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Abstract 

In a Wizard-of-Oz experiment with multiple 

wizard subjects, each wizard viewed automated 

speech recognition (ASR) results for utterances 

whose interpretation is critical to task success: 

requests for books by title from a library data-

base. To avoid non-understandings, the wizard 

directly queried the application database with 

the ASR hypothesis (voice search). To learn 

how to avoid misunderstandings, we investi-

gated how wizards dealt with uncertainty in 

voice search results. Wizards were quite suc-

cessful at selecting the correct title from query 

results that included a match. The most suc-

cessful wizard could also tell when the query 

results did not contain the requested title. Our 

learned models of the best wizard’s behavior 

combine features available to wizards with 

some that are not, such as recognition confi-

dence and acoustic model scores.  

1 Introduction 

Wizard-of-Oz (WOz) studies have long been used 

for spoken dialogue system design. In a relatively 

new variant, a subject (the wizard) is presented 

with real or simulated automated speech recogni-

tion (ASR) to observe how people deal with incor-

rect speech recognition output (Rieser, Kruijff-

Korbayová, & Lemon, 2005; Skantze, 2003; 

Stuttle, Williams, & Young, 2004; Williams & 

Young, 2003, 2004; Zollo, 1999). In these experi-

ments, when a wizard could not interpret the ASR 

output (non-understanding), she rarely asked users 

to repeat themselves. Instead, the wizard found 

other ways to continue the task.  

This paper describes an experiment that pre-

sented wizards with ASR results for utterances 

whose interpretation is critical to task success: re-

quests for books from a library database, identified 

by title. To avoid non-understandings, wizards 

used voice search (Wang et al., 2008): they direct-

ly queried the application database with ASR out-

put. To investigate how to avoid errors in 

understanding (misunderstandings), we examined 

how wizards dealt with uncertainty in voice search 

results. When the voice search results included the 

requested title, all seven of our wizards were likely 

to identify it. One wizard, however, recognized far 

better than the others when the voice search results 

did not contain the requested title. The experiment 

employed a novel design that made it possible to 

include system features in models of wizard beha-

vior. The principal result is that our learned models 

of the best wizard’s behavior combine features that 

are available to wizards with some that are not, 

such as recognition confidence and acoustic model 

scores. 

The next section of the paper motivates our ex-

periment. Subsequent sections describe related 

work, the dialogue system and embedded wizard 

infrastructure, experimental design, learning me-

thods, and results. We then discuss how to general-

ize from the results of our study for spoken 

dialogue system design. We conclude with a sum-

mary of results and their implications. 

2 Motivation 

Rather than investigate full dialogues, we ad-

dressed a single type of turn exchange or adjacency 

pair (Sacks et al., 1974): a request for a book by its 
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title. This allowed us to collect data exclusively 

about an utterance type critical for task success in 

our application domain. We hypothesized that low-

level features from speech recognition, such as 

acoustic model fit, could independently affect 

voice search confidence. We therefore applied a 

novel approach, embedded WOz, in which a wizard 

and the system together interpret noisy ASR. 

To address how to avoid misunderstandings, we 

investigated how wizards dealt with uncertainty in 

voice search returns. To illustrate what we mean 

by uncertainty, if we query our book title database 

with the ASR hypothesis: 
ROLL DWELL 

our voice search procedure returns, in this order: 
CROMWELL 

ROBERT LOWELL 

ROAD TO WEALTH 

The correct title appears last because of the score it 

is assigned by the string similarity metric we use.  

Three factors motivated our use of voice search 

to interpret book title requests: noisy ASR, un-

usually long query targets, and high overlap of the 

vocabulary across different query types (e.g., au-

thor and title) as well as with non-query words in 

caller utterances (e.g., “Could you look up . . .”).  

