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Abstract at surface form level. For all these methods, the ef-

In this paper, we describe an approach based
on off-the-shelf parsers and semantic re-
sources for the Recognizing Textual Entail-
ment (RTE) challenge that can be generally
applied to any domain. Syntax is exploited
by means of tree kernels whereas lexical se-
mantics is derived from heterogeneous re-
sources, e.g. WordNet or distributional se-
mantics through Wikipedia. The joint syn-
tactic/semantic model is realized by means of
tree kernels, which can exploit lexical related-
ness to match syntactically similar structures,
i.e. whose lexical compounds are related. The
comparative experiments across different RTE
challenges and traditional systems show that
our approach consistently and meaningfully
achieves high accuracy, without requiring any
adaptation or tuning.

1 Introduction

fective use of syntactic and semantic information de-
pends on the coverage and the quality of the specific
rules. Lexical-syntactic rules can be automatically

extracted from plain corpora (e.g., (Lin and Pantel,

2001; Szpektor and Dagan, 2008)) but the quality

(also in terms of little noise) and the coverage is low.

In contrast, rules written at the semantic level are

more accurate but their automatic design is difficult

and so they are typically hand-coded for the specific
phenomena.

In this paper, we propose models for effectively
using syntactic and semantic information in RTE,
without requiring either large automatic rule acqui-
sition or hand-coding. These models exploit lexi-
cal similarities to generalize lexical-syntactic rules
automatically derived by supervised learning meth-
ods. In more detail, syntax is encoded in the form of
parse trees whereas similarities are defined by means
of WordNet simlilarity measures or Latent Seman-
tic Analysis (LSA) applied to Wikipedia or to the

Recognizing Textual Entailment (RTE) is ratherBritish National Corpus (BNC). The joint syntac-
challenging as effectively modeling syntactic andic/semantic model is realized by means of novel tree
semantic for this task is difficult. Early deep semankernels, which can match subtrees whose leaves are
tic models (e.g., (Norvig, 1987)) as well as more relexically similar (so not just identical).

cent ones (e.g., (Tatu and Moldovan, 2005; Bos and To assess the benefit of our approach, we carried
Markert, 2005; Roth and Sammons, 2007)) rely oout comparative experiments with previous work:
specific world knowledge encoded in rules for drawespecially with the method described in (Zanzotto
ing decisions. Shallower models exploit matchingand Moschitti, 2006; Zanzotto et al., 2009). This
methods between syntactic/semantic graphs of textenstitutes our strong baseline as, although it can
and hypotheses (Haghighi et al., 2005). The matclenly exploit lexical-syntactic rules, it has achieved
ing step is carried out after the application of soméop accuracy in all RTE challenges. The results,
lexical-syntactic rules that are used to transform thacross different RTE challenges, show that our ap-
text T' or the hypothesidi (Bar-Haim et al., 2009) proach constantly and significantly improves the
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baseline model. Moreover, our approach does nfitom examples in terms of complex relational fea-
require any adaptation or tuning and uses a comptures. This approach can easily miss some useful
tation for the similarity function based on Wikipediainformation and rules. For example, given the pair
which is faster than the computation of tools basedl», Hs), to derive the entailment value of the fol-
on WordNet or other resources (Basili et al., 2006) lowing case:

The remainder of the paper is organized as fol- 7, =7H,
lows: Section 2 critically reviews the previous work T, “In 1963 Lee Harvey Oswald mur-
by highlighting the need of generalizing lexico- dered JFK
syntactic rules. Section 3 describes lexical similar- H, “JFKdiedin 1963

ity approaches, which can serve the generalizatioje can only rely on this relatively interesting
purpose. Section 4 describes how to integrate lexexical-syntactic rule (i.e. which is in common be-
ical similarity in syntactic structures using syntactween the two examples):
tic/semantic tree kernels _(SSTK) whereas Sectionp5 — wrWB2)(NPX)) — (S(NPR)VP(VBZ dicd))
shows how to use SSTK in a kernel-based RTE sys-
tem. Section 6 describes the experiments and rednfortunately, this can be extremely misleading
sults. Section 7 discusses the efficiency and accaince it also derives similar decisions for the follow-
racy of our system compared with other RTE sysig example:
tems. Finally, we draw the conclusions in Section Ty =?H;,
8. Ts  “In 1956 JFK met Marilyn Monrde

