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Abstract

Most learning algorithms for undirected
graphical models require complete inference
over at least one instance before parameter up-
dates can be made. SampleRank is a rank-
based learning framework that alleviates this
problem by updating the parameters during in-
ference. Most semi-supervised learning algo-
rithms also perform full inference on at least
one instance before each parameter update.
We extend SampleRank to semi-supervised
learning in order to circumvent this compu-
tational bottleneck. Different approaches to
incorporate unlabeled data and prior knowl-
edge into this framework are explored. When
evaluated on a standard information extraction
dataset, our method significantly outperforms
the supervised method, and matches results of
a competing state-of-the-art semi-supervised
learning approach.

1 Introduction

Most supervised learning algorithms for undirected
graphical models require full inference over the
dataset (e.g., gradient descent), small subsets of the
dataset (e.g., stochastic gradient descent), or at least
a single instance (e.g., perceptron, Collins (2002))
before parameter updates are made. Often this is the
main computational bottleneck during training.
SampleRank (Wick et al., 2009) is a rank-based
learning framework that alleviates this problem by
performing parameter updates within inference. Ev-
ery pair of samples generated during inference is
ranked according to the model and the ground truth,
and the parameters are updated when the rankings
disagree. SampleRank has enabled efficient learn-
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ing for massive information extraction tasks (Culotta
et al., 2007; Singh et al., 2009).

The problem of requiring a complete inference it-
eration before parameters are updated also exists in
the semi-supervised learning scenario. Here the sit-
uation is often considerably worse since inference
has to be applied to potentially very large unlabeled
datasets. Most semi-supervised learning algorithms
rely on marginals (GE, Mann and McCallum, 2008)
or MAP assignments (CODL, Chang et al., 2007).
Calculating these is computationally inexpensive for
many simple tasks (such as classification and re-
gression). However, marginal and MAP inference
tends to be expensive for complex structured pre-
diction models (such as the joint information extrac-
tion models of Singh et al. (2009)), making semi-
supervised learning intractable.

In this work we employ a fast rank-based learning
algorithm for semi-supervised learning to circum-
vent the inference bottleneck. The ranking function
is extended to capture both the preference expressed
by the labeled data, and the preference of the domain
expert when the labels are not available. This allows
us to perform SampleRank as is, without sacrificing
its scalability, which is crucial for future large scale
applications of semi-supervised learning.

We applied our method to a standard information
extraction dataset used for semi-supervised learning.
Empirically we demonstrate improvements over the
supervised model, and closely match the results of a
competing state-of-the-art semi-supervised learner.

2 Background

Conditional random fields (Lafferty et al., 2001) are
undirected graphical models represented as factor

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 729-732,
Los Angeles, California, June 2010. (©)2010 Association for Computational Linguistics



graphs. A factor graph G = {V;} defines a prob-
ability distribution over assignments y to a set of
output variables, conditioned on an observation x.
A factor W; computes the inner product between
the vector of sufficient statistics f(x;,y;) and pa-
rameters ©. Let Z(x) be the data-dependent par-
tition function used for normalization. The proba-
bility distribution defined by the graph is:

H O-f(xi,yi)

1
pyx,©) = ——
Z(x)
v, eG

2.1 Rank-Based Learning

SampleRank (Wick et al., 2009) is a rank-based
learning framework for that performs parameter up-
dates within MCMC inference. Every pair of con-
secutive samples in the MCMC chain is ranked ac-
cording to the model and the ground truth, and the
parameters are updated when the rankings disagree.
This allows the learner to acquire more supervision
per sample, and has led to efficient training of mod-
els for which inference is very expensive (Singh
et al., 2009).

SampleRank considers two ranking functions: (1)
the unnormalized conditional probability (model
ranking), and (2) a truth function F(y) (objective
ranking) which is defined as —L(y,yr), the neg-
ative loss between the possible assignment y and
the true assignment y . The truth function can take
different forms, such as tokenwise accuracy or F1-
measure with respect to some labeled data.

