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Abstract
Datasets annotated with semantic roles are
an important prerequisite to developing high-
performance role labeling systems. Unfortu-
nately, the reliance on manual annotations,
which are both difficult and highly expen-
sive to produce, presents a major obstacle to
the widespread application of these systems
across different languages and text genres. In
this paper we describe a method for induc-
ing the semantic roles of verbal arguments di-
rectly from unannotated text. We formulate
the role induction problem as one of detecting
alternations and finding a canonical syntactic
form for them. Both steps are implemented in
a novel probabilistic model, a latent-variable
variant of the logistic classifier. Our method
increases the purity of the induced role clus-
ters by a wide margin over a strong baseline.

1 Introduction
Semantic role labeling (SRL, Gildea and Jurafsky
2002) is the task of automatically classifying the ar-
guments of a predicate with roles such as Agent, Pa-
tient or Location. These labels capture aspects of the
semantics of the relationship between the predicate
and the argument while abstracting over surface syn-
tactic configurations. SRL has received much atten-
tion in recent years (Surdeanu et al., 2008; Màrquez
et al., 2008), partly because of its potential to im-
prove applications that require broad coverage se-
mantic processing. Examples include information
extraction (Surdeanu et al., 2003), question answer-
ing (Shen and Lapata, 2007), summarization (Melli
et al., 2005), and machine translation (Wu and Fung,
2009).

Given sentences (1-a) and (1-b) as input, an SRL
system would have to identify the verb predicate

(shown in boldface), its arguments (Michael and
sandwich) and label them with semantic roles (Agent
and Patient).

(1) a. [Michael]Agent eats [a sandwich]Patient.
b. [A sandwich]Patient is eaten [by

Michael]Agent.

Here, sentence (1-b) is an alternation of (1-a).
The verbal arguments bear the same semantic role,
even though they appear in different syntactic posi-
tions: sandwich is the object of eat in sentence (1-a)
and its subject in (1-b) but it is in both instances as-
signed the role Patient. The example illustrates the
passive alternation. The latter is merely one type
of alternation, many others exist (Levin, 1993), and
their computational treatment is one of the main
challenges faced by semantic role labelers.

Most SRL systems to date conceptualize semantic
role labeling as a supervised learning problem and
rely on role-annotated data for model training. Prop-
Bank (Palmer et al., 2005) has been widely used for
the development of semantic role labelers as well as
FrameNet (Fillmore et al., 2003). Under the Prop-
Bank annotation framework (which we will assume
throughout this paper) each predicate is associated
with a set of core roles (named A0, A1, A2, and so
on) whose interpretations are specific to that pred-
icate1 and a set of adjunct roles (e.g., Location or
Time) whose interpretation is common across predi-
cates. In addition to large amounts of role-annotated
data, SRL systems often make use of a parser to ob-
tain syntactic analyses which subsequently serve as
input to a pipeline of components concerned with

1More precisely, A0 and A1 have a common interpreta-
tion across predicates as proto-agent and proto-patient (Dowty,
1991).
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identifying predicates and their arguments (argu-
ment identification) and labeling them with semantic
roles (argument classification).

Supervised SRL methods deliver reasonably good
performance (a system will recall around 81% of the
arguments correctly and 95% of those will be as-
signed a correct semantic role; see Màrquez et al.
2008 for details). Unfortunately, the reliance on la-
beled training data, which is both difficult and highly
expensive to produce, presents a major obstacle
to the widespread application of semantic role la-
beling across different languages and text genres.
And although corpora with semantic role annota-
tions exist nowadays in other languages (e.g., Ger-
man, Spanish, Catalan, Chinese, Korean), they tend
to be smaller than their English equivalents and of
limited value for modeling purposes. Moreover, the
performance of supervised systems degrades consid-
erably (by 10%) on out-of-domain data even within
English, a language for which two major annotated
corpora are available. Interestingly, Pradhan et al.
(2008) find that the main reason for this are errors
in the assignment of semantic roles, rather than the
identification of argument boundaries. Therefore, a
mechanism for inducing the semantic roles observed
in the data without additional manual effort would
enhance the robustness of existing SRL systems and
enable their portability to languages for which anno-
tations are unavailable or sparse.