Hg  “Marilyn Monroe died in 1956

The problem is that the pair§7s, H2) and
Lexical-syntactic rules are largely used in textual en{Z4, H4) share more meaningful features than the
tailment recognition systems (e.g., (Bar-Haim et alfule ps, which should make the difference with re-
2007; Dinu and Wang, 2009)) as they convenientlgpect to the relation between the pails, H,) and
encode world knowledge into linguistic structures{Ts, Hs). Indeed, the wordKill” is more semanti-
For example, to decide whether the simple sentencesglly related to turdered than to “meet. Using

2 Related work

are in the entailment relation: this information, it is possible to derive more effec-
tive rules from training examples.

T, =7H, There are several solutions for taking this infor-
T, “In 1980 Chapman killed Lennon. mation into account, e.g. by using FrameNet se-

H, “John Lennon died in 1980. mantics (e.g., like in (Burchardt et al., 2007)), it is
- - possible to encode a lexical-syntactic rule using the

we need a lexical-syntactic rule such as: KILLING and the DEATH frames, i.e.:
ps = XilledY) — [Yldied  KILLING(Killer : [X], DEATH(
PT= Vietim - [Y) - Protagonist : [Y))

along with such rules, the temporal information

should be taken into consideration. However, to use this model, specific rules and a
Given the importance of lexical-syntactic rules insemantic role labeler on the specific corpora are

RTE, many methods have been proposed for thefleeded.

extraction from large corpora (e.g., (Lin and Pantel3 Lexical similarities

2001; Szpektor and Dagan, 2008)). Unfortunately;,

these unsupervised methods in general produce rulegevious research in computational linguistics has

that can hardly be used: noise and coverage are thepduced many effective lexical similarity mea-

most critical issues. sures based on many different resources or corpora.
Supervised approaches were experimented For example, WordNet similarities (Pedersen et al.,

(Zanzotto and Moschitti, 2006; Zanzotto et al.2004) or Latent Semantic Analysis over a large cor-

2009), where lexical-syntactic rules were derivegbus are widely used in many applications and for
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the definition of kernel functions, e.g. (Basili et al.,of the word in the document. The similarity is gen-
2006; Basili et al., 2005; Bloehdorn et al., 2006). erally computed as a cosine similarity:

In this section we present the main component of Lo
our new kernel, i.e. a lexical similarity derived from krsr(wi, wy) = —— A2 (4)
different resources. This is used inside the syntac- |[wi]] x|z ]]
tic/semantic tree kernel defined in (Bloehdorn and

Moschitti, 2007a; Bloehdorn and Moschitti, 2007b)wr:2r2u-r ‘arpeprroea;c;}r:]t\;\;e de(f@e é)p_lr_?gn;cl)ti/en;?g:j(r P
to enhance the basic tree kernel functions. Pi,j TP LSI\Wi, W

approach lies on LSI (Latent Semantic Indexing)
3.1 WordNet Similarities over a large corpus. We used singular value de-

WordNet similarities have been heavily used in pregomposmon (SVD) to build the proximity matrix

vious NLP work (Chan and Ng, 2005; Agirre et aI.,P :d lb)DdT from atlarg? _;;)rpus, represented by its
2009). All WordNet similarities apply to pairs of "WOro-Dy-document matrix’.

synonymy sets (synsets) and return a value indicaft- SVD QecqmposelftD t(welgfh;[edt m?mi(h of terrr; .
ing their semantic relatedness. For example, the fol[equenm;:s N a coflection o ext) into three matri-
sUXV*, whereU (matrix of term vectors) and

lowing measures, that we use in this study, are basgg i
Y (matrix of document vectors) are orthogonal ma-

on path lengths between concepts in the Wordnet HJ-. : T
) trices whose columns are the eigenvectorad
erarchy: T . . . :
andD* D respectively, and is the diagonal matrix
Path the measure is equal to the inverse of theontaining the singular value of D.
shortest path lengthp{th_length) between two Given such decompositiorl? can be obtained as
synsets:; andc, in WordNet US2UT, whereUy, is the matrix containing the first
k columns ofU andk is the dimensionality of the
(1) latent semantic space. This is efficiently used to re-
duce the memory requirements while retaining the

