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Abstract

Like most natural language disambiguation
tasks, word sense disambiguation (WSD) re-
quires world knowledge for accurate predic-
tions. Several proxies for this knowledge
have been investigated, including labeled cor-
pora, user-contributed knowledge, and ma-
chine readable dictionaries, but each of these
proxies requires significant manual effort to
create, and they do not cover all of the ambigu-
ous terms in a language. We investigate the
task of automatically extracting world knowl-
edge, in the form of glosses, from an unlabeled
corpus. We demonstrate how to use these
glosses to automatically label a training cor-
pus to build a statistical WSD system that uses
no manually-labeled data, with experimental
results approaching that of a supervised SVM-
based classifier.

1 Introduction

For many semantic natural language processing
tasks, systems require world knowledge to disam-
biguate language utterances. Word sense disam-
biguation (WSD) is no exception — systems for
WSD require world knowledge to figure out which
aspects of a word’s context indicate one sense over
another. A fundamental problem for WSD is that the
required knowledge is open-ended. That is, for ev-
ery ambiguous term, new kinds of information about
the world become important, and the knowledge that
a system may have acquired for previously-studied
ambiguous terms may have little or no impact on the
next ambiguous term. Thus open-ended knowledge
acquisition is a fundamental obstacle to strong per-
formance for this disambiguation task.

Researchers have investigated a variety of tech-
niques that address this knowledge acquisition bot-

tleneck in different ways. Supervised WSD tech-
niques, for instance, can learn to associate features
in the context of a word with a particular sense of
that word. Knowledge-based techniques rely on
machine-readable dictionaries or lexical resources
like WordNet (Fellbaum, 1998) to provide the nec-
essary knowledge. And most recently, systems
have used resources like Wikipedia, which contain
user-contributed knowledge in the form of sense-
disambiguated links, to acquire world knowledge for
WSD. Yet each of these approaches is limited by the
amount of manual effort that is needed to build the
necessary resources, and as a result the techniques
are limited to a subset of English words for which
the manually-constructed resources are available.

In this work we investigate an alternative ap-
proach that attacks the problem of knowledge acqui-
sition head-on. We use information extraction (IE)
techniques to extractglosses, or short textual char-
acterizations of the meaning of one sense of a word.
In the ideal case, we would extract full logical forms
to define word senses, but here we instead focus on
a more feasible, but still very useful, sub-task: for a
given word sense, extract a collection of terms that
are highly correlated with that sense and no other
sense of the ambiguous word. Our system requires
as input only an unlabeled corpus of documents that
each contain the ambiguous term of interest.

In experiments, we demonstrate that our gloss
extraction system can often determine key aspects
of a word’s senses. In one experiment our sys-
tem was able to extract glosses with 60% precision
for 20 ambiguous biomedical terms, while discov-
ering 7 senses of those terms that never appeared
in a widely-used dictionary of biomedical terminol-
ogy. In addition, we demonstrate that our extracted
glosses are useful for real WSD problems: our sys-
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tem outperforms a state-of-the-art unsupervised sys-
tem, and it comes close to the performance of a su-
pervised WSD system on a challenging dataset.

In the next section, we describe previous work. In
Section 3, we formally define the gloss extraction
task and refine it into a sub-task that is feasible for
an IE approach, and Section 5 presents our technique
for using extracted glosses in a WSD task. Section
6 discusses our experiments and results.

2 Previous Work

Many previous systems (Cui et al., 2007; Androut-
sopoulos and Galanis, 2005) have studied the re-
lated task of answering definitional questions on the
Web, such as “What does cold mean?”. Such sys-
tems are focused on information retrieval for human
consumption, and especially on recall of definitional
information (Velardi et al., 2008). They generally
do not consider the problem of how to merge the
large number of similar extracted definitions into a
single item (Fujii and Ishikawa, 2000), so that the
overall result contains one definition per sense of
the word. A separate approach (Pasca, 2005) relies
on the WordNet lexical database to supply the set of
senses, and extracts alternate glosses for the senses
that have already been defined. When glosses are to
be used by computational methods, as in a WSD sys-
tem in our case, it becomes critical that the system
extract one coherent gloss per sense. As far as we
are aware, no previous system has extracted glosses
for word sense disambiguation.