In this paper we describe an unsupervised ap-
proach to argument classification or role induction2

that does not make use of role-annotated data. Role
induction can be naturally formalized as a cluster-
ing problem where argument instances are assigned
to clusters. Ideally, each cluster should contain argu-
ments corresponding to a specific semantic role and
each role should correspond to exactly one cluster. A
key insight in our approach is that many predicates
are associated with a standard linking. A linking is
a deterministic mapping from semantic roles onto
syntactic functions such as subject, or object. Most
predicates will exhibit a standard linking, i.e., they
will be predominantly used with a specific map-
ping. Alternations occur when a different linking
is used. In sentence (1-a) the predicate eat is used
with its standard linking (the Agent role is mapped
onto the subject function and the Patient onto the
object), whereas in sentence (1-b) eat is used with

2We use the term role induction rather than argument clas-
sification for the unsupervised setting.

its passive-linking (the Patient is mapped onto sub-
ject and the Agent appears as a prepositional phrase).
When faced with such alternations, we will attempt
to determine for each argument the syntactic func-
tion it would have had, had the standard linking been
used. We will refer to this function as the arguments’
canonical function, and use the term canonicaliza-
tion to describe the process of inferring these canon-
ical functions in the case of alternations. So, in sen-
tence (1-b) the canonical functions of the arguments
by Michael and sandwich are subject and object, re-
spectively.

Since linkings are injective, i.e., no two seman-
tic roles are mapped onto the same syntactic func-
tion, the canonical function of an argument uniquely
references a specific semantic role. We define a
probabilistic model for detecting non-standard link-
ings and for canonicalization. The model specifies a
distribution p(F) over the possible canonical func-
tions F of an argument. We present an extension of
the logistic classifier with the addition of latent vari-
ables which crucially allow to learn generalizations
over varying syntactic configurations. Rather than
using manually labeled data, we train our model on
observed syntactic functions which can be obtained
automatically from a parser. These training instances
are admittedly noisy but readily available and as
we show experimentally a useful data source for
inducing semantic roles. Application of the model
to a benchmark dataset yields improvements over a
strong baseline.

2 Related Work

Much previous work on SRL relies on supervised
learning methods for both argument identification
and argument classification (see Màrquez et al. 2008
for an overview). Most systems use manually anno-
tated resources to train separate classifiers for dif-
ferent SRL subtasks (e.g., Surdeanu et al. 2008).
A few approaches adopt semi-supervised learning
methods. The idea here is to to alleviate the data
requirements for semantic role labeling by extend-
ing existing resources through the use of unlabeled
data. Swier and Stevenson (2004) induce role la-
bels with a bootstrapping scheme in which the set
of labeled instances is iteratively expanded using
a classifier trained on previously labeled instances.
Padó and Lapata (2009) project role-semantic anno-
tations from an annotated corpus in one language
onto an unannotated corpus in another language.
And Fürstenau and Lapata (2009) propose a method
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in which annotations are projected from a source
corpus onto a target corpus, however within the
same language.

Unsupervised approaches to SRL have been few
and far between. Early work on lexicon acquisition
focuses on identifying verbal alternations rather than
their linkings. This is often done in conjunction with
hand-crafted resources such as a taxonomy of possi-
ble alternations (McCarthy and Korhonen, 1998) or
WordNet (McCarthy, 2002). Lapata (1999) proposes
a corpus-based method that is less reliant on taxo-
nomic resources, however focuses only on two spe-
cific verb alternations. Other work attempts to clus-
ter verbs into semantic classes (e.g., Levin 1993) on
the basis of their alternation behavior (Schulte im
Walde and Brew, 2002).

