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Abstract

Automatically finding email messages that
contain requests for action can provide valu-
able assistance to users who otherwise strug-
gle to give appropriate attention to the ac-
tionable tasks in their inbox. As a speech
act classification task, however, automatically
recognising requests in free text is particularly
challenging. The problem is compounded by
the fact that typical emails contain extrane-
ous material that makes it difficult to isolate
the content that is directed to the recipient of
the email message. In this paper, we report
on an email classification system which iden-
tifies messages containing requests; we then
show how, by segmenting the content of email
messages into different functional zones and
then considering only content in a small num-
ber of message zones when detecting requests,
we can improve the accuracy of message-level
automated request classification to 83.76%, a
relative increase of 15.9%. This represents
an error reduction of 41% compared with the
same request classifier deployed without email
zoning.

1 Introduction

The variety of linguistic forms that can be used
to express requests, and in particular the frequency
with which indirect speech acts are used in email, is
a major source of difficulty in determining whether
an email message contains one or more requests.
Another significant problem arises from the fact that
whether or not a request is directed at the recipient of
the email message depends on where in the message
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the request is found. Most obviously, if the request is
part of a replied-to message that is contained within
the current message, then it is perhaps more likely
that this request was directed at the sender of the
current message. However, separating out content
intended for the recipient from other extraneous con-
tent is not as simple as it might appear. Segmenting
email messages into their different functional parts
is hampered by the lack of standard syntax used by
different email clients to indicate different message
parts, and by the ad hoc ways in which people vary
the structure and layout of messages.

In this paper, we present our results in classifying
messages according to whether or not they contain
requests, and then show how a separate classifier
that aims to determine the nature of the zones that
make up an email message can improve upon these
results. Section 2 contains some context and moti-
vation for this work before we briefly review rele-
vant related work in Section 3. Then, in Section 4,
we describe a first experiment in request classifica-
tion using data gathered from a manual annotation
experiment. In analysing the errors made by this
classifier, we found that a significant number of er-
rors seemed to arise from the inclusion of content in
parts of a message (e.g., quoted reply content) that
were not authored by the current sender, and thus
were not relevant other than as context for interpret-
ing the current message content. Based on this anal-
ysis, we hypothesised that segmenting messages into
their different functional parts, which we call email
zones, and then using this information to consider
only content from certain parts of a message for re-
quest classification, would improve request classifi-
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cation performance.

To test this hypothesis, we developed an SVM-
based automated email zone classifier configured
with graphic, orthographic and lexical features; this
is described in more detail in (Lampert et al., 2009).
Section 5 describes how we improve request classi-
fication performance using this email zone classifier.
Section 6 summarises the performance of our re-
quest classifiers, with and without automated email
zoning, along with an analysis of the contribution of
lexical features to request classification, discussion
of request classification learning curves, and a de-
tailed error analysis that explores the sources of re-
quest classification errors. Finally, in Section 7, we
offer pointers to future work and some concluding
remarks.

2 Background and Motivation

Previous research has established that users rou-
tinely use email for managing requests in the work-
place — e.g., (Mackay, 1988; Ducheneaut and Bel-
lotti, 2001). Such studies have highlighted how
managing multiple ongoing tasks through email
leads to information overload (Whittaker and Sid-
ner, 1996; Bellotti et al., 2003), especially in the
face of an ever-increasing volume of email. The
result is that many users have difficulty giving ap-
propriate attention to requests hidden in their email
which require action or response. A particularly lu-
cid summary of the requirements placed on email
users comes from work by Murray (1991), whose
ethnographic research into the use of electronic mes-
saging at IBM highlighted that:

[Managers] would like to be able to track
outstanding promises they have made,
promises made to them, requests they’ve
made that have not been met and requests
made of them that they have not fulfilled.

This electronic exchange of requests and commit-
ments has previously been identified as a fundamen-
tal basis of the way work is delegated and com-
pleted within organisations. Winograd and Flores
were among the first to recognise and attempt to
exploit this with their Coordinator system (Wino-
grad and Flores, 1986). Their research into organ-
isational communication concluded that “Organisa-
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tions exist as networks of directives and commis-
sives”. It is on this basis that our research explores
the use of requests (directive speech acts) and com-
mitments (commissive speech acts) in email. In this
paper, we focus on requests; feedback from users
of the request and commitment classifier plug-in for
Microsoft Outlook that we have under development
suggests that, at least within the business context of
our current users, requests are the more important of
the two phenomena.