First, accurate speech recognition for a real-

world telephone application can be difficult to 

achieve, given unpredictable background noise and 

transmission quality. For example, the 68% word 

error rate (WER) for the fielded version of Let’s 

Go Public! (Raux et al., 2005) far exceeded its 

17% WER under controlled conditions. Our appli-

cation handles library requests by telephone, and 

would benefit from robustness to noisy ASR. 

Second, the book title field in our database dif-

fers from the typical case for spoken dialogue sys-

tems that access a relational database. Such 

systems include travel booking (Levin et al., 2000), 

bus route information (Raux et al., 2006), restau-

rant guides (Johnston et al., 2002; Komatani et al., 

2005), weather (Zue et al., 2000) and directory 

services (Georgila et al., 2003). In general for these 

systems, a few words are sufficient to retrieve the 

desired attribute value, such as a neighborhood, a 

street, or a surname. Mean utterance length in a 

sample of 40,000 Let’s Go Public! utterances, for 

example, is 2.4 words. The average book title 

length in our database is 5.4 words. 

Finally, our dialogue system, CheckItOut, al-

lows users to choose whether to request books by 

title, author, or catalogue number. The database 

represents 5028 active patrons (with real borrow-

ing histories and preferences but fictitious personal 

information), 71,166 book titles and 28,031 au-

thors. Though much smaller than a database for a 

directory service application (Georgila et al., 

2003), this is much larger than that of many current 

research systems. For example, Let’s Go Public! 

accesses a database with 70 bus routes and 1300 

place names. Titles and author names contribute 

50,394 words to the vocabulary, of which 57.4% 

occur only in titles, 32.1% only in author names, 

and 10.5% in both. Many book titles (e.g., You See 

I Haven’t Forgotten, You Never Know) have a high 

potential for confusability with non-title phrases in 

users’ book requests. Given the longer database 

field and the confusability of the book title lan-

guage, integrating voice search is likely to have a 

relatively larger impact in CheckItOut.  

We seek to minimize non-understandings and 

misunderstandings for several reasons. First, user 

corrections in both situations have been shown to 

be more poorly recognized than non-correction ut-

terances (Litman et al., 2006). Non-understandings 

typically result in re-prompting the user for the 

same information. This often leads to hyper-

articulation and concomitant degradation in recog-

nition performance. Second, users seem to prefer 

systems that minimize non-understandings and mi-

sunderstandings, even at the expense of dialogue 

efficiency. Users of the TOOT train information 

spoken dialogue system preferred system-initiative 

to mixed- or user-initiative, and preferred explicit 

confirmation to implicit or no confirmation 

(Litman & Pan, 1999). This was true despite the 

fact that a mixed-initiative, implicit confirmation 

strategy led to fewer turns for the same task. Most 

of the more recent work on spoken dialogue sys-

tems focuses on mixed-initiative systems in labora-

tory settings. Still, recent work suggests that while 

mixed- or user-initiative is rated highly in usability 

studies, under real usage it “fails to provide [a] ro-

bust enough interface” (Turunen et al., 2006). In-

corporating accurate voice search into spoken 

dialogue systems could lead to fewer non-

understandings and fewer misunderstandings. 

3 Related Work 

Our approach to noisy ASR contrasts with many 

other information-seeking and transaction-based 

dialogue systems. Those systems typically perform 
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natural language understanding on ASR output be-

fore database query with techniques that try to im-

prove or expand ASR output. None that we know 

of use voice search. For one directory service ap-

plication, users spell the first three letters of sur-

names, and then ASR results are expanded using 

frequently confused phones (Georgila et al., 2003). 

A two-pass recognition architecture added to Let’s 

Go Public! improved concept recognition in post-

confirmation user utterances (Stoyanchev & Stent, 

2009). In (Komatani et al., 2005), a shallow se-

mantic interpretation phase was followed by deci-

sion trees to classify utterances as relevant either to 

query type or to specific query slots, to narrow the 

set of possible interpretations. CheckItOut is most 

similar in spirit to the latter approach, but relies on 

the database earlier, and only for semantic interpre-

tation, not to also guide the dialogue strategy. 

