1

Optimal Parsing Strategiesfor Linear Context-Free Rewriting Systems

Daniel Gildea
Computer Science Department
University of Rochester
Rochester, NY 14627

Abstract

Factorization is the operation of transforming
a production in a Linear Context-Free Rewrit-
ing System (LCFRS) into two simpler produc-
tions by factoring out a subset of the nontermi-
nals on the production’s righthand side. Fac-
torization lowers the rank of a production but
may increase its fan-out. We show how to
apply factorization in order to minimize the
parsing complexity of the resulting grammar,
and study the relationship between rank, fan-
out, and parsing complexity. We show that it
is always possible to obtain optimum parsing
complexity with rank two. However, among
transformed grammars of rank two, minimum
parsing complexity is not always possible with
minimum fan-out. Applying our factorization
algorithm to LCFRS rules extracted from de-
pendency treebanks allows us to find the most
efficient parsing strategy for the syntactic phe-
nomena found in non-projective trees.

Introduction

formalism for machine translation, as well as the de-
sire to handle even more general synchronous gram-
mar formalisms which allow nonterminals to cover
discontinuous spans in either language (Melamed et
al., 2004; Wellington et al., 2006). LCFRS provides
a very general formalism which subsumes SCFGs,
the Multitext Grammars of Melamed et al. (2004),
as well as mildly context-sensitive monolingual for-
malisms such as Tree Adjoining Grammar (Joshi
and Schabes, 1997). Thus, work on transforming
general LCFRS grammars promises to be widely ap-
plicable in both understanding how these formalisms
interrelate, and, from a more practical viewpoint, de-
riving efficient parsing algorithms for them.

In this paper, we focus on the problem of trans-
forming an LCFRS grammar into an equivalent
grammar for which straightforward application of
dynamic programming to each rule yields a tabular
parsing algorithm with minimum complexity. This
is closely related, but not equivalent, to the prob-
lem considered by Gomez-Rodriguez et al. (2009a),
who minimize the fan-out, rather than the parsing
complexity, of the resulting grammar. In Section 4,

Gomez-Rodriguez et al. (2009a) recently examinegle show that restricting our attention to factorized

the problem of transforming arbitrary grammars irgrammars with rank no greater than 2 comes at no
the Linear Context-Free Rewriting System (LCFRSYost in parsing complexity. This result may be sur-
formalism (Vijay-Shankar et al., 1987) in order toprising, as Gomez-Rodriguez et al. (2009a) com-
reduce the rank of a grammar to 2 while minimizament that “there may be cases in which one has to
ing its fan-out. The work was motivated by thefind an optimal trade-off between rank and fan-out”
desire to develop efficient chart-parsing algorithms order to minimize parsing complexity — in fact,
for non-projective dependency trees (Kuhlmann ando such trade-off is necessary, as rank 2 is always
Nivre, 2006) that do not rely on the independencsufficient for optimal parsing complexity. Given
assumptions of spanning tree algorithms (McDorthis fact, we show how to adapt the factorization al-
ald et al., 2005). Efficient parsing algorithms forgorithm of Gémez-Rodriguez et al. (2009a) to re-
general LCFRS are also relevant in the context dfirn a transformed grammar with minimal parsing
Synchronous Context-Free Grammars (SCFGs) aczamplexity and rank 2. In Section 5, we give a

769

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 769-776,
Los Angeles, California, June 2010. (©)2010 Association for Computational Linguistics

counterexample to the conjecture that minimal par8 Parsing LCFRS

ing complexity is possible among binarizations with . .
minimal fan-out. A bottom-up dynamic programming parser can be

produced from an LCFRS grammar by generaliz-
ing the CYK algorithm for context-free grammars.
We convert each production of the LCFRS into a
A linear context-free rewriting system (LCFRS) isdeduction rule with variables for the left and right
defined as a tupl& = (Vy, Vi, P, S), whereV is endpoints of each of the(B;) spans of each of the

a set of terminal symbol$/y is a set of nonterminal nonterminalsi;, i € [r] in the righthand side of the
symbols,P is a set of productions, anfl € V is production.