Gloss extraction is related to the task of ontol-
ogy extraction, in which systems extract hierarchies
of word classes (Snow et al., 2006; Popescu et al.,
2004). Gloss extraction differs from ontology ex-
traction in that it extracts definitional information
characterizing senses of a single word, rather than
trying to place a word in a hierarchy of other words.

Most WSD systems have relied on hand-labeled
training examples (Leroy and Rindflesch, 2004;
Joshi et al., 2005; Mohammad and Pedersen, 2004)
or on dictionary glosses (Lesk, 1986; Stevenson
and Wilks, 2001) or the WordNet hierarchy (Boyd-
Graber et al., 2007) to help make disambiguation
choices. In recent coarse-grained evaluations, such
systems have achieved accuracies of close to 90%
(Pradhan et al., 2007; Agirre and Soroa, 2007; Schi-
jvenaars et al., 2005). However, by some estimates,
English contains over a million word types, and new
words and new senses are added to the language ev-

ery day. It is unreasonable to expect that any system
will have access to hand-labeled training examples
or useful dictionary glosses for each of them.

More recent techniques based on user-contributed
knowledge (Mihalcea, 2007; Chklovski and Mihal-
cea, 2002; Milne and Witten, 2008), such as that
found in Wikipedia, suffer from similar problems –
Wikipedia contains many articles on well known en-
tities, categories, and events, but very few articles
that disambiguate verbs, adjectives, adverbs, and
certain kinds of nouns which are poorly represented
in an encyclopedia.

On the other hand, word usages in large corpora
like the Web reflect nearly all of the word senses
in use in English today, albeit without manually-
supplied labels. Unsupervised approaches to WSD
use clustering techniques to group instances of
words into clusters that correspond to different
senses (Pantel and Lin, 2002). While such systems
are more general than supervised and dictionary-
based approaches in that they can handle any word
type and word sense, they have lagged behind other
approaches in terms of accuracy thus far – for ex-
ample, the best system in the recent word sense in-
duction task of Semeval 2007 (Agirre and Soroa,
2007) achieved an F1 score of 78.7, slightly below
the baseline (78.9) in which all instances of a word
are part of a single cluster. Part of the problem
is that the clustering techniques operate in a bag-
of-words-like representation. This is an extremely
high-dimensional space, and it is difficult in such
a space to determine which dimensions are noise
and which ones correlate with different senses. Our
gloss extraction technique helps to address this curse
of dimensionality by reducing the large vocabulary
of a corpus to a much smaller set of terms that are
highly relevant for WSD. Others (Kulkarni and Ped-
ersen, 2005) have used feature selection techniques
like mutual information to reduce dimensionality,
but so far these techniques have only been able to
find features that correlate with an ambiguous term.
With gloss extraction, we are able to find features
that correlate with individual senses of a term.

3 Overview: The Gloss Extraction Task

Given an input corpusC of documents where each
document contains at least one instance of akeyword
k, a Gloss Extraction system should produce a set of
glossesG = {gi}, where eachgi is a logical expres-
sion defining the meaning of a particular sensesi of
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Glosses:
1. cold(a) ≡ isA(a, b) ∧ disease(b) ∧ symptom(a, c) ∧ possibly-includes(c, d) ∧ fever(d)
2. cold(a) ≡ isA(a, b) ∧ physical-entity(b) ∧ temperature(a, c) ∧ less-than(c, 25C)

Sense Indicators:
1. common cold, virus, symptom, fever
2. hot, ice cold, lukewarm, cold room, room temperature

Figure 1:Example glosses and sense indicators for two senses of the word cold.

k, to the exclusion of all other senses ofk. Note that
the system must discover the appropriate number of
senses in addition to the gloss for each sense.