WUP the Wu and Palmer (Wu and Palmer, 1994information. Finally we computed the term simi-
similarity metric is based on the depth of two giveri@rity using the cosine measure in the vector space
synsets:; ande, in the WordNet taxonomy, and the model (VSM).

depth of their least common subsumérs]. These ~ Generally, LSA can be observed as a way to over-

1
path_length(cy, co)

Simpagn =

are combined into a similarity score: come some of the drawbacks of the standard vector
space model, such as sparseness and dimensionality.
Simup — 2 x depth(lcs) (2) 'n other words, the LSA similarity is computed in
depth(c1) + depth(ca) a lower dimensional space, in which second-order

L relations among words and documents are exploited
Wordnet similarity measures on synsets can b

L 5(T\/Iihalcea et al., 2006).
extended to similarity measures between words as |, . o L
follows: It is worth mentioning that the LSA similarity

measure depends on the selected corpus but it ben-
efits from a higher computation speed in compari-
son to the construction of the similarity matrix based
on the WordNet Similarity package (Pedersen et al.,
2004).

ks (w1, w2) = Max (e, cp)ec; xc, Sims(c1, c2)
3)
where S is Path or WUP and’; is the set of the
synsets related to the wordl.

4 Lexical similarity in Syntactic Tree

3.2 Distributional Semantic Similarity
Kernels

Latent Semantic Analysis (LSA) is one of the

corpus-based measure of distributional semantfection 2 has shown that the role of the syntax is im-
similarity, proposed by (Landauer et al., 1998)portant in extracting generalized rules for RTE but it

Wordsw; are represented in a document space. Eaihinot enough. Therefore, the lexical similarity de-

feauture is a document and its value is the frequensgcribed in the previous section should be taken into
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[

CD Lee Harvey Oswald murdered JFK CD murdered CD

1963

Figure 1: A syntactic parse tree (on the left) along with sarhis fragments. After the bar there is an important
fragment from a semantically similar sentence, which cabeanatched by STK but it is matched by SSTK.

account in the model definition. Since tree kernels Figure 1 shows some fragments (out of the over-
have been shown to be very effective for exploitall 472) of the syntactic parse tree on the left, which
ing syntactic information in natural language tasks, & derived from the text T4. These fragments sat-
promising idea is to merge together the two differenisfy the constraint that grammatical rules cannot be
approaches, i.e. tree kernels and semantic similabiroken. For example(VP (VBN (murdered) NNP

ties. (JFK))) is a valid fragment whereg&P (VBN (mur-
_ dered))is not. One drawback of such kernel is that
4.1 Syntactic Tree Kernel (STK) two sentences expressing similar semantics but with

Tree kernels compute the number of common sulglifferent lexicals produce structures which will not
structures between two tre@$ and 7, without ex- be matched. For example, after the vertical bar
plicitly considering the whole fragment space. Thdhere is a fragment, extracted from the parse tree
standard definition of the STK, given in (Collins andof a semantically identical sentences:n 1963
Duffy, 2002), allows for any set of nodes linked byOswal d ki | | ed Kennedy. In this case, much
one or more entire production rules to be valid subless matches will be counted by the kernel function
structures. The formal characterization is given ipplied to such parse trees and the one of T4. In par-
(Collins and Duffy, 2002) and is reported hereafter:ticular, the complete VP subtree will not be matched.
Let F = {flvav"'vf\Fl} be the set of tree  To tackle this problem the Syntactic Semantic
fragments andy;(n) be an indicator function, Tree Kernel (SSTK) was defined in (Bloehdorn and
equal to 1 if the targetf; is rooted at noden Moschitti, 2007a); hereafter, we report its definition.