Our approach to noisy ASR is inspired by pre-

vious WOz studies with real (Skantze, 2003; Zollo, 

1999) or simulated ASR (Kruijff-Korbayová et al., 

2005; Rieser et al., 2005; Williams & Young, 

2004). Simulation makes it possible to collect di-

alogues without building a speech recognizer, and 

to control for WER. In the studies that involved 

task-oriented dialogues, wizards typically focused 

more on the task and less on resolving ASR errors 

(Williams & Young, 2004; Skantze, 2003; Zollo, 

1999). In studies more like the information-seeking 

dialogues addressed here, an entirely different pat-

tern is observed (Kruijff-Korbayová et al., 2005; 

Rieser et al., 2005). 

Zollo collected seven dialogues with different 

human-wizard pairs to develop an evacuation plan. 

The overall WER was 30%. Of the 227 cases of 

incorrect ASR, wizard utterances indicated a fail-

ure to understand for only 35% of them. Wizards 

ignored words not salient in the domain and hy-

pothesized words based on phonetic similarity. In 

(Skantze, 2003), both users and wizards knew 

there was no dialogue system; 44 direction-finding 

dialogues were collected with 16 subjects. Despite 

a WER of 43%, the wizard operators signaled mis- 

understanding only 5% of the time, in part because 

they often ignored ASR errors and continued the 

dialogue. For the 20% of non-understandings, op-

erators continued a route description, asked a task-

related question, or requested a clarification.  

Williams and Young collected 144 dialogues 

simulating tourist requests for directions and other 

negotiations. WER was constrained to be high, 

medium, or low. Under medium WER, a task-

related question in response to a non-understanding 

or misunderstanding led to full understanding more 

often than explicit repairs. Under high WER, how-

ever, the reverse was true. Misunderstandings sig-

nificantly increased when wizards followed non-

understandings or misunderstandings with a task-

related question instead of a repair. 

In (Rieser et al., 2005), wizards simulated a 

multimodal MP3 player application with access to 

a database of 150K music albums. Responses 

could be presented verbally or graphically. In the 

noisy transcription condition, wizards made clarifi-

cation requests about twice as often as that found 

in similar human-human dialogue.  

In a system like CheckItOut, user utterances that 

request database information must be understood. 

We seek an approach that would reduce the rate of 

misunderstandings observed for high WER in 

(Williams & Young, 2004) and the rate of clarifi-

cation requests observed in (Rieser et al., 2005). 

4 CheckItOut and Embedded Wizards 

CheckItOut is modeled on library transactions at 

the Andrew Heiskell Braille and Talking Book Li-

brary, a branch of the New York Public Library 

and part of the National Library of Congress. Bor-

rowing requests are handled by telephone. Books, 

mainly in a proprietary audio format, travel by 

mail. In a dialogue with CheckItOut, a user identi-

fies herself, requests books, and is told which are 

available for immediate shipment or will go on re-

serve. The user can request a book by catalogue 

number, title, or author. 

CheckItOut builds on the Olympus/RavenClaw 

framework (Bohus & Rudnicky, 2009) that has 

been the basis for about a dozen dialogue systems 

in different domains, including Let’s Go Public! 

(Raux et al., 2005). Speech recognition relies on 

PocketSphinx. Phoenix, a robust context-free 

grammar (CFG) semantic parser, handles natural 

language understanding (Ward & Issar, 1994). The 

Apollo interaction manager (Raux & Eskenazi, 

2007) detects utterance boundaries using informa-

tion from speech recognition, semantic parsing, 

and Helios, an utterance-level confidence annotator 

(Bohus & Rudnicky, 2002). The dialogue manager 

is implemented in RavenClaw. 
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To design CheckItOut’s dialogue manager, we 

recorded 175 calls (4.5 hours) from patrons to li-

brarians. We identified 82 book request calls, tran-

scribed them, aligned the utterances with the 

speech signal, and annotated the transcripts for di-

alogue acts. Because active patrons receive 

monthly newsletters listing new titles in the desired 

formats, patrons request specific items with ad-

vance knowledge of the author, title, or catalogue 

number. Most book title requests accurately repro-

duce the exact title, the title less an initial deter-

miner (“the,” “a”), or a subtitle.  