a distinguished start symbol. Associated with each The computational complexity of the resulting
nonterminal B is afan-out ¢(B), which tell how parseris polynomial in the length of the input string,
many discontinuous spar covers. Productions with the degree of the polynomial being the number

2 Background

p € P take the form: of distinct endpoints in the most complex produc-
tion. Thus, for input of lengtm, the complexity
p:A— g(B1,Bs,...,B,) (1) s O(n®) for some constant which depends on the
grammar.
whereA, By, ... B, € Vy, andg is a function For a given rule, each of the nonterminals has
»(B;) spans, and each span has a left and right end-
g (V)PB) s x (V)PBr) s (1) #(A) point, giving an upper bound ef< 237, p(B;).

However, some of these endpoints may be shared
which specifies how to assemble thé_, o (B;) between nontermir_la!s on th_e righthand side. The
spans of the righthand side nonterminals into thexact number of distinct variables for the dynamic
©(A) spans of the lefthand side nonterminal. Th&rogramming deduction rule can the written
function ¢ must belinear, non-erasing, which

means that if we write c(p) = p(A) + Z o(B;))
=1
IUT1L1, - BB s (15 -5 T1p(B,))) _ _ _
_ wherec(p) is the parsing complexity of a produc-
= <t1, e 7tS0(A)>

tion p of the form of eq. 1 (Seki et al., 1991). To
. . see this, consider counting the left endpoint of each
the tuple of stringsty., £,,)) on the righthand span on the lefthand side of the production, and the
side contains each variablg ; from the lefthand : . .

. ’ . .__right endpoint of each span on the righthand side of
side exactly once, and may also contain termlna(]sq . . .
from 1/ e production. Any variable corresponding to the

T left endpoint of a span of a righthand side nonter-

_ \r/]VT] ca(;ll Ta th? num(tj)er _Of nr?nternl:infals on theminal will either be shared with the right endpoint
righthand side of a productign therank of p, p(p). ¢ another span if two spans are being joined by the

I'I'r]:ehfargog;of azrodut::tiom(gky) ifs the fan-out (_)f itﬁ production, or, alternatively, will form the left end-
efthand sidep(A). The rank of a grammar is t epoint of a span ofd. Thus, each distinct endpoint in

maximum rank of its rules, the production is counted exactly once by eq. 2.
The parsing complexity of a grammanG), is
p(G) =) p(p) the maximum parsing complexity of its rules. From
eq. 2, we see thai{G) < (p(G) + 1)p(G). While
and similarly the fan-out of a grammar is the maxiwe focus on the time complexity of parsing, it is in-
mum fan-out of its rules, or equivalently, of its non-teresting to note the space complexity of the DP al-

terminals: gorithm is O(n?#(%)), since the DP table for each
¢(G) = max o(B) nonterminal is indexed by at mo8{p(G) positions
BeVy in the input string.

770

4 Binarization Minimizes Parsing and applying this inequality to the definition@f,)
Complexity we have:

An LCFRS production of rank can befactorized c(p2) = o(X) + ¢(Br_1) + ¢(B,_2)
into two productions of the form:

<p(A)+) e(Bi)
pl:AHgl(Bly"'vBr—QvX) ZZ;
p2: X — g2(Br_1,B;) = ¢(p)

This operation results in new productions that have For notational convenience, we have defined the
lower rank, but possibly higher fan-out, than theactorization operation as factoring out the last two
original production. nonterminals of a rule; however, the same operation