and equal to 0 otherwise. A tree kernel func- _ _
tion over Tt and T is defined asTK (T, T) — 4.2 Syntactic Semantic Tree kernels (SSTK)
ZHIENTl > onpeNg, A(n1,n2), whereNy, and Ny,  An SSTK produces all 'Fhe matphes_ of STK. More_-
are the sets of nodes i andT5, respectively and over, the fragments, which are identical but for their
A(ny,ng) = Zlﬂ xi(n1)xi(n2). lexical nodes, produce a match proportional to the
A function counts the number of subtrees rootefreduct of the similarity between their correspond-
in n, andn, and can be evaluated as follows: ing words. This is a sound definition. Indeed, since
the structures are the same, each word in position
1. if the productions at;, and n, are different of the first fragment can be associated with a word
thenA(ny,ny) = 0; located in the same positionof the second frag-
ment. More formally, the fast evaluation df for
2. if the productions ah; andny are the same, STK can be used for computing the semautidor
andn; andny have only leaf children (i.e. they SSTK by simply adding the following step
are pre-terminal symbols) theX(n,ns) = A;
0. if ny andny are pre-terminals anldbel(n,) =
3. if the productions ah; andns are the same, label(ny) thenA(ny,ng) = Aks(ch) Ch}m)i

and n; and ny are not pre-terminals then "

A(ni,ng) = ATV + Alen, (), cna(4))),  Wherelabel(n;) is the label of noder; and ks is
wherel(n;) is the number of children of;, a term similarity kernel, e.g. based on Wikipedia,
cn(7) is thej-th child of nodern and ) is a de- Wordnet or BNC, defined in Section 3. Note that:
cay factor penalizing larger structures. (a) sincen; andn, are pre-terminals of a parse tree
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they can have only one child (i.e:h;;, andch),,) Ty ="Hg
and such children are words and (b) Step 2 of the T3 “Lee Harvey Oswald was born in

original A evaluation is no longer necessary. New Orleans, Louisiana, and was
i of English, German, French and
For example, the fragmentgévP (VBN (murdered) Irish ancestry. In 1963 Oswald
NNP (JFK))) has a match with(VP (VBN (killed) murdered JFIKJ"
NNP (Kennedy)))equal to ks(murdered, kill) x Hy “JFKZ2died in 1968

kis(JFK, Kennedy). Moreover, the set of anchors also allows us to

Beside the novelty of taking into account tre€yyne fragments of the text’ that are irrelevant
fragments that are not identical it should be notegh, he final decision: we can discard sentences

that the lexical semantic similarity is constrained,, phrases uncovered by placeholders. For exam-

in syntactic structures, which limit errors/noise du%le, in the pair(Zs, Hs), we can infer that t'ee

to incorrect (or, as in our case, not provided) Wordy . ancestryis not a relevant fragment and remove

sense disambiguation. it. This allows us to focus on the critical part for de-
Finally, it should be noted that when a valid ker-termining the entailment value.

nel is used in place ofs, SSTKis a valid kernel for

definition of convolution kernels (Haussler, 1999)5-2 Kernels for capturing lexical-syntactic

Since the matrixP derived by applying LSA pro- rules

duces a semi-definite matrix (see (Cristianini an@nce placeholders are available in the entailment

Holloway, 2001)) we can always use the similaritypairs, we can apply the model proposed in (Zan-

matrix derived by LSA in SSTK. In case of Wordnet,zotto et al., 2009). This derives the maximal simi-

the validity of the kernel will depend of the kind of larity between pairs of’ and H based on the lexico-

similarity used. In our experiments, we have carriedyntactic information encoded by the syntactic parse

out single value decomposition and we have verifiettees ofT’ and H enriched with placeholders. More

that our Wordenet matrices, Path and WUP, are irffermally, the original kernel is based on the follow-

deed positive semi-definite. ing equation:

_ maxSTK((T,H),(T',H')) = mazcec  (5)

5 E‘;g‘;‘ﬁig’c:nTeXt“a' Entailment (STK(H(T, ¢),t(T",i)) + STK(t(H, ¢), t(H', ),
where: (i)C is the set of all bijective mappings be-

In this section, we describe how we use the syntadVeen the placeholders (i.e., the possible variables)
tic tree kernel (STK) and the semantic/syntactic trefom (T’ H) into (7", H'); (ii) ¢ € C'is a substitu-
kernel (SSTK) for modeling lexical-syntactic ker-tion function, which implements such mapping; (iii)
nels for textual entailment recognition. We build?(-; ¢) returns the syntactic tree enriched with place-
on the kernel described in (Zanzotto and Moschitti’olders replaced by means of the substitutipand
2006; Zanzotto et al., 2009) that can model lexicalV) STK (71, 72) is a tree kernel function.