We exploited the Galaxy message passing archi-

tecture of Olympus/RavenClaw to insert a wizard 

server into CheckItOut. The hub passes messages 

between the system and a wizard’s graphical user 

interface (GUI), allowing us to collect runtime in-

formation that can be included in models of wi-

zards’ actions.  

For speech recognition, CheckItOut relies on 

PocketSphinx 0.5, a Hidden Markov Model-based 

recognizer. Speech recognition for this experiment, 

relied on the freely available Wall Street Journal 

“read speech” acoustic models. We did not adapt 

the models to our population or to spontaneous 

speech, thus insuring that wizards would receive 

relatively noisy recognition output.  

We built trigram language models from the 

book titles using the CMU Statistical Language 

Modeling Toolkit. Pilot tests with one male and 

one female native speaker indicated that a lan-

guage model based on 7500 titles would yield 

WER in the desired range. (Average WER for the 

book title requests in our experiment was 71%.) To 

model one aspect of the real world useful for an ac-

tual system, titles with below average circulation 

were eliminated. An offline pilot study had demon-

strated that one-word titles were easy for wizards, 

so we eliminated those as well. A random sample 

of 7,500 was chosen from the remaining 19,708 

titles to build the trigram language model. 

We used Ratcliff/Obersherhelp (R/O) to meas-

ure the similarity of an ASR string to book titles in 

the database (Ratcliff & Metzener, 1988). R/O cal-

culates the ratio r of the number of matching cha-

racters to the total length of both strings, but 

requires O(r2
) time on average and O(r3) time in 

the worst case. We therefore computed an upper 

bound on the similarity of a title/ASR pair prior to 

full R/O to speed processing.  

5 Experimental Design 

In this experiment, a user and a wizard sat in sepa-

rate rooms where they could not overhear one 

another. Each had a headset with microphone and a 

GUI. Audio input on the wizard’s headset was dis-

abled. When the user requested a title, the ASR 

hypothesis for the title appeared on the wizard’s 

GUI. The wizard then selected the ASR hypothesis 

to execute a voice search against the database.  

Given the ASR and the query return, the wi-

zard’s task was to guess which candidate in the 

query return, if any, matched the ASR hypothesis. 

Voice search accessed the full backend of 71,166 

titles. The custom query designed for the experi-

ment produced four types of return, in real time, 

based on R/O scores: 

· Singleton: a single best candidate (R/O ≥ 0.85) 

· AmbiguousList: two to five moderately good 

candidates (0.85 > R/O ≥ 0.55) 

· NoisyList: six to ten poor but non-random can-

didates (0.55 > R/O ≥ 0.40) 

· Empty: No candidate titles (max R/O < 0.40) 

In pilot tests, 5%-10% of returns were empty ver-

sus none in the experiment. The distribution of 

other returns was: 46.7% Singleton, 50.5% Ambi-

guousList, and 2.8% NoisyList. 

Seven undergraduate computer science majors 

at Hunter College participated. Two were non-

native speakers of English (one Spanish, one Ro-

manian). Each of the possible 21 pairs of students 

met for five trials. During each trial, one student 

served as wizard and the other as user for a session 

of 20 title cycles. They immediately reversed roles 

for a second session, as discussed further below. 

The experiment yielded 4172 title cycles rather 

than the full 4200, because users were permitted to 

end sessions early. All titles were selected from the 

7500 used to construct the language model.  

Each user received a printed list of 20 titles and 

a brief synopsis of each book. The acoustic quality 

of titles read individually from a list is unlikely to 

approximate that of a patron asking for a specific 

title. Therefore, immediately before each session, 

the user was asked to read a synopsis of each book, 

and to reorder the titles to reflect some logical 

grouping, such as genre or topic. Users requested 

titles in this new order that they had created.  

