build-
ing, including feature extraction and machine learn-
ing, to set up a model. Defining this in SIDE terms,
to train the system and create a model, the user first
has to define a filter. Filters are trained using ma-
chine learning technology. Two customization op-
tions are available to analysts in this process.

The first and possibly most important is the set of
customization options that affect the design of the
attribute space. The standard attribute space is set
up with one attribute per unique feature - the value
corresponds to the number of times that feature oc-
curs in a text. Options include unigrams, bigrams,
part-of-speech bigrams, stemming, and stopword re-
moval.

The next step is the selection of the machine
learning algorithm that will be used. Dozens of op-

tions are made available through the Weka toolkit
(Witten and Frank, 2005), although some are more
commonly used than others. The three options that
are most recommended to analysts beginning work
with machine learning are Naı̈ve Bayes (a prob-
abilistic model), SMO (Weka’s implementation of
Support Vector Machines), and J48, which is one
of many Weka implementations of a Decision Tree
learner. SMO is considered state-of-the-art for text
classification, so we expect that analysts will fre-
quently find that to be the best choice.

As this error analysis tool is built within SIDE, we
focus on applications to text mining. However, this
tool can also be used on non-text data sets, so long as
they are first preprocessed through SIDE. The details
of our error analysis approach are not specific to any
individual task or machine learning algorithm.

3 High Level View of Error Analysis

In an insightful usage of applied machine learning, a
practitioner will design an approach that takes into
account what is known about the structure of the
data that is being modeled. However, typically, that
knowledge is incomplete, and there is thus a good
chance that the decisions that are made along the
way are suboptimal. When the approach is evalu-
ated, it is possible to determine based on the pro-
portion and types of errors whether the performance
is acceptable for the application or not. If it is not,
then the practitioner should engage in an error analy-
sis process to determine what is malfunctioning and
what could be done to better model the structure in
the data.

In well-known machine learning toolkits such as
Weka, some information is available about what er-
rors are being made. Predictions can be printed out,
to allow a researcher to identify how a document is
being classified. One common format for summariz-
ing these predictions is a confusion matrix, usually
printed in a format like:

a b <-- classified as
67 19 | a = PT
42 70 | b = DR

This lists, for example, that 19 text segments were
classified as type DR but were actually type PT.
While this gives a rough view of what errors are

26



Figure 1: The error analysis interface with key function-
ality locations highlighted.

appearing, it gives no indication of why the errors
are being made. This is where a more extensive er-
ror analysis is necessary. Two common ways to ap-
proach this question are top down, which starts with
a learned model, and bottom up, which starts with
the confusion matrix from that model’s performance
estimate. In the first case, the model is examined
to find the attributes that are treated as most impor-
tant. These are the attributes that have the great-
est influence on the predictions made by the learned
model, and thus these attributes provide a good start-
ing point. In the second case, the bottom-up case,
one first examines the confusion matrix to identify
large off-diagonal cells, which represent common
confusions. The error analysis for any error cell is
then the process of determining relations between

three sets of text segments2 related to that cell.
Within the “classified as DR but actually PT” cell,

for instance, error analysis would require finding
what makes these examples most different from ex-
amples correctly classified as PT, and what makes
these examples most similar to those correctly clas-
sified as DR. This can be done by identifying at-
tributes that mostly strongly differentiate the first
two sets, and attributes most similar between the first
and third sets. An ideal approach would combine
these two directions.

4 Error Analysis Process

Visitors to this demo will have the opportunity to ex-
periment with the error analysis interface. It will be
set up with multiple data sets and previously trained
text mining models. These models can first be exam-
ined from the model building window, which con-
tains information such as:

• Global feature collection, listing all features
that were included in the trained model.

• Cross-validation statistics, including variance
and kappa statistics, the confusion matrix and
other general information.

• Weights or other appropriate information for
the text mining model that was trained.

By moving to the error analysis interface, the user
can explore a model more deeply. The first step is
to select a model to examine. By default, all text
segments that were evaluated in cross-validation dis-
play in a scrolling list in the bottom right corner of
the window. Each row contains the text within a seg-
ment, and the associated feature vector. Users will
first be asked to examine this data to understand the
magnitude of the error analysis challenge.