syntactic rules with variables (i.e., first-order rules). 1h€ New semantic-syntactic kernel for lexical-
syntactic rules, maxSSTK, substitutes STK with

SSTK in Eg. 5 thus enlarging the coverage of the

5.1 Anchoring and pruning matching between the pairs of texts and the pairs of

Kernels for modeling lexical-syntactic rules with hypotheses.
variables presuppose that words in teXtsare ex-
plicitly related to words in hypothesd&g. This cor-
relation is generally called anchoring and it is imple-The aim of the experiments is to investigate if our
mented with placeholders that co-index the syntactiRTE system exploiting syntactic semantic kernels
trees derived frorfi" and H. Words and intermediate (SSTK) can effectively derive generalized lexico-
nodes are co-indexed when they are equal or similayntactic rules. In more detail, first, we determine
For example, in the pair: the best lexical similarity suitable for the task, i.e.

6 Experiments
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No Semantic| Wiki BNC | Path WUP
RTE2 | j=1 63.12 63.5 62.75| 62.88 63.88
j=0.9 63.38 64.75 62.26| 63.88 64.25
RTE3 | j=1 66.88 67.25 67.25| 66.88 66.5
j=0.9 67.25 67.75 675 | 67.12 67.38

RTE5 | j=1 65.5 66.5 65.83| 66 66
j=0.9 65.5 66.83 65.67| 66 66.33

Table 1. Accuracy of plain (WOK+STK+maxSTK) and Semantixice-Syntactic (WOK+SSTK+maxSSTK) Ker-
nels. The latter according to different similarities

distributional vs. Wordnet-based approaches. SewWikipedia, we created a model from the 200,000
ond, we derive qualitative and quantitative propermost visited Wikipedia articles, after cleaning the
ties, which justify the selection of one with respecunnecessary markup tags. Articles are our doc-
to the other. uments for creating the term-by-document matrix.

For this purpose, we tested four different versioWVikipedia provides the largest coverage knowledge
of SSTK, i.e. using Path, WUP, BNC and WIKI resource developed by a community, besides the no-
lexical similarities on three different RTE datasetsticeable coverage of named entities. This further
These correspond to the three different challenges inotivates the design of a similarity measure. We
which the development set was provided. also consider two typical WordNet similarities (i.e.,
Path and WUP, respectively) as described in Sec.
3.1
We used the data from three recognizing textual ert‘fjtzzeby?r:?eSLEair:?(cé(rerllgl]sa}t we consider is consti-
tailment challenge: RTE2 (Bar-Haim et al., 2006), ’
RTE3 (Giampiccolo et al., 2007), and RTES5, along e WOK, i.e. the kernel based on only the text-
with the standard split between training and test sets. hypothesis lexical overlapping words (this is an
We did not use RTE1 as it was differently built from intra-pair similarity);
the others and RTE4 as it does not contain the devel-
opment set.

We used the following publicly available tools:
the Charniak Parser (Charniak, 2000) for pars-
ing sentences and SVM-light-TK (Moschitti, 2006;
Joachims, 1999), in which we coded our new kernels
for RTE. Additionally, we used the Jiang&Conrath
(J&C) distance (Jiang and Conrath, 1997) com-
puted withwn: : si mi | ari t y package (Pedersen
etal., 2004) to measure the similarity betwé&éand
H. This similarity is also used to define the text-
hypothesis word overlap kernel (WOK). Note that the model presented in (Zanzotto et al.,

The distributional semantics is captured by mear2009), our baseline, corresponds to the combination
of LSA: we used the java Latent Semantic Indexindernel: WOK+maxSTK. In this paper, in addition to
(jJLSI) tool (Giuliano, 2007). In particular, we pre- the role of lexical similarities, we also study several
computed the word-pair matrices for RTE2, RTE3¢combinations (we just need to sum the separated ker-
and RTE5. We built different LSA matrices from nels), i.e. WOK+STK+maxSTK, SSTK+maxSSTK,
the British National Corpus (BNC) and WikipediaWOK+SSTK+maxSSTK and WOK+maxSSTK.
(Wiki). The British National Corpus (BNC) is a bal- Finally, we measure the performance of our sys-
anced synchronic text corpus containing 100 miltem with the standard accuracy and then we deter-
lion words with morpho-syntactic annotation. Fommine the statistical significance by using the model