Participants were encouraged to maximize a ses-

sion score, with a reward for the experiment win-

ner. Scoring was designed to foster cooperative 
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strategies. The wizard scored +1 for a correctly 

identified title, +0.5 for a thoughtful question, and 

-1 for an incorrect title. The user scored +0.5 for a 

successfully recognized title. User and wizard 

traded roles for the second session, to discourage 

participants from sabotaging the others’ scores.  

The wizard’s GUI presented a real-time live 

feed of ASR hypotheses, weighted by grayscale to 

reflect acoustic confidence. Words in each candi-

date title that matched a word in the ASR appeared 

darker: dark black for Singleton or AmbiguousList, 

and medium black for NoisyList. All other words 

were in grayscale in proportion to the degree of 

character overlap. The wizard queried the database 

with a recognition hypothesis for one utterance at a 

time, but could concatenate successive utterances, 

possibly with some limited editing.  

After a query, the wizard’s GUI displayed can-

didate matches in descending order of R/O score. 

The wizard had four options: make a firm choice of 

a candidate, make a tentative choice, ask a ques-

tion, or give up to end the title cycle. Questions 

were recorded. The wizard’s GUI showed the suc-

cess or failure of each title cycle before the next 

one began. The user’s GUI posted the 20 titles to 

be read during the session. On the GUI, the user 

rated the wizard’s title choices as correct or incor-

rect. Titles were highlighted green if the user 

judged a wizard’s offered title correct, red if incor-

rect, yellow if in progress, and not highlighted if 

still pending. The user also rated the wizard’s 

questions. Average elapsed time for each 20-title 

session was 15.5 minutes. 

A questionnaire similar to the type used in 

PARADISE evaluations (Walker et al., 1998) was 

administered to wizards and users for each pair of 

sessions. On a 5-point Likert scale, the average re-

sponse to the question “I found the system easy to 

use this time” was 4 (sd=0; 4=Agree), indicating 

that participants were comfortable with the task. 

All other questions received an average score of 

Neutral (3) or Disagree (2). For example, partici-

pants were neutral (3) regarding confidence in 

guessing the correct title, and disagreed (2) that 

they became more confident as time went on. 

6 Learning Method and Goals 

To model wizard actions, we assembled 60 fea-

tures that would be available at run time. Part of 

our task was to detect their relative independence, 

meaningfulness, and predictive ability. Features 

described the wizard’s GUI, the current title ses-

sion, similarity between ASR and candidates, ASR 

relevance to the database, and recognition and con-

fidence measures. Because the number of voice 

search returns varied from one title to the next, fea-

tures pertaining to candidates were averaged.  

We used three machine-learning techniques to 

predict wizards’ actions: decision trees, linear re-

gression, and logistic regression. All models were 

produced with the Weka data mining package, us-

ing 10-fold cross-validation (Witten & Frank, 

2005). A decision tree is a predictive model that 

maps feature values to a target value. One applies a 

decision tree by tracing a path from the root (the 

top node) to a leaf, which provides the target value. 

Here the leaves are the wizard actions: firm choice, 

tentative choice, question, or give up. The algo-

rithm used is a version of C4.5 (Quinlan, 1993), 

where gain ratio is the splitting criterion. 

To confirm the learnability and quality of the 

decision tree models, we also trained logistic re-

gression and linear regression models on the same 

data, normalized in [0, 1]. The logistic regression 

model predicts the probability of wizards’ actions 

by fitting the data to a logistic curve. It generalizes 

the linear model to the prediction of categorical da-

ta; here, categories correspond to wizards’ actions. 

The linear regression models represent wizards’ 

actions numerically, in decreasing value: firm 

choice, tentative choice, question, give up.  