Our aim is to create tools that assist email users
to identify and manage requests contained in incom-
ing and outgoing email. We define a request as an
utterance that places an obligation on an email re-
cipient to schedule an action; perform (or not per-
form) an action; or to respond with some speech
act. A simple example might be Please call when
you have a chance. A more complicated request is
David will send you the latest version if there have
been any updates. If David (perhaps cc’ed) is a re-
cipient of an email containing this second utterance,
the utterance functions as a (conditional) request for
him, even though it is addressed as a commitment to
a third-party. In real-world email, requests are fre-
quently expressed in such subtle ways, as we discuss
in Section 4.

A distinction can be drawn between message-
level identification—i.e., the task of determining
whether an email message contains a request —
and utterance-level identification—i.e., determin-
ing precisely where and how the request is ex-
pressed. In this paper, we focus on the task of
message-level identification, since utterance-level
identification is a significantly more problematic
task: it is often the case that, while we might agree
that a message contains a request or commitment,
it is much harder to determine the precise extent of
the text that conveys this request (see (Lampert et
al., 2008b) for a detailed discussion of some of the
issues here).

3 Related Work

Our request classification work builds on influential
ideas proposed by Winograd and Flores (1986) in
taking a language/action perspective and identifying
speech acts in email. While this differs from the ap-
proach of most currently-used email systems, which



routinely treat the content of email messages as ho-
mogeneous bags-of-words, there is a growing body
of research applying ideas from Speech Act Theory
(Austin, 1962; Searle, 1969) to analyse and enhance
email communication.

Khosravi and Wilks (1999) were among the first
to automate message-level request classification in
email. They used cue-phrase based rules to clas-
sify three classes of requests: Request-Action,
Request-Information and Request-Permission. Un-
fortunately, their approach was quite brittle, with the
rules being very specific to the computer support do-
main from which their email data was drawn.

Cohen, Carvalho and Mitchell (2004) developed
machine learning-based classifiers for a number of
email speech acts. They performed manual email
zoning, but didn’t explore the contribution this made
to the performance of their various speech act clas-
sifiers. For requests, they report peak F-measure of
0.69 against a majority class baseline accuracy of
approximately 66%. Cohen, Carvalho and Mitchell
found that unweighted bigrams were particularly
useful features in their experiments, out-performing
other features applied. They later applied a series of
text normalisations and n-gram feature selection al-
gorithms to improve performance (Carvalho and Co-
hen, 2006). We apply similar normalisations in our
work. While difficult to compare due to the use of a
different email corpus that may or may not exclude
annotation disagreements, our request classifier per-
formance exceeds that of the enhanced classifier re-
ported in (Carvalho and Cohen, 2006).

Goldstein and Sabin (2006) have also worked on
related email classification tasks. They use verb
classes, along with a series of hand-crafted form-
and phrase-based features, for classifying what they
term email genre, a task which overlaps signifi-
cantly with email speech act classification. Their
results are difficult to compare since they include a
mix of form-based classifications like response with
more intent-based classes such as request. For re-
quests, the results are rather poor, with precision of
only 0.43 on a small set of personal mail.

The SmartMail system (Corston-Oliver et al.,
2004) is probably the most mature previous work
on utterance-level request classification. SmartMail
attempted to automatically extract and reformulate
action items from email messages for the purpose of
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adding them to a user’s to-do list. The system em-
ployed a series of deep linguistic features, including
phrase structure and semantic features, along with
word and part-of-speech n-gram features. The au-
thors found that word n-grams were highly predic-
tive for their classification task, and that there was
little difference in performance when the more ex-
pensive deep linguistic features were added. Based
on this insight, our own system does not employ
deeper linguistic features. Unfortunately, the re-
sults reported reveal only the aggregate performance
across all classes, which involves a mix of both
form-based classes (such as signature content ad-
dress lines and URL lines), and intent-based classes
(such as requests and promises). It is thus very dif-
ficult to directly compare the results with our sys-
tem. Additionally, the experiments were performed
over a large corpus of messages that are not avail-
able for use by other researchers. In contrast, we
use messages from the widely-available Enron email
corpus (Klimt and Yang, 2004) for our own experi-
ments.

While several of the above systems involve man-
ual processes for removing particular parts of mes-
sage bodies, none employ a comprehensive, auto-
mated approach to email zoning.