While extraction technology has made impressive
advancements, it is not yet at a stage where it can
produce full logical forms for sense glosses. As a
first step towards this goal, we introduce the task of
Sense Indicator Extraction, in which each glossgi

consists of a set of features that, when present in the
context of an instance ofk, strongly indicate that the
instance has sensesi, and no other sense. Exam-
ples of both tasks are given in Figure 1. The Sense
Indicator Extraction task represents a nontrivial ex-
traction challenge, but it is much more feasible than
full Gloss Extraction. And the task preserves key
properties of Gloss Extraction: the results are quite
useful for word sense disambiguation. The results
are also readily interpreted upon inspection, making
it easy to monitor a system’s accuracy.

4 Extracting Word Sense Glosses

We present the GLOSSYsystem, an unsupervised in-
formation extraction system for Sense Indicator Ex-
traction. GLOSSY proceeds in two phases: acol-
location detectionphase, in which the system de-
tects components of the glosses, and anarrangement
phase, in which the system decides how many dis-
tinct senses there are, and puts together the compo-
nents of the glosses.

4.1 Collocation Detection

The first major challenge to a Gloss Extraction sys-
tem is that the space of possible features is enor-
mous, and almost all of them are irrelevant to the
task at hand. Supervised techniques can use la-
beled examples to provide clues, but in an unsu-
pervised setting the curse of dimensionality can be
overwhelming. Indeed, unsupervised WSD tech-
niques suffer from exactly this problem.

GLOSSY’s answer to this problem is based on the
following observation: pairs of potential features
which rarely or never co-occur in the same docu-
ment in a large corpus are likely to represent fea-
tures for two distinct senses. The well-known obser-
vation that words rarely exhibit more than one sense
per discourse (Yarowsky, 1995) implies that features
closely associated with a particular sense have a low
probability of appearing in the same document as
features associated with another sense. Features that
are independent of any particular sense of the key-
word, on the other hand, have no such restriction,
and are just as likely to appear in the context of one
sense as any other. As a consequence, a low count
for the co-occurrence of two potential features over
a large corpus of documents for keywordk is a re-
liable indicator that the two features are part of the
glosses of two distinct senses ofk.

GLOSSY’s collocation detector begins by index-
ing the corpus and counting the frequency of each
vocabulary word. Using the index, the collocation
detector determines all pairs of potential features
such that each feature appears at leastT times, and
the pair of features never co-occurs in the same doc-
ument. We call the pairs that this step finds the “non-
overlapping” features. Finally, we rank the feature
pairs according to the total number of documents
they appear in, and choose the most frequentN

pairs. This excludes non-overlapping pairs that have
not been seen often enough to provide reliable evi-
dence that they are features of different senses, and
it cuts down on processing time for the next phase of
the algorithm. The collocation detector outputs the
set of featuresF = {f |∃f ′(f, f ′) or (f ′, f) is one
of the topN non-overlapping pairs}. The GLOSSY

system uses stems, words, and bigrams as potential
features. We useN = 100 andT = 50 in our ex-
periments. Figure 2 shows an example corpus and
the set of features that the collocation detector would
output.
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Corpus of documents for termcold:
DOCUMENT 1: “Symptoms of the common cold may include fever, headache, sore throat, and coughing.”
DOCUMENT 2: “Hibernation is a common response to the cold winter weather of temperate climates.”

Non-overlapping feature pairs:
(symptoms,temperate) (headache, climate) (cold winter, common cold) (response, headache)

Detected collocations:
symptoms, temperate, headache, climate, cold winter, common cold,response

Arranged glosses:
cold 1: symptoms, common cold, headache
cold 2: temperate, climate, cold winter

Figure 2: Example operation of theGLOSSY extraction system. The collocation detector finds potential features
using its non-overlapping pair heuristic. The arranger selects a subset of the potential features (in this example, it
drops the featureresponse) and clusters them to produces glosses containing sense indicators.

4.2 Arranging Glosses

Given the corpusC for keywordk and the featuresF
that GLOSSY’s collocation detector has discovered,
the arrangement phase groups these features into co-
herent sense glosses. Figure 2 shows an example of
how the features found during collocation detection
may be arranged to form coherent glosses for two
senses of the word “cold.”