Although analysis of individual wizards has not 

been systematic in other work, we consider the 

variation in human performance significant. Be-

cause we seek excellent, not average, teachers for 

CheckItOut, our focus is on understanding good 

wizardry. Therefore, we learned two kinds of mod-

els with each of the three methods: the overall 
model using data from all of our wizards, and indi-

vidual wizard models.  

Preliminary cross-correlation confirmed that 

many of the 60 features were heavily interdepen-

dent. Through an initial manual curation phase, we 

isolated groups of features with R2
 > 0.5. When 

these groups referenced semantically similar fea-

tures, we selected a single representative from the 

group and retained only that one. For example, the 

features that described similarity between hypo-

theses and candidates were highly correlated, so 

we chose the most comprehensive one: the number 

of exact word matches. We also grouped together 
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and represented by a single feature: three features 

that described the gaps between exact word 

matches, three that described the data presented to 

the wizard, nine that described various system con-

fidence scores, and three that described the user’s 

speaking rate. This left 28 features.  

Next we ran CfsSubsetEval, a supervised 

attribute selection algorithm for each model 

(Witten & Frank, 2005). This greedy, hill-climbing 

algorithm with backtracking evaluates a subset of 

attributes by the predictive ability of each feature 

and the degree of redundancy among them. This 

process further reduced the 28 features to 8-12 fea-

tures per model. Finally, to reduce overfitting for 

decision trees, we used pruning and subtree rising. 

For linear regression we used the M5 method, re-

peatedly removing the attribute with the smallest 

standardized coefficient until there was no further 

improvement in the error estimate given by the 

Akaike information criterion. 

7 Results 

Table 1 shows the number of title cycles per wi-

zard, the raw session score according to the formu-

la given to the wizards, and accuracy. Accuracy is 

the proportion of title cycles where the wizard 

found the correct title, or correctly guessed that the 

correct title was not present (asked a question or 

gave up). Note that score and accuracy are highly 

correlated (R=0.91, p=0.0041), indicating that the 

instructions to participants elicited behavior con-

sistent with what we wanted to measure. 

Wizards clearly differed in performance, large-

ly due to their response when the candidate list did 

not include the correct title. Analysis of variance 

with wizard as predictor and accuracy as the de-

pendent variable is highly significant (p=0.0006); 

significance is somewhat greater (p=0.0001) where 

session score is the dependent variable. Table 2 

shows the distribution of correct actions: to offer a 

candidate at a given position in the query return 

(Returns 1 through 9), or to ask a question or give 

up. As reflected in Table 2, a baseline accuracy of 

about 65% could be achieved by offering the first 

return. The fifth column of Table 1 shows how of-

ten wizards did that (Offered Return 1), and clearly 

illustrates that those who did so most often (W3 

and W6) had accuracy results closest to the base-

line. The wizard who did so least often (W4) had 

the highest accuracy, primarily because she more 

often correctly offered no title, as shown in the last 

column of Table 1. We conclude that a spoken di-

alogue system would do well to emulate W4. 

Overall, our results in modeling wizards’ actions 

were uniform across the three learning methods, 

gauged by accuracy and F measure. For the com-

bined wizard data, logistic regression had an accu-

racy of 75.2%, and F measures of 0.83 for firm 

choices and 0.72 for tentative choices; the decision 

tree accuracy was 82.2%, and the F measures for 

firm versus tentative choices were respectively 

0.82 and 0.71. The decision tree had a root mean 

squared error of 0.306, linear regression 0.483. Ta-

ble 3 shows the accuracy and F measures on firm 

choices for the decision trees by individual wizard, 

along with the numbers of attributes and nodes per 

Table 1. Raw session score, accuracy, proportion of offered titles that were listed first in the query return, and 

frequency of correct non-offers for seven participants. 