Clicking on a cell in the confusion matrix (at the
top of the screen) will fill the scrolling list at the bot-
tom left corner of the screen with the classified seg-
ments that fall in that cell. A comparison chooser
dropdown menu gives three analysis options - full,
horizontal, and vertical. By default, full comparison

2Our interface assumes that the input text has been seg-
mented already; depending on the task involved, these segments
may correspond to a sentence, a paragraph, or even an entire
document.

27



is selected, and shows all text segments used in train-
ing. The two additional modes of comparison allow
some insight into what features are most representa-
tive of the subset of segments in that cell, compared
to the correct predictions aligned with that cell (ei-
ther vertically or horizontally within the confusion
matrix). By switching to horizontal comparison, the
scrolling list on the right changes to display only text
segments that fall in the cell which is along the con-
fusion matrix diagonal and horizontal to the selected
cell. Switching to vertical comparison changes this
list to display segments categorized in the cell which
is along the diagonal and vertically aligned with the
selected error cell.

Once a comparison method is selected, there is
a feature highlighting dropdown menu which is of
use. The contents in this menu are sorted by degree
of difference between the segments in the two lists
at the bottom of the screen. This means, for a hor-
izontal comparison, that features at the top of this
list are the most different between the two cells (this
difference is displayed in the menu). We compute
this difference by the difference in expected (aver-
age) value for that feature between the two sets. In a
vertical comparison, features are ranked by similar-
ity, instead of difference. Once a feature is selected
from this menu, two significant changes are made.
The first is that a second confusion matrix appears,
giving the confusion matrix values (mean and stan-
dard deviation) for the highlighted feature. The sec-
ond is that the two segment lists are sorted according
to the feature being highlighted.

User interface design elements were important in
this design process. One option available to users is
the ability to “hide empty features,” which removes
features which did not occur at all in one or both of
the sets being studied. This allows the user to fo-
cus on features which are most likely to be causing
a significant change in a classifier’s performance. It
is also clear that the number of different subsets of
classified segments can become very confusing, es-
pecially when comparing various types of error in
one session. To combat this, the labels on the lists
and menus will change to reflect some of this infor-
mation. For instance, the left-hand panel gives the
predicted and actual labels of the segments you have
highlighted, while the right-hand panel is labelled
with the name of the category of correct prediction

you are comparing against. The feature highlighting
dropdown menu also changes to reflect similar in-
formation about the type of comparison being made.

5 Future Directions

This error analysis tool has been used in the text
mining unit for an Applied Machine Learning course
with approximately 30 students. In contrast to pre-
vious semesters where the tool was not available
to support error analysis, the instructor noticed that
many more students were able to begin surpassing
shallow observations, instead forming hypotheses
about where the weaknesses in a model are, and
what might be done to improve performance.

Based on our observations, however, the error
analysis support could still be improved by directing
users towards features that not only point to differ-
ences and similarities between different subsets of
instances, but also to more information about how
features are being used in the trained model. This
can be implemented either in algorithm-specific
ways (such as displaying the weight of features in
an SVM model) or in more generalizable formats,
for instance, through information gain. Investigating
how to score these general aspects, and presenting
this information in an intuitive way, are directions
for our continued development of this tool.

Acknowledgements

This research was supported by NSF Grant DRL-
0835426.

References
Moonyoung Kang, Sourish Chaudhuri, Mahesh Joshi,

and Carolyn Penstein-Rosé 2008. SIDE: The Summa-
rization Integrated Development Environment. Pro-
ceedings of the Association for Computational Lin-
guistics, Demo Abstracts.

Simone Teufel and Marc Moens 2002. Summarizing
Scientific Articles: Experiments with Relevance and
Rhetorical Status. Computational Linguistics, Vol. 28,
No. 1.

Ian Witten and Eibe Frank 2005. Data Mining: Prac-
tical Machine Learning Tools and Techniques, second
edition. Elsevier: San Fransisco.

28