We focus on the combination of email zoning
and request classification tasks and provide details
of how email zoning improves request classification
— a task not previously explored. To do so, we re-
quire an automated email zone classifier. We exper-
imented with using the Jangada system (Carvalho
and Cohen, 2004), but found similar shortcomings
to those noted by Estival et al. (2007). In particular,
Jangada did not accurately identify forwarded or re-
ply content in email messages from the email Enron
corpus that we use. We achieved much better perfor-
mance with our own Zebra zone classifier (Lampert
et al., 2009); it is this system that we use for email
zoning throughout this paper.

4 Email Request Classification

Identifying requests requires interpretation of the in-
tent that lies behind the language used. Given this, it
is natural to approach the problem as one of speech
act identification. In Speech Act Theory, speech
acts are categories like assertion and request that



capture the intentions underlying surface utterances,
providing abstractions across the wide variety of dif-
ferent ways in which instances of those categories
might be realised in linguistic form. In this paper
we focus on the speech acts that represent requests,
where people are placing obligations upon others via
actionable content within email messages.

The task of building automated classifiers is dif-
ficult since the function of conveying a request does
not neatly map to a particular set of language forms;
requests often involve what are referred to as indi-
rect speech acts. While investigating particular sur-
face forms of language is relatively unproblematic,
it is widely recognised that “investigating a collec-
tion of forms that represent, for example, a partic-
ular speech act leads to the problem of establish-
ing which forms constitute that collection” (Archer
et al., 2008). Email offers particular challenges as
it has been shown to exhibit a higher frequency of
indirect speech acts than other media (Hassell and
Christensen, 1996). We approach the problem by
gathering judgments from human annotators and us-
ing this data to train supervised machine learning al-
gorithms.

Our request classifier works at the message-level,
marking emails as requests if they contain one or
more request utterances. As noted earlier, we define
a request as an utterance from the email sender that
places an obligation on a recipient to schedule an
action (e.g., add to a calendar or task list), perform
an action, or respond. Requests may be conditional
or unconditional in terms of the obligation they im-
pose on the recipient. Conditional requests require
action only if a stated condition is satisfied. Previous
annotation experiments have shown that conditional
requests are an important phenomena and occur fre-
quently in email (Scerri et al., 2008; Lampert et al.,
2008a). Requests may also be phrased as either a
direct or indirect speech act.

Although some linguists distinguish between
speech acts that require a physical response and
those that require a verbal or information response,
e.g., (Sinclair and Coulthard, 1975), we follow
Searle’s approach and make no such distinction. We
thus consider questions requiring an informational
response to be requests, since they place an obliga-
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tion on the recipient to answer. '

Additionally, there are some classes of request
which have been the source of systematic human
disagreement in our previous annotation experi-
ments. One such class consists of requests for
inaction. Requests for inaction, sometimes called
prohibitives (Sadock and Zwicky, 1985), prohibit
action or request negated action. An example is:
Please don’t let anyone else use the computer in the
office. As they impose an obligation on the sender,
we consider requests for inaction to be requests.
Similarly, we consider that meeting announcements
(e.g., Today’s Prebid Meeting will take place in
EB32c¢2 at 3pm) and requests to read, open or oth-
erwise act on documents attached to email messages
(e.g., See attached) are also requests.

Several complex classes of requests are particu-
larly sensitive to the context for their interpretation.
Reported requests are one such class. Some reported
requests, such as Paul asked if you could put to-
gether a summary of your accomplishments in an
email, clearly function as a request. Others do not
impose an obligation on the recipient, e.g., Sorry for
the delay; Paul requested your prize to be sent out
late December. The surrounding context must be
used to determine the intent of utterances like re-
ported requests. Such distinctions are often difficult
to automate.

Other complex requests include instructions.
Sometimes instructions are of the kind that one
might ‘file for later use’. These tend to not be
marked as requests. Other instructions, such as Your
user id and password have been set up. Please fol-
low the steps below to access the new environment,
are intended to be executed more promptly. Tem-
poral distance between receipt of the instruction and
expected action is an important factor to distinguish
between requests and non-requests. Another influ-
encing property is the likelihood of the trigger event
that would lead to execution of the described ac-
tion. While the example instructions above are likely
to be executed, instructions for how to handle sus-
pected anthrax-infected mail are (for most people)
unlikely to be actioned.

Further detail and discussion of these and other

"Note, however, that not all questions are requests. Rhetori-

cal questions are perhaps the most obvious class of non-request
questions.



challenges in defining and interpreting requests in
email can be found in (Lampert et al., 2008b). In
particular, that paper includes analysis of a series of
complex edge cases that make even human agree-
ment in identifying requests difficult to achieve.