 

Participant Cycles Session Score Accuracy Offered Return 1 Correct Non-Offers 

W4 600 0.7585 0.8550 0.70 0.64 

W5 600 0.7584 0.8133 0.76 0.43 

W7 599 0.6971 0.7346 0.76 0.14 

W1 593 0.6936 0.7319 0.79 0.16 

W2 599 0.6703 0.7212 0.74 0.10 

W3 581 0.6648 0.6954 0.81 0.20 

W6 600 0.6103 0.6950 0.86 0.03 

Table 2. Distribution of correct actions 

 

Correct Action N % 

Return 1 2722 65.2445 

Return 2 126 3.0201 

Return 3 56 1.3423 

Return 4 46 1.1026 

Return 5 26 0.6232 

Return 7 7 0.1678 

Return 8 1 0.0002 

Return 9 2 0.0005 

Question or Giveup 1186 28.4276 

Total 4172 1.0000 

845



tree. Although relatively few attributes appeared in 

any one tree, most attributes appeared in multiple 

nodes. W1 was the exception, with a very small 

pruned tree of 7 nodes. 

Accuracy of the decision trees does not correlate 

with wizard rank. In general, the decision trees 

could consistently predict a confident choice (0.80 

≤ F ≤ 0.87), but were less consistent on a tentative 

choice (0.60 ≤ F ≤ 0.89), and could predict a ques-

tion only for W4, the wizard with the highest accu-

racy and greatest success at detecting when the 

correct title was not in the candidates.  

What wizards saw on the GUI, their recent suc-

cess, and recognizer confidence scores were key 

attributes in the decision trees. The five features 

that appeared most often in the root and top-level 

nodes of all tree models reported in Table 3 were: 

· DisplayType of the return (Singleton, Ambi-

guous List, NoisyList) 

· RecentSuccess, how often the wizard chose the 

correct title within the last three title cycles 

· ContiguousWordMatch, the maximum number 

of contiguous exact word matches between a 

candidate and the ASR hypothesis (averaged 

across candidates) 

· NumberOfCandidates, how many titles were re-

turned by the voice search 

· Confidence, the Helios confidence score 

DisplayType, NumberOfCandidates and Conti-
guousWordMatch pertain to what the wizard could 

see on her GUI. (Recall that DisplayType is distin-

guished by font darkness, as well as by number of 

candidates.) The impact of RecentSuccess might 

result not just from the wizard’s confidence in her 

current strategy, but also from consistency in the 

user’s speech characteristics. The Helios confi-

dence annotation uses a learned model based on 

features from the recognizer, the parser, and the di-

alogue state. Here confidence primarily reflects 

recognition confidence; due to the simplicity of our 

grammar, parse results only indicate whether there 

is a parse. In addition to these five features, every 

tree relied on at least one measure of similarity be-

tween the hypothesis and the candidates.  

W4 achieved superior accuracy: she knew when 

to offer a title and when not to. In the learned tree 

for W4, if the DisplayType was NoisyList, W4 

asked a question; if DisplayType was Ambiguous-

List, the features used to predict W4’s action in-

cluded the five listed above, along with the acous-

tic model score, word length of the ASR, number 

of times the wizard had asked the user to repeat, 

and the maximum size of the gap between words in 

the candidates that matched the ASR hypothesis. 

To focus on W4’s questioning behavior, we 

trained an additional decision tree to learn how W4 

chose between two actions: offering a title versus 

asking a question. This 37-node, 8-attribute tree 

was based on 600 data points, with F=0.91 for 

making an offer and F=0.68 for asking a question. 

The tree is distinctive in that it splits at the root on 

the number of frames in the ASR. If the ASR is 

short (as measured both by the number of recogni-

tion frames and the words), W4 asks a question 

when DisplayType = AmbiguousList or NoisyList, 

either RecentSuccess ≤ 1 or ContiguousWord-
Match = 0, and the acoustic model score is low. 

Note that shorter titles are more confusable. If the 

ASR is long, W4 asks a question when Conti-
guousWordMatch ≤ 1, RecentSuccess ≤ 2, and ei-

ther CandidateDisplay = NoisyList, or Confidence 

is low, and there is a choice of titles. 