If we examine the DP deduction rules corresponcean be applied to factor out any subset of the orig-
ing to the original productiom, and the first new inal nonterminals. The same argument that parsing

productionp; we find that complexity cannot increase still applies.
We may apply the factorization operation repeat-
c(p1) < c(p) edly until all rules have rank 2; we refer to the re-

sulting grammar as &inarization of the original
LCFRS. The factorization operation may increase
the fan-out of a grammar, but never increases its
parsing complexity. This guarantees that, if we wish
to find the transformation of the original grammar
having the lowest parsing complexity, it is sufficient
to consider only binarizations. This is because any
transformed grammar having more than two nonter-
minals on the righthand side can be binarized with-
out increasing its parsing complexity.

regardless of the functiog of the original produc-
tion, or the fan-out of the production’s nonterminals
This is because

o(X) < @(Br-1) + ¢(Br)

that is, our newly created nontermin&l may join
spans fromB,_; and B,, but can never introduce
new spans. Thus,

r—2
c(p1) = o(A) + (Z SO(BZ')) + o(X) 5 Therelationship between fan-out and
i=1 par sing complexity

T
< p(A) + Zﬂg» Gomez-Rodriguez et al. (2009a) provide an algo-
im1 rithm for finding the binarization of an LCFRS hav-
ing minimal fan-out. The key idea is to search over
ways of combining subsets of a rule’s righthand side
As similar result holds for the second newly crenonterminals such that subsets with low fan-out are
ated production: considered first; this results in an algorithm with
complexity polynomial in the rank of the input rule,
c(p2) < c(p) with the exponent depending on the resulting mini-
mum fan-out.
In this case, the fan-out of the newly created nonter- Thijg algorithm can be adapted to find the binariza-
minal, ¢ (X) may be greater thap(A). Let us con- tjon with minimum parsing complexity, rather than
sider the left endeintS of the SpanS)ﬁf Each left minimum fan-out. We s|mp|y use(p) rather than
endpoint is either also the left endpoint of a span af(;) as the score for new productions, controlling
A, or is the right endpoint of some nonterminal nohoth which binarizations we prefer and the order in

= c(p)

included inX, that is, one of3y, ... B,_». Thus, which they are explored.
.o An interesting question then arises: does the bina-
o(X) < p(A) + Z‘P(Bi) rization with minimal parsing complexity also have

= minimal fan-out? A binarization into a grammar of

771

A— 9(317327B3734)
g({z11,212), (2,1, %22, %23), (¥3.1,%32,233,234,235), (Ta1,T42,T43)) =

(554,1303,1, X2.1,T4,221,122,2L4,3032L23T3,3,L1,2L34, 1‘3,5)

Figure 2: A production for which minimizing fan-out and nmmzing parsing complexity are mutually exclusive.

(B} [N [(]
(Bs} [Bl B B
{(Bs, B,y [(| I e Bl B
(B} (| [
{B:,5:) (N [I e Bl B
{B1,Bs,5:} [I I N e e
{B2} [[[
{B1,B;, 8} [I I N e e
(B5:.5:.5:) [[DN s e

Figure 3: The binarization of the rule from Figure 2 that miiges parsing complexity. In each of the three steps,
we show the spans of each of the two subsets of the rule’taghtside nonterms being combined, with the spans of
their union (corresponding to a nonterminal created by tharkzation) below.

772

1: function MINIMAL -BINARIZATION (p, <) f" and the lowest parsing complexity among bina-
2: workingSet— {; rizations with fan-outf’, we use the following com-

3: agenda— priorityQueueg); parison operation in the binarization algorithm:

4. for ifrom 1top(p)do

5. workingSet— workingSetJ{B; }; P1 <y P2 1ff ©(p1) < ©(p2) V

& agenda-agenda){B;}; (6(m1) = 9 (p2) A clpr) < e(p2))

7: while agenda# () do

8: p’ < pop minimum from agenda; guaranteeing that we explore binarizations with
9: if nonterms{’) = {Bi,... B, } then lower fan-out first, and, among binarizations with
10: returnp’; equal fan-out, those with lower parsing complexity
11: for p; € workingSetdo first. Similarly, we can search for the binarization
12 p2 < newPrody’, p1); with the lowest parsing complexity and the lowest
13: find p), € workingSet fan-out among binarizations with complexity we