4.1 An Email Request Classifier

Our request classifier is based around an SVM clas-
sifier, implemented using Weka (Witten and Frank,
2005). Given an email message as input, complete
with header information, our binary request classi-
fier predicts the presence or absence of request ut-
terances within the message.

For training our request classifier, we use email
from the database dump of the Enron email corpus
released by Andrew Fiore and Jeff Heer.” This ver-
sion of the corpus has been processed to remove du-
plicate messages and to normalise sender and recipi-
ent names, resulting in just over 250,000 email mes-
sages. No attachments are included.

Our request classifier training data is drawn from
a collection of 664 messages that were selected at
random from the Enron corpus. Each message was
annotated by three annotators, with overall kappa
agreement of 0.681. From the full dataset of 664
messages, we remove all messages where annota-
tors disagreed for training and evaluating our request
classifier, in order to mitigate the effects of annota-
tion noise, as discussed in (Beigman and Klebanov,
2009). The unanimously agreed data set used for
training consists of 505 email messages.

4.2 Request Classification Features

The features we use in our request classifier are:

message length in characters and words;

number and percentage of capitalised words;

number of non alpha-numeric characters;

e whether the subject line contains markers of
email replies or forwards (e.g. Re:, Fw:);

o the presence of sender or recipient names;

o the presence of sentences that begin with a
modal verb (e.g., might, may, should, would);

o the presence of sentences that begin with a

question word (e.g, who, what, where, when,

why, which, how);

>http://bailando.sims.berkeley.edu/enron/enron.sql.gz
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e whether the message contains any sentences
that end with a question mark; and

e binary word unigram and word bigram fea-
tures for n-grams that occur at least three times
across the training set.

Before generating n-gram features, we normalise
the message text as shown in Table 1, in a manner
similar to Carvalho and Cohen (2006). We also add
tokens marking the start and end of sentences, de-
tected using a modified version of Scott Piao’s sen-
tence splitter (Piao et al., 2002), and tokens marking
the start and end of the message.

Symbol Used Pattern
numbers Any sequence of digits
day Day names or abbreviations

pronoun-object
pronoun-subject
filetype
multi-dash
multi-underscore

Objective pronouns: me, her, him, us, them
Subjective pronouns: 1, we, you, he, she, they
.doc, .pdf, .ppt, .txt, .xIs, .rtf

3 or more sequential ‘-’ characters

3 or more sequential ‘_” characters

Table 1: Normalisation applied to n-gram features

Our initial request classifier achieves an accuracy of
72.28%. Table 2 shows accuracy, precision, recall
and F-measure results, calculated using stratified 10-
fold cross-validation, compared against a majority
class baseline. Given the well-balanced nature of
our training data (52.08% of messages contain a re-
quest), this is a reasonable basis for comparison.

Majority Baseline No Zoning Classifier

Request Non-Request Request Non-Request
Accuracy 52.08% 72.28%
Precision  0.521 0.000 0.729 0.716
Recall  1.000 0.000 0.745 0.698
F-Measure  0.685 0.000 0.737 0.707

Table 2: Request classifier results without email zoning

An error analysis of the predictions from our initial
request classifier uncovered a series of classification
errors that appeared to be due to request-like sig-
nals being picked up from parts of messages such as
email signatures and quoted reply content. It seemed
likely that our request classifier would benefit from
an email zone classifier that could identify and ig-
nore such message parts.



5 Improving Request Classification with
Email Zoning

Requests in email do not occur uniformly across the
zones that make up the email message. There are
specific zones of a message in which requests are
likely to occur.

Unfortunately, accurate classification of email
zones is difficult, hampered by the lack of standard
syntax used by different email clients to indicate dif-
ferent message parts, and by the ad hoc ways in
which people vary the structure and layout of their
messages. For example, different email clients indi-
cate quoted material in a variety of ways. Some pre-
fix every line of the quoted message with a character
such as ‘>’ or ‘|’, while others indent the quoted
content or insert the quoted message unmodified,
prefixed by a message header. Sometimes the new
content is above the quoted content (a style known
as top-posting); in other cases, the new content may
appear after the quoted content (bottom-posting) or
interleaved with the quoted content (inline reply-
ing). Confounding the issue further is that users are
able to configure their email client to suit their in-
dividual tastes, and can change both the syntax of
quoting and their quoting style (top, bottom or in-
line replying) on a per message basis.