6.1 Experimental Setup

e STK, i.e. the sum of the standard tree kernel
(see Section 4.1) applied to the two text parse-
trees and the two hypothesis parse trees;

e SSTK, i.e. the same as STK with the use of
lexical similarities as explained in Section 4.2;

e MmaxSTK and maxSSTK, i.e. the kernel for
RTE, illustrated in Section 5.2, where the lat-
ter exploits similarity since it uses SSTK in Eq.
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| | [ STK [ SSTK [ maxSTK | maxSSTK] STK+maxSTK| SSTK+maxSSTK[ |

RTE2 | +WOK | 61.5 | 61.12| 63.88 64.12 63.12 63.50 60.62
52.62| 52.75| 61.25 59.38 61.25 58.75 -

RTE3 | +WOK | 66.38| 66.5 66.5 67.0 66.88 67.25 66.75
53.25| 54.5 62.25 64.38 63.12 63.62 -

RTE5 | +WOK | 62.0 | 62.0 64.83 64.83 65.5 66.5 60.67
54.33| 57.33| 63.33 62.67 61.83 62.67 -

Table 2: Comparing different lexico-syntactic kernelshwitiki-based semantic kernels

described in (Yeh, 2000) and implemented in (Pad6, of the j parameters, i.ej = 1, which was not

2006). selected by our limited parameter validation.
6.2 Distributional vs. WordNet-based Finally, the difference between the accuracy of the
Semantics best WIKI kernels and the No Semantic kernels are

, . _ _ statistically significanty{ << 0.05).
The first experiment compares the basic kernel, i.e. ysi i )

WOK+STK+maxSTK, with the new semantic ker-6.3 Kernel Comparisons
nel, i.e. WOK+SSTK+maxSSTK, where SSTKyhe previous experiments (Sec. 6.2) show that

and maxSSTK encode four different kinds of simyykipedia-based distributional semantics provides
llarities, BNC, WIKI, WUP and Path. The aim gy, effective similarity to generalize lexico-syntactic
is twofold: qnderstandmg if semantic s.lmllarl'u'esrmeS (features). As our RTE kernel is a composition
can be effectively used to derive generalized exiCQst other pasic kernels, we experimented with dif-
syntactic rules and to determine the best similarityrant combinations to understand the role of each
model. . component. Moreover, to obtain results independent
~ Table 1 shows the results according to No Semagst parameterization we used the default paramgter
tics, Wiki, BNC, Path and WUP. The three pairs of Taple 2 reports the accuracy of different kernels
rows represent the results over the three differegyg their combinations on different RTE datasets.
datasets, i.e., RTE2, RTE3, and RTES. For eagBach row describes the results for each dataset and
pair, we have two rows representing a different jt s spjit in two according to the use of WOK or not
parameter of SVM. An increase gfaugments the i, the RTE model. In the each column, the different
weight of positive with respect to negative examplégernels are reported. For example, the entry in the
and during learning it tunes-up the Recall/Precisiofi, column and the 2nd row refers to the accuracy of
rate. We use wo values = 1 (the default value) 55K in combination with WOK, i.e. WOK+SSTK
andj = 0.9 (selected during a preliminary experi-for the RTE2.
ment on a validation seton RTEZ) = 0.9 wasused e gbserve that: first WOK produces a very high
to minimally increase the Precision, considering tha{ccyracy in RTE challenges, i.e. 60.62, 66.75 and
the semantic model tends to improve the Recall. g0 67 and it is an essential component of RTE sys-

The results show that: tems since its ablation always causes a large accu-
o WIKI semantics constantly improves the basid &Y decrease. Thisis reasonable as the major source