GLOSSY’s Arranger component uses a combina-
tion of a small set of statistics to determine whether
a particular arrangement of the features into glosses
is warranted, based on the given corpus. LetA ⊂ 2F

be an arrangement of the features into clusters rep-
resenting glosses. We require that clusters inA be
disjoint, but we do not require every feature inF to
be included in a cluster inA — in other words,A
is a partition of a subset ofF . We define a scoring
function S that is a linear interpolation of several
statistics of the arrangementA and the corpusC:

S(A|C,w) =
∑

i

wifi(A, C) (1)

After experimenting with a number of options, we
settled on the following for our statisticsfi:

NUMCLUSTERS: the number of clusters inA. We
use a negative weight for this statistic to favor fewer
senses and encourage clustering.

DOCSCOVERED: the total number of documents in
C in which at least one feature fromA appears. We
use this statistic to encourage the Arranger to find an
arrangement that explains the sense of as many ex-

amples of the keyword as possible.

BADOVERLAPS: the number of pairs of features
that co-occur in at least one document inC, and that
belong to different clusters ofA. A negative weight
for this statistic encourages overlapping feature pairs
to be placed in the same cluster.

BADNONOVERLAPS: the number of pairs of fea-
tures that never co-occur inC, and that belong to the
same cluster inA. A negative weight for this statis-
tic encourages non-overlapping feature pairs to be
placed in different clusters.

Given such an optimization function, the Ar-
ranger attempts to maximize its value by search-
ing for an optimalA. Note that this is a struc-
tured prediction task in which the choice for some
sub-component ofA can greatly affect the choice of
other clusters and features. GLOSSY addresses this
optimization problem with a greedy hill-climbing
search with random restarts. Each round of hill-
climbing is initialized with a randomly chosen sub-
set of features, which are then all assigned to a sin-
gle cluster. Using a randomly chosen search opera-
tor from a pre-defined set, the search procedure at-
tempts to move to a new arrangementA′. It accepts
the move toA′ if the optimization function gives a
higher value than at the previous state; otherwise, it
continues from the previous state. Our set of search
operators include a move that splits a cluster; a move
that joins two clusters; a move that swaps a feature
from one cluster to another; a move that removes a
feature from the arrangement altogether; and a move
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that adds a feature from the pool of unused features.
We used 100 rounds of hill-climbing, and found that
each round converged in fewer than 1000 moves.

To estimate the weightswi for each of the four
features of the Arranger, we use a development cor-
pus consisting of 185 documents each containing the
same ambiguous term, and each labeled with sense
information. Because of the small number of pa-
rameters, we performed a grid search on the devel-
opment data for the optimal values of the weights.

5 A Bootstrapping WSD System

Yarowsky (1995) first recognized that it is possi-
ble to use a small number of features for different
senses to bootstrap an unsupervised word sense dis-
ambiguation system. In Yarowsky’s work, his sys-
tem requires an initial, manually-supplied colloca-
tion as a feature for each sense of a keyword. In con-
trast, we can use GLOSSY’s extracted glosses to sup-
ply starter features fully automatically, using only an
unlabeled corpus. Thus GLOSSY complements the
efforts of Yarowsky and other bootstrapping tech-
niques for WSD (Diab, 2004; Mihalcea, 2002).

Building on their efforts, we design a boot-
strapping WSD system using GLOSSY’s extracted
glosses as follows. LetA be the arranged features
representing glosses for a keyword. We first retrieve
all the documents from our unlabeled corpus which
contain features inA. We then label appearances
of the target word according to the cluster of the
features that appear in that document. If features
for more than one cluster appear in the same docu-
ment, we discard it. The result is an automatically
labeled corpus containing examples of all the ex-
tracted senses.

We use this automatically labeled “bootstrap cor-
pus” to perform supervised WSD. This allows our
system a great deal of flexibility once the bootstrap
corpus is created: we can use any features of the
corpus, plus the labels, in our classifier. Importantly,
this means we do not need to rely on just the features
in the extracted glosses. We use a multi-class SVM
classifier with a linear kernel and default parameter
settings. We use LibSVM (Chang and Lin, 2001) for
all of our experiments. We use standard features for
supervised WSD (Liu et al., 2004): all stems, words,
bigrams, and trigrams within a context window of 20
words surrounding the ambiguous term.