More recently, Abend et al. (2009) propose an
unsupervised algorithm for argument identifica-
tion that relies only on part-of-speech annotations,
whereas Grenager and Manning (2006) focus on
role induction which they formalize as probabilis-
tic inference in a Bayesian network. Their model
defines a joint probability distribution over the par-
ticular linking used together with a verb instance
and for each verbal argument, its lemma, syntactic
function as well as semantic role. Parameters in this
model are estimated using the EM algorithm as the
training instances include latent variables, namely
the semantic roles and linkings. To make inference
tractable they limit the set of linkings to a small
number and do not distinguish between different
types of adjuncts. Our own work also focuses on
inducing the semantic roles and the linkings used
by each verb. Our approach is conceptually sim-
pler and computationally more tractable. Our model
is a straightforward extension of the logistic classi-
fier with latent variables applied to all roles not just
coarse ones.

3 Problem Formulation

We treat role induction as a clustering problem.
The goal is to assign argument instances (i.e., spe-
cific arguments, occurring in an input sentence) into
clusters such that each cluster contains instances
with the same semantic role, and each semantic
role is found in exactly one cluster. As we as-
sume PropBank-style roles (Palmer et al., 2005),
our model will allocate a separate set of clusters for
each predicate and assign the arguments of a specific
predicate to one of the clusters associated with it.

As mentioned earlier (Section 1) a linking is a de-

A0 A1 TMP MNR
SBJ 54514 19684 15 7
OBJ 3359 51730 93 54

ADV 162 3506 976 2308
TMP 5 60 15167 22

PMOD 2466 4860 142 62
OPRD 37 5554 1 36

LOC 17 145 43 157
DIR 0 178 15 6

MNR 5 48 13 3312
PRP 9 50 11 6
LGS 2168 36 2 2
PRD 413 830 31 38

NMOD 422 388 25 59
EXT 0 20 2 12
DEP 18 150 25 65
SUB 3 84 4 2

CONJ 198 331 22 8
ROOT 62 147 84 2

64517 88616 16803 6404

Table 1: Contingency table between syntactic func-
tion and semantic role for two core roles Agent (A0)
and Patient (A1) and two adjunct roles, Time (TMP)
and Manner (MNR). Only syntactic functions occur-
ring more than 1000 times are listed. Counts were
obtained from the CoNLL 2008 training dataset us-
ing gold standard parses (the marginals in the bottom
row also include counts of unlisted co-occurrences).

terministic mapping from semantic roles onto syn-
tactic functions. Table 1 shows how frequently in-
dividual semantic roles map onto certain syntactic
functions. The frequencies were obtained from the
CoNLL 2008 dataset (see Surdeanu et al. 2008 for
details) and constitute an aggregate across predi-
cates. As can be seen, there is a clear tendency for
a semantic role to be mapped onto a single syntac-
tic function. This is true across predicates and even
more so for individual predicates. For example, A0
is commonly mapped onto subject (SBJ), whereas
A1 is often realized as object (OBJ). There are two
reasons for this. Firstly, a predicate is often asso-
ciated with a standard linking which is most fre-
quently used. Secondly, the alternate linkings of a
given predicate often differ from the standard link-
ing only with respect to a few roles. Importantly, we
do not assume that a single standard linking is valid
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for all predicates. Rather, each predicate has its own
standard linking. For example, in the standard link-
ing for the predicate fall, A1 is mapped onto subject
position, whereas in the standarad linking for eat,
A1 is mapped onto object position.

When an argument is attested with a non-standard
linking, we wish to determine the syntactic func-
tion it would have had if the standard linking had
been used. This canonical function of the argument
uniquely references a specific semantic role, i.e., the
semantic role that is mapped onto the function under
the standard linking. We can now specify an indi-
rect method for partitioning argument instances into
clusters:

1. Detect arguments that are linked in a non-
standard way (detection).

2. Determine the canonical function of these argu-
ments (canonicalization). For arguments with
standard linkings, their syntactic function cor-
responds directly to the canonical function.

3. Assign arguments to a cluster according to their
canonical function.

We distinguish between detecting non-standard link-
ings and canonicalization because in principle two
separate models could be used. In our probabilis-
tic formulation, both detection and canonicaliza-
tion rely on an estimate of the probability distribu-
tion p(F) over the canonical function F of an ar-
gument. When the most likely canonical function
differs from the observed syntactic function this in-
dicates that a non-standard linking has been used
(detection). This most likely canonical function can
be taken as the canonical function of the argument
(canonicalization).

