Softmax-Margin CRFs: Training Log-Linear Models with Cost Functions

Kevin Gimpel

Noah A. Smith

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213, USA
{kgimpel, nasmith}@cs.cmu.edu

Abstract

We describe a method of incorporating task-
specific cost functions into standard condi-
tional log-likelihood (CLL) training of linear
structured prediction models. Recently intro-
duced in the speech recognition community,
we describe the method generally for struc-
tured models, highlight connections to CLL
and max-margin learning for structured pre-
diction (Taskar et al., 2003), and show that
the method optimizes a bound on risk. The
approach is simple, efficient, and easy to im-
plement, requiring very little change to an
existing CLL implementation. We present
experimental results comparing with several
commonly-used methods for training struc-
tured predictors for named-entity recognition.

1 Introduction

Conditional random fields (CRFs; Lafferty et al,
2001) and other conditional log-linear models
(Berger et al., 1996) achieve strong performance
for many NLP problems, but the conditional log-
likelihood (CLL) criterion optimized when training
these models cannot take a task-specific cost func-
tion into account.

In this paper, we describe a simple approach
for training conditional log-linear models with cost
functions. We show how the method relates to other
methods and how it provides a bound on risk. We
apply the method to train a discriminative model
for named-entity recognition, showing a statistically
significant improvement over CLL.

2 Structured Log-Linear Models

Let X denote a structured input space and, for a par-
ticular z € X, let Y(z) denote a structured output
space for x. The size of Y(x) is often exponential
in x, which differentiates structured prediction from
multiclass classification. For named-entity recogni-
tion, for example, = might be a sentence and Y(x)
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the set of all possible named-entity labelings for the
sentence. Givenanx € X anday € Y(x), we use a
conditional log-linear model for pg(y|x):

exp{8" f(z,y)}
Zy’ey(x) exp{GTf(x, yl)}

po(ylz) = ey

where f(x,y) is a feature vector representation of
x and y and @ is a parameter vector containing one
component for each feature.

2.1 Training Criteria

Many criteria exist for training the weights 6. We
next review three choices in detail. For the follow-
ing, we assume a training set consisting of n exam-
ples {{(z(®,y(@)}7_ . Some criteria will make use of
a task-specific cost function that measures the extent
to which a structure y differs from the true structure
y(®, denoted by cost(y®, y).

2.1.1 Conditional Log-Likelihood

The learning problem for maximizing conditional
log-likelihood is shown in Eq. 3 in Fig. 1 (we trans-
form it into a minimization problem for easier com-
parison). This criterion is commonly used when a
probabilistic interpretation of the model is desired.

2.1.2 Max-Margin

An alternative approach to training structured lin-
ear classifiers is based on maximum-margin Markov
networks (Taskar et al., 2003). The basic idea is
to choose weights such that the linear score of each
(™ y®) is better than (z(*), ) for all alternatives
y € Y(z®)\ {y?}, with a larger margin for those
y with higher cost. The “margin rescaling” form of
this training criterion is shown in Eq. 4. Note that
the cost function is incorporated into the criterion.

2.1.3 Risk

Risk is defined as the expected value of the cost
with respect to the conditional distribution pg(y|z);
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on training data:

D1 2 yey(a) po(ylz@)cost(y™,y)  (2)

With a log-linear model, learning then requires solv-
ing the problem shown in Eq. 5. Unlike the previous
two criteria, risk is typically non-convex.

Risk minimization first appeared in the speech
recognition community (Kaiser et al., 2000; Povey
and Woodland, 2002). In NLP, Smith and Eis-
ner (2006) minimized risk using k-best lists to de-
fine the distribution over output structures. Li and
Eisner (2009) introduced a novel semiring for min-
imizing risk using dynamic programming; Xiong et
al. (2009) minimized risk in a CRF.