8 Discussion 

Our experiment addressed whether voice search 

can compensate for incorrect ASR hypotheses and 

permit identification of a user’s desired book, giv-

en a request by title. The results show that with 

high WER, a baseline dialogue strategy that always 

offers the highest-ranked database return can nev-

ertheless achieve moderate accuracy. This is true 

even with the relatively simplistic measure of simi-

larity between the ASR hypothesis and candidate 

titles used here. As a result, we have integrated 

voice search into CheckItOut, along with a linguis-

tically motivated grammar for book titles. Our cur-

rent Phoenix grammar relies on CFG rules 

automatically generated from dependency parses 

of the book titles, using the MICA parser 

Table 3. Learning results for wizards 

 

Tree Rank Nodes Attributes Accuracy F firm 

W4 1  55 12 75.67 0.85 

W5 2  21 10 76.17 0.85 

W1 3  7 8 80.44 0.87 

W7 4  45 11 73.62 0.83 

W3 5  33 10 77.42 0.84 

W2 6  35 10 78.49 0.85 

W6 7  23 10 85.19 0.80 
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(Bangalore et al., 2009). As described in (Gordon 

& Passonneau, 2010), a book title parse can con-

tain multiple title slots that consume discontinuous 

sequences of words from the ASR hypothesis, thus 

accommodating noisy ASR. For the voice search 

phase, we now concatenate the words consumed by 

a sequence of title slots. We are also experimenting 

with a statistical machine learning approach that 

will replace or complement the semantic parsing. 

Computers clearly do some tasks faster and 

more accurately than people, including database 

search. To benefit from such strengths, a dialogue 

system should also accommodate human prefe-

rences in dialogue strategy. Previous work has 

shown that user satisfaction depends in part on task 

success, but also on minimizing behaviors that can 

increase task success but require the user to correct 

the system (Litman et al., 2006). 

The decision tree that models W4 has lower ac-

curacy than other models’ (see Table 3), in part be-

cause her decisions had finer granularity. A spoken 

dialogue system could potentially do as well as or 

better than the best human at detecting when the 

title is not present, given the proper training data. 

To support this, a dataset could be created that was 

biased toward a larger proportion of cases where 

not offering a candidate is the correct action.  

9 Conclusion and Current Work 

This paper presents a novel methodology that em-

beds wizards in a spoken dialogue system, and col-

lects data for a single turn exchange. Our results 

illustrate the merits of ranking wizards, and learn-

ing from the best. Our wizards were uniformly 

good at choosing the correct title when it was 

present, but most were overly eager to identify a 

title when it was not among the candidates. In this 

respect, the best wizard (W4) achieved the highest 

accuracy because she demonstrated a much greater 

ability to know when not to offer a title. We have 

shown that it is feasible to replicate this ability in a 

model learned from features that include the pres-

entation of the search results (length of the candi-

date list, amount of word overlap of candidates 

with the ASR hypothesis), recent success at select-

ing the correct candidate, and measures pertaining 

to recognition results (confidence, acoustic model 

score, speaker rate). If replicated in a spoken di-

alogue system, such a model could support integra-

tion of voice search in a way that avoids 

misunderstandings. We conclude that learning 

from embedded wizards can exploit a wider range 

of relevant features, that dialogue managers can 

profit from access to more fine-grained representa-

tions of user utterances, and that machine learners 

should be selective about which people to model. 

That wizard actions can be modeled using sys-

tem features bodes well for future work. Our next 

experiment will collect full dialogues with embed-

ded wizards whose actions will again be restricted 

through an interface. This time, NLU will integrate 

voice search with the linguistically motivated CFG 

rules for book titles described earlier, and a larger 

language model and grammar for database entities. 

We will select wizards who perform well during 

pilot tests. Again, the goal will be to model the 

most successful wizards, based upon data from 

recognition results, NLU, and voice search results. 
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