Arguments are assigned to clusters based on
their inferred canonical function. Since we assume
predicate-specific roles, we induce a separate clus-
ter for each predicate. Given K clusters, we use the
following scheme for determining the mapping from
functions to clusters:

1. Order the functions by occurrence frequency.
2. For each of the K− 1 most frequent functions

allocate a separate cluster.
3. Assign all remaining functions to the K-th clus-

ter.

4 Model

The detection of non-standard linkings and canon-
icalization both rely on a probabilistic model p(F)
which specifies the distribution over the canonical

functions F of an argument. As is the case with most
SRL approaches, we assume to be given a syntactic
parse of the sentence from which we can extract la-
beled dependencies, corresponding to the syntactic
functions of arguments. To train the model we ex-
ploit the fact that most observed syntactic functions
will correspond to canonical functions. This enables
us to use the parser’s output for training even though
it does not contain semantic role annotations.

Critically, the features used to determine the
canonical function must be restricted so that they
give no cues about possible alternations. If they
would, the model could learn to predict alternations,
and therefore produce output closer to the observed
syntactic rather than canonical function of an argu-
ment. To avoid this pitfall we only use features at
or below the node representing the argument head in
the parse tree apart from the predicate lemma (see
Section 5 for details).

Given these local argument features, a simple so-
lution would be to use a standard classifier such as
the logistic classifier (Berger et al., 1996) to learn
the canonical function of arguments. However, this
is problematic, because in our setting the training
and application of the classifier happen on the same
dataset. The model will over-adapt to the observed
targets (i.e., the syntactic functions) and fail to learn
appropriate canonical functions. Lexical sparsity is
a contributing factor: the parameters associated with
sparse lexical features will be unavoidably adjusted
so that they are highly indicative of the syntactic
function they occur with.

One way to improve generalization is to incor-
porate a layer of latent variables into the logistic
classifier, which mediates between inputs (features
defined over parse trees) and target (the canonical
function). As a result, inputs and target are no longer
directly connected and the information conveyed by
the features about the target must be transferred via
the latent layer. The model is shown in plate notation
in Figure 1a. Here, Xi represents the observed in-
put features, Y the observed target, and Z j the latent
variables. The number of latent variables influences
the generalization properties of the model. With too
few latent variables too little information will be
transferred via the latent variables, whereas with too
many latent variables generalization will degrade.

The model defines a probability distribution over
the target variable Y and the latent variables Z, con-
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Figure 1: The logistic classifier with latent variables
(shaded nodes) illustrated as a graphical model using
(a) plate notation and (b) in unrolled form for M = 2
and N = 3.

ditional on the input variables X :

p(y,z|x,θ) =
1

P(x,θ)
exp

(
∑
k

θkφk(x,y,z)

)
(1)

We will assume that the latent variables Zi are bi-
nary. Each of the feature functions φk is associated
with a parameter θk. The partition function normal-
izes the distribution:

P(x,θ) = ∑
y

∑
z

exp

(
∑
k

θkφk(x,y,z)

)
(2)

Note that this model is a special case of a conditional
random field with latent variables (Sutton and Mc-
Callum, 2007) and resembles a neural network with
one hidden layer (Bishop, 2006).

Let (c,d) denote a training set of inputs and corre-
sponding targets. The maximum-likelihood parame-
ters can then be obtained by finding the θ maximiz-
ing:

l(θ) = log p(d|c)
= ∑i log∑z p(di,z|ci)
= ∑i log ∑z exp(∑k θkφk(ci,di,z))

P(ci,θ)

(3)

And the gradient is given by:

(∇l)k = ∂

∂θk
l(θ)

= ∑i ∑z p(z|di,ci)φk(ci,di,z)
−∑i ∑y,z p(y,z|ci)φk(ci,y,z)

(4)

where the first term is the conditional expected fea-
ture count and the second term is the expected fea-
ture count.