In order to learn the parameters for which model
rankings are consistent with objective rankings,
SampleRank performs the following update for each
consecutive pair of samples y and y® of the MCMC
chain. Let a be the learning rate, and A =
f(x;,y%) — f(xi,y?), then © is updated as follows:

aA if ggzj’,’% <1 A Fy®) > F(yb)
—+ a
©— < —aA if i(i',”:) >1 A Fly) < F(y?)
0 otherwise.

This update is usually fast: in order to calculate
the required model ratio, only factors that touch
changed variables have to be taken into account.

SampleRank has been incorporated into the FAC-
TORIE toolkit for probabilistic programming with
imperatively-defined factor graphs (McCallum et al.,
2009).
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3 Semi-Supervised Rank-Based Learning

To apply SampleRank to the semi-supervised set-
ting, we need to specify the truth function F over
both labeled and unlabeled data. For labeled data
Y1, we can use the true labels. These are not avail-
able for unlabeled data ), and we present alterna-
tive ways of defining a truth function 7y : Yy — R
for this case.

3.1 Self-Training

Self-training, which uses predictions as truth, fits di-
rectly into our SampleRank framework. After per-
forming SampleRank on training data (using F7,),
MAP inference is performed on the unlabeled data.
The prediction ¥y is used as the ground truth for
the unlabeled data. Thus the self-training objective
function F; over the unlabeled data can be defined

as Fs(y) = —L(y,Jv)-

3.2 Encoding Constraints

Constraint-driven semi-supervised learning uses
constraints to incorporate external domain knowl-
edge when labels are missing (Chang et al., 2007;
Mann and McCallum, 2008; Bellare et al., 2009).
Constraints prefer certain label configurations over
others. For example, one constraint may be that oc-
currences of the word “California” are preferred to
have the label “location”.

We can encode constraints directly into the objec-
tive function Fi;. Let a constraint ¢ be specified as
(pi, ci), where ¢;(y) denotes whether assignment y
satisfies the constraint ¢ (41), violates it (—1), or the
constraint does not apply (0), and p; is the constraint
strength. Then the objective function is:

Fely) = Z pici(y)

3.3 Incorporating Model Predictions

When the objective function F. is used, every pre-
diction on unlabeled data is ranked only according to
the constraints, and thus the model is trained to sat-
isfy all the constraints. This is a problem when the
constraints prefer a wrong solution while the model
favors the correct solution, resulting in SampleR-
ank updating the model away from the true solution.
To avoid this, the ranking function needs to balance
preferences of the constraints and the current model.



One option is to incorporate the self-training ob-
jective function F,. A new objective function that
combines self-training with constraints can be de-
fined as:

Foe(y) Fs(y) + AsFe(y)

= —L(y,Ju) + As ZPM‘(Y)

This objective function has at least two limita-
tions. First, self-training involves a complete infer-
ence step to obtain yyy. Second, the model might
have low confidence in its prediction (this is the case
when the underlying marginals are almost uniform),
but the self-training objective des not take this into
account. Hence, we also propose an objective func-
tion that incorporates the model score directly, i.e.

Fme(y) = logp(ylx,0) +log Z(x) + AnFe(y)
= > O-f(xi,yi) + Am Y _ pici(y)
v, 7

This objective does not require inference, and also
takes into account model confidence.

In both objective functions Fs. and Fj,c, A con-
trols the relative contribution of the constraint pref-
erences to the objective function. With higher A,
SampleRank will make updates that never try to vi-
olate constraints, while with low A, SampleRank
trusts the model more. A corresponds to constraint
satisfaction weights p used in (Chang et al., 2007).

4 Related Work

Chang et al. propose constraint-driven learn-
ing (CODL, Chang et al., 2007) which can be in-
terpreted as a variation of self-training: Instances
are selected for supervision based not only on the
model’s prediction, but also on their consistency
with a set of user-defined constraints. By directly in-
corporating the model score and the constraints (as
in Fyp,c in Section 3.3) we follow the same approach,
but avoid the expensive “Top-K” inference step.
Generalized expectation criterion (GE, Mann and
McCallum, 2008) and Alternating Projections (AP,
Bellare et al., 2009) encode preferences by speci-
fying constraints on feature expectations, which re-
quire expensive inference. Although AP can use on-
line training, it still involves full inference over each
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instance. Furthermore, these methods only support
constraints that factorize according to the model.