Despite the likelihood of some noise being in-
troduced through mis-classification of email zones,
our hypothesis was that even imperfect information
about the functional parts of a message should im-
prove the performance of our request classifier.

Based on this hypothesis, we integrated Zebra
(Lampert et al., 2009), our SVM-based email zone
classifier, to identify the different functional parts of
email messages. Using features that capture graphic,
orthographic and lexical information, Zebra classi-
fies and segments the body text into nine different
email zones: author content (written by the cur-
rent sender), greetings, signoffs, quoted reply con-
tent, forwarded content, email signatures, advertis-
ing, disclaimers, and automated attachment refer-
ences. Zebra has two modes of operation, classi-
fying either message fragments — whitespace sepa-
rated sets of contiguous lines — or individual lines.
We configure Zebra for line-based zone classifica-
tion, and use it to extract only lines classified as au-
thor, greeting and signoff text. We remove the con-
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tent of all other zones before we evaluate features
for request classification.

6 Results and Discussion

Classifying the zones in email messages and ap-
plying our request classifier to only relevant mes-
sage parts significantly increases the performance
of the request classifier. As noted above, without
zoning, our request classifier achieves accuracy of
72.28% and a weighted F-measure (weighted be-
tween the F-measure for requests and non-requests
based on the relative frequency of each class) of
0.723. Adding the zone classifier, we increase the
accuracy to 83.76% and the weighted F-measure to
0.838. This corresponds to a relative increase in
both accuracy and weighted F-measure of 15.9%,
which in turn corresponds to an error reduction of
more than 41%. Table 3 shows a comparison of
the results of the non-zoning and zoning request
classifiers, generated using stratified 10-fold cross-
validation. In a two-tailed paired t-test, run over ten
iterations of stratified 10-fold cross-validation, the
increase in accuracy, precision, recall and f-measure
were all significant at p=0.01.

No Zoning With Zoning
Request Non-Request Request Non-Request
Accuracy 72.28% 83.76%*
Precision  0.729 0.716 0.849* 0.825%
Recall ~ 0.745 0.698 0.837%* 0.839%*
F-Measure  0.737 0.707 0.843* 0.832%*

Table 3: Request classifier results with and without email
zoning (* indicates a statistically significant difference at
p=0.01)

6.1 Lexical Feature Contribution

As expected, lexical information is crucial to re-
quest classification. When we experimented with re-
moving all lexical (n-gram) features, the non-zoning
request classifier accuracy dropped to 57.62% and
the zoning request classifier accuracy dropped to
61.78%. In contrast, when we apply only n-gram
features, we achieve accuracy of 71.49% for the
non-zoning classifier and 83.36% for the zoning
classifier. Clearly, lexical information is critical for
accurate request classification, regardless of whether
email messages are zoned.



Using Information Gain, we ranked the n-gram
features in terms of their usefulness. Table 4 shows
the top-10 unigrams and bigrams for our non-zoning
request classifier. Using these top-10 n-grams (plus
our non-n-gram features), we achieve only 66.34%
accuracy. These top-10 n-grams do not seem to
align well with linguistic intuitions, illustrating how
the noise from irrelevant message parts hampers per-
formance. In particular, there were several similar,
apparently automated messages that were annotated
(as non-requests) which appear to be the source of
several of the top-10 n-grams. This strongly sug-
gests that without zoning, the classifier is not learn-
ing features from the training set at a useful level of
generality.

Word Unigrams Word Bigrams
Word 1 Word 2
pronoun-object let pronoun-object
please pronoun-object know
iso start-sentence no
pronoun-subject start date
hourahead hour :
attached ; hourahead
let hourahead hour
westdesk start-sentence start
parsing westdesk /
if is0 final

Table 4: Top 10 useful n-grams for our request classifier
without zoning, ranked by Information Gain

In contrast, once we add the zoning classifier, the
top-10 unigrams and bigrams appear to correspond
much better with linguistic intuitions about the lan-
guage of requests. These are shown in Table 5. Us-
ing these top-10 n-grams (plus our non-n-gram fea-
tures), we achieve 80% accuracy. This suggests that,
even with our relatively small amount of training
data, the zone classifier helps the request classifier
to extract fairly general n-gram features.