14: nontermsg,) = nontermsg,); US€

15: if po < pf then .
16: workingSet— workingSetU{p, }\{p}}; P1 =ep P2 1ff c(p1) < e(p2) v
17: push(agendas): (c(p1) = c(p2) A p(p1) < ¢(p2))

Figure 1: Algorithm to compute best binarization accord- W?_fmd t_h"_"t’ in fact, it ls.sometlmes ne.cessar.y .to
ing to a user-specified ordering over productions. sacrifice minimum fan-out in order to achieve mini-
mum parsing complexity. An example of an LCFRS
rule for which this is the case is shown in Figure 2.
fan-out f cannot have parsing complexity higherThis production can be binarized to produce a set of
than3f’, according to eq. 2. Thus, minimizing fan-productions with parsing complexity 14 (Figure 3);
out puts an upper bound on parsing complexity, biamong binarizations with this complexity the mini-
is not guaranteed to minimize it absolutely. Binamum fan-out is 6. However, an alternative binariza-
rizations with the same fan-out may in fact varytion with fan-out 5 is also possible; among binariza-
in their parsing complexity; similarly binarizationstions with this fan-out, the minimum parsing com-
with the same parsing complexity may vary in theiplexity is 15. This binarization (not pictured) first
fan-out. It is not immediately apparent whether, irjoins B, and Bs, then addsB,, and finally adds3s.
order to find a binarization of minimal parsing com- Given the incompatibility of optimizing time
plexity, it is sufficient to consider only binarizationscomplexity and fan-out, which corresponds to space
of minimal fan-out. complexity, which should we prefer? In some sit-
To test this conjecture, we adapted the algorithrations, it may be desirable to find some trade-off
of Gémez-Rodriguez et al. (2009a) to use a prioPetween the two. It is important to note, however,
ity queue as the agenda, as shown in Figure 1. TH@at if optimization of space complexity is the sole
algorithm takes as an argument an arbitrary parti@bjective, factorization is unnecessary, as one can
ordering relation on productions, and explores podever improve on the fan-out required by the origi-
sible binarized rules in the order specified by this redal grammar nonterminals.
lation. In Figure 1, “workingSet” is a set of single-
ton nonterminals and binarized productions whic
are guaranteed to be optimal for the subset of noRambow and Satta (1999) categorize the genera-
terminals that they cover. The function “nontermstive capacity of LCFRS grammars according to their
returns, for a newly created production, the subseink and fan-out. In particular, they show that
of the original nonterminald3y, ... B, that it gen- grammars can be arranged in a two-dimensional
erates, and returns subsets of singleton nontermingjgd, with languages of rank and fan-outf having
directly. greater generative capacity than both grammars of
To find the binarization with the minimum fan-outrankr and fan-outf — 1 and grammars of rank— 1

6 A Noteon Generative Capacity

773

VW

nmod sbj root vC pp nmod np tmp
A hearing is scheduled on the issue today

nmod — g1 g1 = (A)
sbj — ga(nmod, pp) 92((1a), {22,)) = (01 hearing, 22,1)
root — g3(sbj, vc) g3({z1,1,21,2), <SL’2 1,22 2>) = (@11 05 T2,121 2%2,2)
ve — g4(tmp) 9a4((z1,1)) = (scheduled ,x1 1)
pp — g5(tmp) 95({z1,1)) = (ona11)
nmod — gs ge = { the)
np — gr(nmod) g7((x11)) = (11 issue)
tmp — gg gs = (today)

Figure 4: A dependency tree with the LCFRS rules extracteddoh word (Kuhimann and Satta, 2009).

and fan-outf, with two exceptions: with fan-out 1, Itis important to note, however, that parsing com-
all ranks greater than one are equivalent (contexplexity as calculated by our algorithm remains a
free languages), and with fan-out 2, rank 2 and rankinction of the grammar, rather than an intrinsic
3 are equivalent. function of the language. One can produce arbitrar-

This classification is somewhat unsatisfying belly complex grammars that generate the simple lan-
cause minor changes to a grammar can change bé#agea”. Thus the parsing complexity of a gram-
its rank and fan-out. In particular, through factor/mar, like its rank and fan-out, can be said to catego-
izing rules, it is always possible to decrease rank!Z€ ItSstrong generative capacity.
potentially at the cost of increasing fan-out, until
binarized grammar of rank 2 is achieved.