6 Experiments

We ran two types of experiments, one to measure
the accuracy of our sense gloss extractor, and one to
measure the usefulness of the extracted knowledge
for word sense disambiguation.

6.1 Data

We use a dataset of biomedical literature abstracts
from Duanet al.(2009). The data contains a set of
documents for 21 ambiguous terms. We reserved
one of these terms (“MCP”) for setting parameters,
and ran our algorithms on the remaining keywords.
The ambiguous terms vary from acronyms (7 terms),
which are common and important in biomedical lit-
erature, to ambiguous biomedical terminology (3
terms), to terms like “culture” and “mole” that have
some biomedical senses and some senses that are
part of the general lexicon (11 terms). There were on
average 271 labeled documents per term; the small-
est number of documents for a term is 125, and
the largest is 503. For every ambiguous term, we
added on average 9625 (minimum of 1544, maxi-
mum of 15711) unlabeled documents to our collec-
tion by searching for the term on PubMed Central
and downloading additional PubMed abstracts.

6.2 Extracting Glosses

We measured the performance of GLOSSY’s gloss
extraction by comparing the extracted glosses with
definitions contained in the Unified Medical Lan-
guage System (UMLS) Metathesaurus. First, for
each ambiguous term, we looked up the set of ex-
act matches for that term in the Metathesaurus, and
downloaded definitions for all of the different senses
listed under that term. Wherever possible, we used
the MeSH definition of a sense; when that was un-
available, we used the definition from the NCI The-
saurus; and when both were unavailable, we used the
definition from the resource listed first. 34 senses
(40%) had no available definitions at all, but in all
cases, the Metathesaurus lists a short (usually 1-3
word) gloss of the sense, which we used instead.

We manually aligned extracted glosses with
UMLS senses in a way that maximizes the number
of matched senses for every ambiguous term. We
consider an extracted gloss to match a UMLS sense
when the extracted gloss unambiguously refers to
a single sense of the ambiguous term, and that
sense matches the definition in UMLS. Typically,
this means that the extracted features in the gloss
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overlap content words in the UMLS definition (e.g.,
the extracted feature “symptoms” for the “common
cold” sense of the term “cold”). In some cases, how-
ever, there was no strict overlap in content words
between the extracted gloss and the UMLS defini-
tion, but the sense of the extracted gloss still unam-
biguously matched a unique UMLS sense:e.g., for
the term “transport,” the extracted gloss “intracel-
lular transport” was matched with the UMLS sense
of “Molecular Transport,” which the NCI Thesaurus
defines as, “Any subcellular or molecular process in-
volved in translocation of a biological entity, such
as a macromolecule, from one site or compartment
to another.” In the end, such matchings were deter-
mined by hand. Table 1 shows extracted glosses and
UMLS definitions for the term “mole.”

For each ambiguous term, we measure the num-
ber of extracted glosses, the number of UMLS
senses, and the number of matches between the
two. We report on the precision (number of matches
/ number of extracted glosses), recall (number of
matches / number of UMLS senses), and F1 score
(harmonic mean of precision and recall). Table 2
shows the average of the precision and recall num-
bers over all terms. Since these terms have different
numbers of senses, we can compute this average in
two different ways: a Macro average, in which each
term has equal weight in the average; and a Micro
average, in which each term’s weight in the average
is proportional to the number of senses (extracted
senses for the precision, and UMLS senses for the
recall). We report on both.

A strict matching between GLOSSY’s glosses and
UMLS senses is potentially unfair to GLOSSY in
several ways: GLOSSY may discover valid senses
that happen not to appear in UMLS; UMLS senses
may overlap one another, and so multiple UMLS
senses may match a single GLOSSY gloss; and the
two sets of senses may differ in granularity. For the
sake of repeatable experiments, in this evaluation we
make no attempt to change existing UMLS senses.