Thus far, we have written the equations in a
generic form for arbitrary conditional random fields
with latent variables (Sutton and McCallum, 2007).
In our model we have two types of pairwise suffi-
cient statistics: β(x,z) : R×{0,1}→ R, between a
single input variable and a single latent variable, and
γ(y,z) : Y ×{0,1}→ R, between the target and a la-
tent variable. Then, we can more specifically write
the gradient component of a parameter associated
with a sufficient statistic β(x j,zk) as:

∑
i
∑
zk

p(zk|di,ci)β(ci, j,zk)−∑
i
∑
zk

p(zk|ci)β(ci, j,zk) (5)

And the gradient component of a parameter associ-
ated with a sufficient statistic γ(y,zk) is:

∑
i

∑
zk

p(zk|di,ci)γ(di,zk)−∑
i

∑
y,zk

p(y,zk|ci)γ(y,zk) (6)

To obtain maximum-a-posteriori parameter esti-
mates we regularize the equations. Like for the stan-
dard logistic classifier this results in an additional
term of the target function and each component
of the gradient (see Sutton and McCallum 2007).
Computing the gradient requires computation of the
marginals which can be performed efficiently using
belief propagation (Yedidia et al., 2003). Note that
due to the fact, that there are no edges between the
latent variables, the inference graph is tree structured
and therefore inference yields exact results. We use
a stochastic gradient optimization method (Bottou,
2004) to optimize the target. Optimization is likely
to result in a local maximum, as the likelihood func-
tion is not convex due to the latent variables.

5 Experimental Design

In this section we discuss the experimental design
for assessing the performance of the model de-
scribed above. We give details on the dataset, fea-
tures and evaluation measures employed and present
the baseline methods used for comparison with our
model.

943



Figure 2: Dependency graph (simplified) of a sample sentence from the corpus.

Data Our experiments were carried out on the
CoNLL 2008 (Surdeanu et al., 2008) training dataset
which contains both verbal and nominal predicates.
However, we focused solely on verbal predicates,
following most previous work on semantic role la-
beling (Màrquez et al., 2008). The CoNLL dataset
is taken form the Wall Street Journal portion of
the Penn Treebank corpus (Marcus et al., 1993).
Role semantic annotations are based on PropBank
and have been converted from a constituent-based
to a dependency-based representation (see Surdeanu
et al. 2008). For each argument of a predicate only
the head word is annotated with the correspond-
ing semantic role, rather than the whole constituent.
In this paper we are only concerned with role in-
duction, not argument identification. Therefore, we
identify the arguments of each predicate by consult-
ing the gold standard.

The CoNLL dataset also supplies an automatic
dependency parse of each input sentence obtained
from the MaltParser (Nivre et al., 2007). The target
and features used in our model are extracted from
these parses. Syntactic functions occurring more
than 1,000 times in the gold standard are shown
in Table 1 (for more details we refer the interested
reader to Surdeanu et al. 2008). Syntactic func-
tions were further modified to include prepositions if
specified, resulting in a set of functions with which
arguments can be distinguished more precisely. This
was often the case with functions such as ADV,
TMP, LOC, etc. Also, instead of using the prepo-
sition itself as the argument head, we used the ac-
tual content word modifying the preposition. We
made no attempt to treat split arguments, namely in-
stances where the semantic argument of a predicate
has several syntactic heads. These are infrequent in
the dataset, they make up for less than 1% of all ar-
guments.

Model Setup The specific instantiation of the
model used in our experiments has 10 latent vari-
ables. With 10 binary latent variables we can en-

code 1024 different target values, which seems rea-
sonable for our set of syntactic functions which
comprises around 350 elements.

Features representing argument instances were
extracted from dependency parses like the one
shown in Figure 2. We used a relatively small feature
set consisting of: the predicate lemma, the argument
lemma, the argument part-of-speech, the preposition
involved in dependency between predicate and argu-
ment (if there is one), the lemma of left-most/right-
most child of the argument, the part-of-speech of
left-most/right-most child of argument, and a key
formed by concatenating all syntactic functions of
the argument’s children. The features for the argu-
ment maker in Figure 2 are [sell, maker, NN, –, the,
auto, DT, NN, NMOD+NMOD]. The target for this
instance (and observed syntactic function) is SBJ.