2.1.4 Other Criteria

Many other criteria have been proposed to at-
tempt to tailor training conditions to match task-
specific evaluation metrics. These include the aver-
age per-label marginal likelihood for sequence label-
ing (Kakade et al., 2002), minimum error-rate train-
ing for machine translation (Och, 2003), F} for lo-
gistic regression classifiers (Jansche, 2005), and a
wide range of possible metrics for sequence label-
ing and segmentation tasks (Suzuki et al., 2006).

3 Softmax-Margin

The softmax-margin objective is shown as Eq. 6 and
is a generalization of that used by Povey et al. (2008)
and similar to that used by Sha and Saul (2006).
The simple intuition is the same as the intuition
in max-margin learning: high-cost outputs for z(%)
should be penalized more heavily. Another view
says that we replace the probabilistic score inside
the exp function of CLL with the “cost-augmented”
score from max-margin. A third view says that we
replace the “hard” maximum of max-margin with
the “softmax” (log > _ exp) from CLL; hence we use
the name “softmax-margin.” Like CLL and max-
margin, the objective is convex; a proof is provided
in Gimpel and Smith (2010).

3.1 Relation to Other Objectives

We next show how the softmax-margin criterion
(Eq. 6) bounds the risk criterion (Eq. 5). We first
define some additional notation:

EGlF] = Yyeyen)pely | 29)F(y)
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for some function F : Y(z(?)) — R. First note that
the softmax-margin objective (Eq. 6) is equal to:

(Eq. 3) + Y27, log By [exp cost(y™), )] (7)

The first term must be nonnegative. Taking each part
of the second term, and using Jensen’s inequality,

1OgE(i)[ecost(y(i)’.)] > E(i)[IOgGCOSt(y(i)")]
= Elcost(y®, )]

which is exactly Eq. 5. Softmax-margin is also an
upper bound on the CLL criterion because, assum-
ing cost is nonnegative, log E[exp cost] > 0. Fur-
thermore, softmax-margin is a differentiable upper
bound on max-margin, because the softmax function
is a differentiable upper bound on the max function.

We note that it may also be interest-
ing to consider minimizing the function
> iy log By [exp cost(y(®,-)], since it is an
upper bound on risk but requires less computation
for computing the gradient.! We call this objec-
tive the Jensen risk bound and include it in our
experimental comparison below.

3.2 Implementation

Most methods for training structured models with
cost functions require the cost function to decom-
pose across the pieces of the structure in the same
way as the features, such as the standard methods
for maximizing margin and minimizing risk (Taskar
et al., 2003; Li and Eisner, 2009). If the same con-
ditions hold, softmax-margin training can be im-
plemented atop standard CRF training simply by
adding additional “features” to encode the local
cost components, only when computing the partition
function during training.” The weights of these “cost
features” are not learned.

4 Experiments

We consider the problem of named-entity recog-
nition (NER) and use the English data from the
CoNLL 2003 shared task (Tjong Kim Sang and De
Meulder, 2003). The data consist of news articles

'Space does not permit a full discussion; see Gimpel and
Smith (2010) for details.

2Since cost(y®,y?) = 0 by definition, these “features”
will never fire for the numerator and can be ignored.
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Figure 1: Objective functions for training linear models. Regularization terms (e.g., C' Z?:l

annotated with four entity types: person, location,
organization, and miscellaneous. Our experiments
focus on comparing training objectives for struc-
tured sequential models for this task. For all objec-
tives, we use the same standard set of feature tem-
plates, following Kazama and Torisawa (2007) with
additional token shape like those in Collins (2002b)
and simple gazetteer features. A feature was in-
cluded if it occurred at least once in training data
(total 1,312,255 features).

The task is evaluated using the F score, which
is the harmonic mean of precision and recall (com-
puted at the level of entire entities). Since this metric
is computed from corpus-level precision and recall,
it is not easily decomposable into features used in
standard chain CRFs. For simplicity, we only con-
sider Hamming cost in this paper; experiments with
other cost functions more targeted to NER are pre-
sented in Gimpel and Smith (2010).