However, to highlight one particular strength of
the Gloss Extraction paradigm, we do consider a
separate evaluation that allows for new senses that
GLOSSY discovers, but do not appear in UMLS.
For instance, “biliopancreatic diversion” and “bipo-
lar disorder” are both valid senses for the acronym
“BPD.” GLOSSY discovers both, but UMLS does
not contain entries for either, so in our original eval-
uation both senses would count against GLOSSY’s

precision. To correct for this, our second evalua-
tion adds senses to the list of UMLS senses when-
ever GLOSSY discovers valid entries missing from
the Metathesaurus. The last five columns of Table 2
show our results under these conditions.

Despite the difficulty of the task, GLOSSY is able
to find glosses with 53% precision and 47% re-
call (Macro average, no discovered senses) using
only unlabeled corpora as input, and it is extract-
ing roughly the right number of senses for each am-
biguous term. In addition, GLOSSY is able to iden-
tify 7 valid senses missing from UMLS for the 20
terms in our evaluation. Including these senses in
the evaluation increases GLOSSY’s F1 by 6.2 points
Micro (4.7 Macro). We are quite encouraged by
the results, especially because they hold promise for
WSD. Note that in order to improve upon a WSD
baseline which tags all instances of a word as the
same sense, GLOSSY only needs to be able to sep-
arate one sense from the rest. GLOSSY is finding
between 1.85 and 2.2 correct glosses per term, more
than enough to help with WSD.

6.3 WSD with Extracted Glosses

While extracting glosses is an important application
in its own right, we also aim to show that this ex-
tracted knowledge is useful for an established ap-
plication: namely, word sense disambiguation. Our
next experiment compares the performance of our
WSD system with an established unsupervised al-
gorithm, and with a supervised technique — support
vector machines (SVMs).

Using the same dataset as above, we trained
GLOSSY on the ambiguous term “MCP”, and tested
it on the remaining ones. For comparison, we also
report the state-of-the-art results of Duanet al.’s
(2009) SENSATIONAL system, and the results of a
BASELINE system that lumps all documents into
a single cluster. SENSATIONAL is a fast cluster-
ing system based on minimum spanning trees and
a pruning mechanism that eliminates noisy points
from consideration during clustering. Since SEN-
SATIONAL uses both “MCP” and “white” to train a
small set of parameters, we leave “white” out of our
comparison as well. We measure accuracy by align-
ing each system’s clusters with the gold standard
clusters in such a way as to maximize the number
of elements that belong to aligned clusters. We use
an implementation of the MaxFlow algorithm to de-
termine this alignment. We then compute accuracy
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GLOSSY UMLS

1. choriocarcinoma,
invasive, complete,
hydatidiform mole,
hydatidiform

1. Hydatidiform Mole – Trophoblastic hyperplasia associatedwith normal gestation,
or molar pregnancy. . . . Hydatidiform moles or molar pregnancy may be catego-
rized as complete or partial based on their gross morphology, histopathology, and
karyotype.

2. grams per mole 2. Mole, unit of measurement – A unit of amount of substance, oneof the seven
base units of the International System of Units. It is the amount of substance that
contains as many elementary units as there are atoms in 0.012kg of carbon-12.

3. mole fractions -
- 3. Nevus – A circumscribed stable malformation of the skin . . . .
- 4. Talpidae – Any of numerous burrowing mammals found in temperate regions . . .

Table 1: GLOSSY’s extracted glosses and UMLS dictionary entries for the example term “mole”.

Without Discovered Senses With Discovered Senses
GLOSSY UMLS UMLS
Senses Senses Matches P R F1 Senses Matches P R F1

Macro Avg 4.35 4.25 1.85 53.1 47.1 49.9 4.6 2.2 60.6 49.7 54.6
Micro Avg N/A N/A N/A 42.5 43.5 43.0 N/A N/A 50.6 47.8 49.2

Table 2: GLOSSY can automatically discover glosses that match definitions in an online dictionary. “Without
Discovered Senses” counts only the senses that are listed inthe UMLS Metathesaurus; “With Discovered Senses”
enhances the Metathesaurus with 7 new senses that GLOSSY has automatically discovered.

as the percentage of elements that belong to aligned
clusters. This metric is very similar to the so-called
“supervised” evaluation of Agirreet al. (2006).