Evaluation Evaluating the output of our model
is no different from other clustering problems. We
can therefore use well-known measures from the
clustering literature to assess the quality of our
role induction method. We first created a set of
gold-standard role labeled argument instances which
were obtained from the training partition of the
CoNLL 2008 dataset (corresponding to sections
02–21 of PropBank). We used 10 clusters for each
predicate and restricted the set of predicates to those
attested with more than 20 instances. This rules out
simple cases with only few instances relative to the
number of clusters, which trivially yield high scores.

We compared the output of our method against
the gold-standard using the following common mea-
sures. Let K denote the number of clusters, ci the set
of instances in the i-th cluster and g j the set of in-
stances having the j-th gold standard semantic role
label. Cluster purity (PU) is defined as:

PU =
1
K ∑

i
max

j
|ci∩g j| (7)

We also used cluster accuracy (CA, Equation 8),
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PU CA CP CR CF1
Mic Mac Mic Mac Mic Mac Mic Mac Mic Mac

SyntFunc 73.2 75.8 82.0 80.9 67.6 65.3 55.7 50.1 61.1 56.7
LogLV 72.5 74.0 81.1 79.4 64.3 60.6 59.7 56.3 61.9 58.4
UpperBndS 94.7 96.1 96.9 97.0 97.4 97.6 90.4 100 93.7 93.8
UpperBndG 98.8 99.4 99.9 99.9 99.7 99.9 100 100 99.8 100

Table 2: Clustering results using our model (LogLV) against the baseline (SyntFunc) and upper bounds
(UpperBndS and UpperBndG).

cluster precision (CP, Equation 9), and cluster recall
(CR, Equation 9). Cluster F1 (CF1) is the harmonic
mean of precision and recall.

CA =
T P+T N

T P+FP+T N +FN
(8)

CP =
T P

T P+FP
CR =

T P
T P+FN

(9)

Here T P is the number of pairs of instances which
have the same role and are in the same cluster, T N is
the number of pairs of instances which have different
roles and are in different clusters, FP is the number
of pairs of instances with different roles in the same
cluster and FN the number of pairs of instances with
the same role in different clusters.

Baselines and Upper Bound We compared our
model against a baseline that assigns arguments to
clusters based on their syntactic function. Here, no
attempt is made to correct the roles of arguments in
non-standard linkings. We would also like to com-
pare our model against a supervised system. Unfor-
tunately, this is not possible, as we are using the des-
ignated CoNLL training set as our test set, and any
supervised system trained on this data would achieve
unfairly high scores. Therefore, we approximate the
performance of a supervised system by clustering in-
stances according to their gold standard role after
introducing some noise. Specifically, we randomly
selected 5% of the gold standard roles and mapped
them to an erroneous role. This roughly corresponds
to the clustering which would be induced by a state-
of-the-art supervised system with 95% precision. Fi-
nally, we also report the results of the true upper
bound obtained by clustering the arguments, based
on their gold standard semantic role (again using 10
clusters per verb).

6 Results

Our results are summarized in Table 2. We report
cluster purity, accuracy, precision, recall, and F1 for
our latent variable logistic classifier (LogLV) and a
baseline that assigns arguments to clusters accord-
ing to their syntactic function (SyntFunc). The table
also includes the gold standard upper bound (Up-
perBndG) and its supervised proxy (UpperBndS).
We report micro- and macro-average scores.3

Model scores are quite similar to the baseline,
which might suggest that the model is simply repli-
cating the observed data. However, this is not the
case: canonical functions differ from observed func-
tions for approximately 27% of the argument in-
stances. If the baseline treated these instances cor-
rectly, we would expect it to outperform our model.
The fact that it does not, indicates that the baseline
error rate is higher precisely on these instances. In
other words, the model can help in detecting alter-
nate linkings and thus baseline errors.

We further analyzed our model’s ability to de-
tect alternate linkings. Specifically, if we assume a
standard linking where model and observation agree
and an alternate linking where they disagree, we
obtain the following. The number of true positives
(correctly detected alternate linkings) is 27,606, the
number of false positives (incorrectly marked al-
ternations) is 32,031, the number of true negatives
(cases where the model correctly did not detect an
alternate linking) is 132,556, and the number of false
negatives (alternate linkings that the model should
have detected but did not) is 32,516.4. The analysis
shows that 46% of alternations (baseline errors) are
detected.