Parsing complexity, as defined above, also proA number of recent papers have examined dynamic
vides a method to compare the generative capacipyogramming algorithms for parsing non-projective
of LCFRS grammars. From Rambow and Satta’dependency structures by exploring how well vari-
result that grammars of rank two and increasingus categories of polynomially-parsable grammars
fan-out provide an infinite hierarchy of increasingcover the structures found in dependency treebanks
generative capacity, we see that parsing complexifgr various languages (Kuhlmann and Nivre, 2006;
also provides such an infinite hierarchy. ComparGémez-Rodriguez et al., 2009b).
ing grammars according to the parsing complexity Kuhlmann and Satta (2009) give an algorithm for
amounts to specifying a normalized binarization foextracting LCFRS rules from dependency structures.
grammars of arbitrary rank and fan-out, and compafne rule is extracted for each word in the depen-
ing the resulting binarized grammars. This allows udency tree. The rank of the rule is the number of
to arrange LCFRS grammars into total ordering overhildren that the word has in the dependency tree,
generative capacity, that is a one-dimensional hieas shown by the example in Figure 4. The fan-out
archy, rather than a two-dimensional grid. It als®f the symbol corresponding to a word is the num-
gives a way of categorizing generative capacity thdter of continuous intervals in the sentence formed
is more closely tied to algorithmic complexity. by the word and its descendants in the tree. Projec-

37 Experiments

774

complexity | arabic czech danish dutch german port swedish
20 1
18 1
16 1
15 1
13 1
12 2 3
11 1 1 1
10 2 6 16 3
9 7 4 1
8 4 7 129 65 10
7 3 12 89 30 18
6 178 11 362 1811 492 59
5 48 1132 93 411 1848 172 201
4 250 18269 1026 6678 18124 2643 1736
3| 10942 265202 18306 39362 154948 41075 41245

Table 1: Number of productions with specified parsing coxiple

tive trees yield LCFRS rules of fan-out one and pardanks using the same procedure as Kuhlmann and
ing complexity three, while the fan-out and parsindsatta (2009), and applied the algorithm of Figure 1
complexity from non-projective trees are in princi-directly to calculate their minimum parsing com-
ple unbounded. plexity. This allows us to characterize the pars-

Extracting LCFRS rules from treebanks allows ud'd complexity of the rules found in the treebank
to study how many of the rules fall within certainW'thOUt needing to define specific conditions on
constraints. Kuhlmann and Satta (2009) give an af€ rules, such as well-nestedness (Kuhimann and
gorithm for binarizing LCRFS rules without increas-Nivre, 2006) or mildly |I!-nestedness, that may not
ing the rules’ fan-out; however, this is not alwaysbe necessary for all eff|C|e.ntIy parsable grammars,
possible, and the algorithm does not succeed even [#€ nNumbers of rules of different complexities are
some cases for which such a binarization is possiblg1oWn in Table 1.