Interestingly, although lexical features are very
important, the top three features ranked by Informa-
tion Gain are non-lexical: message length in words,
the number of non-alpha-numeric characters in the
message and the number of capitalised words in the
message.
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Word Unigrams Word Bigrams
Word 1 Word 2
please ? end-sentence
? pronoun-object know
pronoun-object let pronoun-object
if start-sentence please
pronoun-subject if pronoun-subject
let start-sentence thanks
to please let
know pronoun-subject have
thanks thanks comma
do start date

Table 5: Top 10 useful n-grams for our request classifier
with zoning, ranked by Information Gain

6.2 Learning Curves

Figure 1 shows a plot of accuracy, precision and
recall versus the number of training instances
used to build the request classifier. These re-
sults are calculated over zoned email bodies, us-
ing the average across ten iterations of stratified
10-fold cross-validation for each different sized
set of training instances, implemented via the
FilteredClassifier with the Resample fil-
ter in Weka. Given our pool of 505 agreed mes-
sage annotations, we plot the recall and precision for
training instance sets of size 50 to 505 messages.

There is a clear trend of increasing performance
as the training set size grows. It seems reasonable to
assume that more data should continue to facilitate
better request classifier performance. To this end,
we are annotating more data as part of our current
and future work.

6.3 Error Analysis

To explore the errors made by our request classifier,
we examined the output of our zoning request clas-
sifier using our full feature set, including all word
n-grams.

Approximately 20% of errors relate to requests
that are implicit, and thus more difficult to detect
from surface features. Another 10% of errors are
due to attempts to classify requests in inappropri-
ate genres of email messages. In particular, both
marketing messages and spam frequently include
request-like, directive utterances which our annota-
tors all agreed would not be useful to mark as re-
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Figure 1: Learning curve showing recall, accuracy and
precision versus the number of training instances

quests for an email user. Not unreasonably, our clas-
sifier is sometimes confused by the content of these
messages, mistakenly marking requests where our
annotators did not. We intend to resolve these classi-
fication errors by filtering out such messages before
we apply the request classifier.

Another 5% of errors are due to request content
occurring in zones that we ignore. The most com-
mon case is content in a forwarded zone. Sometimes
email senders forward a message as a form of task
delegation; because we ignore forwarded content,
our request classifier misses such requests. We did
experiment with including content from forwarded
zones (in addition to the author, greeting and sig-
noff zones), but found that this reduced the perfor-
mance of our request classifier, presumably due to
the additional noise from irrelevant content in other
forwarded material. Forwarded messages are thus
somewhat difficult to deal with. One possible ap-
proach would be to build sender-specific profiles that
might allow us to deal with forwarded content (and
potentially content from other zones) differently for
different users, essentially learning to adapt to the
different styles of different email users.

A further 5% of errors involve errors in the zone
classifier, which leads to incorrect zone labels be-
ing applied to zone content that we would wish to
include for our request classifier. Examples include
author content being mistakenly identified as signa-
ture content. In such cases, we incorrectly remove

991

relevant content from the body text that is passed
to our request classifier. Improvements to the zone
classifier would resolve these issues.

As part of our annotation task, we also asked
coders to mark the presence of pleasantries. We
define a pleasantry as an utterance that could be a
request in some other context, but that does not func-
tion as a request in the context of use under consid-
eration. Pleasantries are frequently formulaic, and
do not place any significant obligation on the recip-
ient to act or respond. Variations on the phrase Let
me know if you have any questions are particularly
common in email messages. The context of the en-
tire email message needs to be considered to distin-
guish between when such an utterance functions as
a request and when it should be marked as a pleas-
antry. Of the errors made by our request classifier,
approximately 5% involve marking messages con-
taining only pleasantries as containing a request.

The remaining errors are somewhat diverse.
Close to 5% involve errors interpreting requests as-
sociated with attached files. The balance of almost
50% of errors involve a wide range of issues, from
misspellings of key words such as please to a lack
of punctuation cues such as question marks.

7 Conclusion

Request classification, like any form of automated
speech act recognition, is a difficult task. Despite
this inherent difficulty, the automatic request clas-
sifier we describe in this paper correctly labels re-
quests at the message level in 83.76% of email mes-
sages from our annotated dataset. Unlike previous
work that has attempted to automate the classifi-
cation of requests in email, we zone the messages
without manual intervention. This improves accu-
racy by 15.9% relative to the performance of the
same request classifier without the assistance of an
email zone classifier to focus on relevant message
parts. Although some zone classification errors are
made, error analysis reveals that only 5% of errors
are due to zone misclassification of message parts.
This suggests that, although zone classifier perfor-
mance could be further improved, it is likely that
focusing on improving the request classifier using
the existing zone classifier performance will lead to
greater performance gains.
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