4.1 Baselines

We compared softmax-margin to several baselines:
the structured perceptron (Collins, 2002a), 1-best
MIRA with cost-augmented inference (Crammer et
al., 2006), CLL, max-margin, risk, and our Jensen
risk bound (JRB) introduced above.

We used Lo regularization, experimenting with
several coefficients for each method. For CLL,
softmax-margin, max-margin, and MIRA, we used
regularization coefficients C' € {0.01,0.1,1}. Risk
has not always been used with regularization, as reg-
ularization does not have as clear a probabilistic in-
terpretation with risk as it does with CLL; so, for
risk and JRB we only used C' € {0.0,0.01}.
addition, since these two objectives are non-convex,
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yeY (™)

9?) are not shown here.

we initialized with the output of the best-performing
CLL model on dev data (which was the CLL model
with C' = 0.01).> All methods except CLL and the
perceptron make use of a cost function, for which
we used Hamming cost. We experimented with dif-
ferent fixed multipliers m for the cost function, for
m € {1,5,10,20}.

The hyperparameters C' and m were tuned on the
development data and the best-performing combina-
tion was used to label the test data. We also tuned
the decision to average parameters across all train-
ing iterations; this has generally been found to help
the perceptron and MIRA, but in our experiments
had mixed results for the other methods.

We ran 100 iterations through the training data for
each method. For CLL, softmax-margin, risk, and
JRB, we used stochastic gradient ascent with a fixed
step size of 0.01. For max-margin, we used stochas-
tic subgradient ascent (Ratliff et al., 2006) also with
a fixed step size of 0.01.* For the perceptron and
MIRA, we used their built-in step size formulas.

4.2 Results

Table 1 shows our results. On test data, softmax-
margin is statistically indistinguishable from MIRA,
risk, and JRB, but performs significantly better
than CLL, max-margin, and the perceptron (p <
0.03, paired bootstrap with 10,000 samples; Koehn,

3When using initialization of all ones for risk and JRB, re-
sults were several points below the results here, and with all
zeroes, learning failed, resulting in 0.0 F-measure on dev data.
Thus, risk and JRB appear sensitive to model initialization.

“In preliminary experiments, we tried other fixed and de-
creasing step sizes for (sub)gradient ascent and found that a
fixed step of 0.01 consistently performed well across training
objectives, so we used it for all settings for simplicity.



Method Dev.  Test (C, m, avg.?)
Perceptron 90.48 83.98 (Y)
MIRA 91.13 8572 | (0.01,20, Y)
CLL 90.79  85.46 | (0.01, N)
Max-Margin 91.17 8528 | (0.01, 1, Y)
Risk 91.14 8559 | (0.01,10, N)
JRB 91.05 85.65 | (0.01, 1, N)
Softmax-Margin | 91.30 85.84 | (0.01, 5, N)

Table 1: Results on development and test sets, along with
hyperparameter values chosen using development set.

2004). It may be surprising that an improvement
of 0.38 in F} could be significant, but this indicates
that the improvements are not limited to certain cate-
gories of phenomena in a small number of sentences
but rather appear throughout the majority of the test
set. The Jensen risk bound performs comparably to
risk, and takes roughly half as long to train.

5 Discussion

The softmax-margin approach offers (1) a convex
objective, (2) the ability to incorporate task-specific
cost functions, and (3) a probabilistic interpretation
(which supports, e.g., hidden-variable learning and
computation of posteriors). In contrast, max-margin
training and MIRA do not provide (3); risk and
JRB do not provide (1); and CLL does not support
(2). Furthermore, softmax-margin training improves
over standard CLL training of CRFs, is straightfor-
ward to implement, and requires the same amount of
computation as CLL.

We have also presented the Jensen risk bound,
which is easier to implement and faster to train than
risk, yet gives comparable performance. The pri-
mary limitation of all these approaches, including
softmax-margin, is that they only support cost func-
tions that factor in the same way as the features of
the model. Future work might exploit approximate
inference for more expressive cost functions.
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