Kuhlmann_and _Satta (2009) find that aI_I Ic_>ut 0.02% A5 found by previous studies, the vast major-
of productions in the CoNLL 2006 training data,jy, of hroductions are context-free (projective trees,
which includes various languages, can be blnarlzersi1

_ _ , rsable inO(n?)). Of non-projective rules, the
by their algorithm, but they do not give the fan-out ,; majority can be parsed @(n®), including the
or parsing complexity of the resulting rules. In re-

) ; ~'well-nested structures of gap degree one defined by
lated work, Gomez-Rodriguez et al. (2009b) defing \nimann and Nivre (2006). The single most com-

the class ofmildly iII—ne.sted dependency SIructures e rje had parsing complexity 6i(n2°), and was
of varying gap degrees; gap degree is essentially fafjarjyed from a Swedish sentence which turns out to

outminus one. Foragiven gap degigehis class of o 5 garbled as to be incomprehensible (taken from

. - . 3k 4 .
grammars can be parsing in tirn™""*) for lexi- e high school essay portion of the Swedish tree-
calized grammars. Gomez-Rodriguez et al. (2009 1) " |t is interesting to note that, while the bina-

study dependency treebanks for nine languages agdayiqn, aigorithm is exponential in the worst case, it
find that all dependency structures meet the mildly - tical for real data: analyzing all the rules ex-

lll-nested condition in the dependency treebanks fqf, -teq from the various treebanks takes only a few

some gap degree. However, they do not report thein tes. We did not find any cases in rules extracted

maximum gap degree or parsing complexity. from Treebank data of rules where minimizing pars-
We extracted LCFRS rules from dependency treéng complexity is inconsistent with minimizing fan-

775

out, as is the case for the rule of Figure 2. l.

8 Conclusion

We give an algorithm for finding the optimum pars-

Dan Melamed, Giorgio Satta, and Ben Wellington.
2004. Generalized multitext grammars. FProceed-
ings of the 42nd Annual Conference of the Association

for Computational Linguistics (ACL-04), Barcelona,
Spain.

ing complexity for an LCFRS among grammars obOwen Rambow and Giorgio Satta. 1999. Independent

tained by binarization. We find that minimum pars-
ing complexity is always achievable with rank 2, but

parallelism in finite copying parallel rewriting sys-
tems. Theor. Comput. Sci., 223(1-2):87-120.

applying the binarization algorithm to productions

found in dependency treebanks, we can completelg/

characterize the parsing complexity of the extracte
LCFRS grammar.

Acknowledgments This work was funded by NSF

grants 11S-0546554 and 11S-0910611. We are gratqgenjamin Wellington, Sonjia Waxmonsky

ful to Joakim Nivre for assistance with the Swedish
treebank.

References

Carlos Gomez-Rodriguez, Marco Kuhimann, Giorgio
Satta, and David Weir. 2009a. Optimal reduction of
rule length in linear conext-free rewriting systems. In
Proceedings of the 2009 Meeting of the North Ameri-
can chapter of the Association for Computational Lin-
guistics (NAACL-09), pages 539-547.

Carlos Gomez-Rodriguez, David Weir, and John Car-
roll. 2009b. Parsing mildly non-projective depen-
dency structures. IRroceedings of the 12th Confer-
ence of the European Chapter of the ACL (EACL-09),
pages 291-299.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining gram-
mars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, pages 69—
124. Springer, Berlin.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
non-projective dependency structures. Rroceed-
ings of the International Conference on Computational
Linguistics/Assaciation for Computational Linguistics
(COLING/ACL-06), pages 507-514.

Marco Kuhlmann and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. InProceedings of the 12th Conference of the
European Chapter of the ACL (EACL-09), pages 478—
486.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajt. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. Pnoceedings of
Human Language Technology Conference and Confer-
ence on Empirical Methodsin Natural Language Pro-
cessing (HLT/EMNLP).

776

On multiple context-free grammar$heoretical Com-
puter Science, 88:191-229.

Vijay-Shankar, D. L. Weir, and A. K. Joshi. 1987.
Characterizing structural descriptions produced by
various grammatical formalisms. IBroceedings of
the 25th Annual Conference of the Association for
Computational Linguistics (ACL-87).

and |. Dan
Melamed. 2006. Empirical lower bounds on the
complexity of translational equivalence. Rroceed-
ings of the International Conference on Computa-
tional Linguistics/Association for Computational Lin-
guistics (COLING/ACL-06), pages 977-984, Sydney,
Australia.