3Micro-averages are computed over instances while macro-
averages are computed over verbs.

4Note that the true/false positives/negatives here refer to al-
ternate linkings, not to be confused with the true/false positives
in equations (8) and (9).
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PU CA CP CR CF1
Mic Mac Mic Mac Mic Mac Mic Mac Mic Mac

SyntFunct 73.9 77.8 82.1 81.3 68.0 66.5 55.9 50.3 61.4 57.3
LogLV 82.6 83.7 87.4 85.5 79.1 74.5 73.3 68.5 76.1 71.4

Table 3: Clustering results using our model to detect alternate linkings (LogLV) against the baseline (Synt-
Func).

We can therefore increase cluster purity by clus-
tering only those instances where the model does
not indicate an alternation. The results are shown
in Table 3. Using less instances while keeping the
number of clusters the same will by itself tend to
increase performance. To compensate for this, we
also report results for the baseline on a reduced
dataset. The latter was obtained from the origi-
nal dataset by randomly removing the same num-
ber of instances.5 By using the model to detect al-
ternations, scores improve over the baseline across
the board. We observe performance gains for pu-
rity which increases by 8.7% (micro-average; com-
pare Tables 2 and 3). F1 also improves considerably
by 13% (micro-average). These results are encour-
aging indicating that detecting alternate linkings is
an important first step towards more accurate role
induction.

We also conducted a more detailed error analysis
to gain more insight into the behavior of our model.
In most cases, alternate linkings where A1 occurs in
subject position and A0 in object position are canon-
icalized correctly (with 96% and 97% precision, re-
spectively). Half of the detected non-standard link-
ings involve adjunct roles. Here, the model has much
more difficulty with canonicalization and is success-
ful approximately 25% of the time. For example, in
the phrase occur at dawn the model canonicalizes
LOC to ADV, whereas TMP would be the correct
function. About 75% of all false negatives are due to
core roles and only 25% due to adjunct roles. Many
false negatives are due to parser errors, which are
reproduced by the model. This indicates overfitting,
and indeed many of the false negatives involve in-
frequent lexical items (e.g., juxtapose or Odyssey).

Finally, to put our evaluation results into context,
we also wanted to compare against Grenager and
Manning’s (2006) related system. A direct compar-
ison is somewhat problematic due to the use of dif-

5This was repeated several times to ensure that the results
are stable across runs.

ferent datasets and the fact that we induce labels for
all roles whereas they collapse adjunct roles to a sin-
gle role. Nevertheless, we made a good-faith effort
to evaluate our system using their evaluation setting.
Specifically, we ran our system on the same test set,
Section 23 of the Penn Treebank (annotated with
PropBank roles), using gold standard parses with six
clusters for each verb type. Our model achieves a
cluster purity score of 90.3% on this dataset com-
pared to 89.7% reported in Grenager and Manning.

7 Conclusions
In this paper we have presented a novel framework
for unsupervised role induction. We conceptualized
the induction problem as one of detecting alternate
linkings and finding their canonical syntactic form,
and formulated a novel probabilistic model that per-
forms these tasks. The model extends the logis-
tic classifier with latent variables and is trained on
parsed output which is used as a noisy target for
learning. Experimental results show promise, alter-
nations can be successfully detected and the quality
of the induced role clusters can be substantially en-
hanced.

We argue that the present model could be use-
fully employed to enhance the performance of other
models. For example, it could be used in an active
learning context to identify argument instances that
are difficult to classify for a supervised or semi-
supervised system and would presumably benefit
from additional (manual) annotation. Importantly,
the framework can incorporate different probabilis-
tic models for detection and canonicalization which
we intend to explore in the future. We also aim to
embed and test our role induction method within a
full SRL system that is also concerned with argu-
ment identification. Eventually, we also intend to re-
place the treebank-trained parser with a chunker.
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