Li (2009) incorporates prior knowledge into con-
ditional random fields as variables. They require full
inference during learning, restricting the application
to simple models. Furthermore, higher-order con-
straints are specified using large cliques in the graph,
which slow down inference. Our approach directly
incorporates these constraints into the ranking func-
tion, with no impact on inference time.

5 Experiments

We carried out experiments on the Cora citation
dataset. The task is to segment each citation into
different fields, such as “author” and “title”. We use
300 instances as training data, 100 instances as de-
velopment data, and 100 instances as test data. Some
instances from the training data are selected as la-
beled instances, and the remaining data (including
development) as unlabeled. We use the same token-
label constraints as Chang et al. (2007).

We use the objective functions defined in Sec-
tion 3, specifically self-training (Self:F;), direct
constraints (Cons:F,.), the combination of the two
(Self+Cons: F,.), and combination of the model
score and the constraints (Model+Cons:F;,.). We
set p; = 1.0, « = 1.0, Ay = 10, and A,,, = 0.0001.

Average token accuracy for 5 runs is reported and
compared with CODL! in Table 1. We also report
supervised results from (Chang et al., 2007) and
SampleRank. All of our methods show vast im-
provement over the supervised method for smaller
training sizes, but this difference decreases as the
training size increases. When the complete training
data is used, additional unlabeled data hurts our per-
formance. This is not observed in CODL since they
use more unlabeled data, which may also explain
their slightly higher accuracy. Note that Self+Cons
performs better than Self or Cons individually.

Model+Cons also performs competitively, and
may potentially outperform other methods if a bet-
ter \,, 1s chosen. Note, however, that \,,, is much
harder to tune than \g since \,, weighs the contri-
bution of the unnormalized model score, the range

"We report inference without constraints results from
CODL. Their results that incorporated constraints were higher,
but we do not implement this alternative due to the difficulty in
balancing the model score and constraint weights.



Method 5 10 15 20 25 | 300
Sup. (CODL) | 55.1 | 64.6 | 68.7 | 70.1 | 72.7 | 86.1
SampleRank | 66.5 | 74.6 | 75.6 | 77.6 | 79.5 | 90.7

CODL 71 | 767|794 | 794 | 82 | 88.2
Self 67.6 | 75.1 | 75.8 | 78.6 | 80.4 | 88
Cons 672|753 | 775|786 | 794 | 88.3
Self+Cons | 71.3 | 77 | 77.5|79.5 | 81.1 | 874
Model+Cons | 69.8 | 75.4 | 75.7 | 79.3 | 79.3 | 90.6

Table 1: Tokenwise Accuracy: for different methods as we vary the size of the labeled data

of which depends on many different factors such as
properties of the data, the learning rate, number of
samples, proposal function, etc. For self+cons (\s),
the ranges of the predictions and constraint penalties
are fixed and known, making the task simpler.

Self training takes 90 minutes to run on average,
while Self+Cons and Model+Cons need 100 min-
utes. Since the Cons method skips the inference
step over unlabeled data, it takes only 30 minutes
to run. As the size of the model and unlabeled data
set grows, this saving will become more significant.
Running time of CODL was not reported.

6 Conclusion

This work extends the rank-based learning frame-
work to semi-supervised learning. By integrating
the two paradigms, we retain the computational effi-
ciency provided by parameter updates within infer-
ence, while utilizing unlabeled data and prior knowl-
edge. We demonstrate accuracy improvements on a
real-word information extraction dataset.

We believe that the method will be of greater ben-
efit to learning in complex factor graphs such as
joint models over multiple extraction tasks. In future
work we will investigate our approach in such set-
tings. Additionally, various sensitivity, convergence,
and robustness properties of the method need to be
analyzed.
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