. y Imp of information to establish entailment between sen-
kernel (no Semantics) for any datasets or Pas ces is their word overlap
rameter. Second, STK and SSTK, when added to WOK,

e The distributional semantics is almost alwaydmMprove it on RTE2 and RTES but do not improve

better than the WordNet-based one. it on RTE3. This suggests a difficulty of exploiting
syntactic information for RTE3.

e Inone case WUP improves WIKI, i.e. 63.88vs Third, maxSTK+WOK relevantly improves
63.5 and in another case BNC reaches WIKIWOK on RTE2 and RTES but fails in RTES3. Again,
i.e. 67.25 but this happens for the default valuethe syntactic rules (with variables) which this kernel
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BNC | WN | WIKI Average Acc.| Ourrank | # participants
RTE2 | 0.55 | 0.42| 0.83 RTE2 59.8 3rd 23
RTE3 | 0.54 | 0.41| 0.83 RTE3 64.5 4th 26
RTE5 | 0.45 | 0.34| 0.82 RTES 61.5 4th 20

Table 3: Coverage of the different resources for the words Table 5: Comparison with other approaches to RTE
of the three datasets

results are indeed state-of-the-art. Unfortunately,
can provide are not enough general for RTE3. Iggriving a reasonable accuracy value to represent the
contrast, maxSSTK+WOK improves WOK on allgtate-of-the-art is extremely difficult as many fac-
datasets thanks to its generalization ability. tors can determine the final score. For example, the
Finally, STK and SSTK added to maxSTK+WOK pegt systems in RTE2 and RTE3 (Giampiccolo et al.,

or to maxSSTK+WOK tend to produce an accuracyg7) have an accuracy 10% higher than the others

increase, although not in every condition. but they generally use resources that are not publicly

7 Discussion available. -
Table 5 shows the average accuracy of the partici-

7.1 Coverage and efficiency pant systems, the rank of our system that we propose

As already mentioned, the practical use ol this paper and the number of participants. Our

Wikipedia to design lexical similarities is motivatedmOdel accuracy is absolutely above the average and

by a large coverage. Deriving similarities from othellt IS ranked at the t-op pOS-ItIOI”IS. We can also carry
ut a finer comparison with respect to RTE2 (Bar-

resources such as WordNet is more time-consuming. . tal. 2006) O ¢ it the best
To prove our claim, we performed an analysis on the f]"m ctal, q ).'th ur stys em results are i € ej
coverage and efficiency in computing the pair ternf, '€1 CoMpared With Systems using semantic mod-
similarity. els based on FrameNet, indeed the best ranked sys-
Table 3 shows the coverage of the content worqtgm in this class, i.e., (Burchardt et al., 2007), scores

of the three datasets. The coverage of Wikipedia Psnly 62.5. Among systems using logical mferenc_e,
r model is instead the 3rd out of 8 systems using

about two times more than the other resources in L .
6}oglcal inference that perform worse than ours. Fi-

experimented datasets. . . .
nally, it is the 2nd among systems using supervised

Speed Milliseconds machine learning models.
LSA 0.54 ]

WN with POS 5.3 8 Conclusion

WN without POS 15.2

In this paper we presented a model to effectively in-
Table 4: The comparison in terms of speed calculateglude semantics in lexical-syntactic features for tex-
over 10000 pairs after loading the model. tual entailment recognition. We have experimentally
shown that LSA-derived lexical semantics embed-
Moreover, Table 4 shows that the computatioried in syntactic structures is a promising approach.
of the LSA matrix on Wikipedia is faster than us-The model that we have presented is one of the
ing the WordNet similarity software (Pedersen et alpest system in the RTE challenges. Additionally, in
2004). Even if the accuracy of some WordNet modeontrast to many other methods it does not require
els can reach the one based on Wikipedia, the latteirge sets of handcrafted or corpus extracted lexical-
is preferable for the smaller computational cost.  syntactic rules.

7.2 Comparison with previous work Acknowledgements

The results o_f our models sh_ow th_at lexical S€The research of Alessandro Moschitti has been par-
mantics for building more effective Iexmal-syntactlctia”y supported by Trustworthy Eternal Systems via
rules is promising. Here, we compare our apgvolving Software, Data and Knowledge (EternalS,
proaches with other RTE systems to show that oyroject number FP7 247758).
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