The first four columns of Table 3 show our results.
Clearly, both SENSATIONAL and GLOSSY outper-
form the BASELINE significantly, and traditionally
this is a difficult baseline for unsupervised WSD sys-
tems to beat. SENSATIONAL outperforms GLOSSY

by approximately 6%. There appear to be two rea-
sons for this. In other experiments, SENSATIONAL

has been shown to be competitive with supervised
systems, but only when the corpus consists mostly
of two, fairly well-balanced senses, as is true for
this particular dataset, where the two most common
senses always covered at least 70% of the examples
for every ambiguous term.

A more serious problem for GLOSSY is that the
unlabeled corpus that it extracts glosses from may
not match well with the labeled test data. If the rela-
tive frequency of senses in the unlabeled documents
does not match the relative frequency of senses in
the labeled test set, GLOSSY may not extract the
right set of glosses. Manual inspection of the ex-
tracted glosses shows that this is indeed a problem:
for example, the labeled data contains two senses of

the word “mole”: a discolored area of skin (78%),
and a burrowing mammal (22%); our unlabeled data
contains both of these senses, but the additional
sense of “mole” as a unit of measurement is by far
predominant. GLOSSY manages to extract glosses
for “skin” and “unit of measurement,” but misses out
on “mammal” as a result of the skew in the data.

Note that this problem, though serious for our ex-
periments, is largely artificial from the point of view
of applications. In a typical usage of a WSD system,
there is a supply of data that the system needs to dis-
ambiguate, and accuracy is measured on a labeled
sample of this data. Here, we started from a sample
of labeled data, constructed a larger corpus that does
not necessarily match it, and then ran our algorithm.

To correct for the artificial bias in our experiment,
we ran a second test in which we manually labeled a
random sample of 100 documents for each ambigu-
ous term from the larger unlabeled corpus. We used
a subset of 14 of the 21 keywords in the original
dataset. As before, we compared our system against
SENSATIONAL and the most-frequent-sense BASE-
LINE. We also compare against an SVM system us-
ing 3-fold cross-validation. We use a linear kernel
SVM, with the same set of features that are available
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Duanet al.(2009) Data Sampled Data
Num. BASE- SENSE- Num. BASE- SENSE-

Keyword senses LINE GLOSSY ATIONAL senses LINE ATIONAL GLOSSY SVM

ANA 2 63.1 87.9 100 13 75 79 74 75.8
BPD 3 39.8 71.6 52.9 7 33 48 85 66.7
BSA 2 50.1 77.9 94.7 5 97 53 89 87.9
CML 2 55.0 99.2 89.5 4 81 75 84 75.8
MAS 2 50.0 100 100 35 46 90 67 66.7
VCR 2 79.2 79.2 64.0 8 72 32 72 75.8
cold 3 37.1 73.3 66.8 3 87 81 44 90.9
culture 2 52.0 67.1 81.7 3 74 39 62 66.7
discharge 2 66.3 82.4 95.1 5 57 41 84 54.5
fat 2 50.6 50.1 53.2 2 97 60 97 97.0
mole 2 78.3 71.3 95.8 7 78 47 57 84.8
pressure 2 52.1 69.8 86.4 5 47 60 65 75.8
single 2 50.0 59.7 99.5 4 53 63 37 45.4
white - - - - 7 32 33 58 51.5
fluid 2 64.3 83.5 99.6 - - - - -
glucose 2 50.5 64.5 50.5 - - - - -
inflammation 3 35.5 52.8 50.4 - - - - -
inhibition 2 50.4 50.4 54.2 - - - - -
nutrition 3 38.8 53.8 54.9 - - - - -
transport 2 50.6 41.1 56.8 - - - - -

AVERAGE 2.16 53.4 70.3 76.1 7.71 66.3 57.2 69.6 72.5
Diff from BL - 0.0 +16.9 +22.7 - 0.0 -9.1 +3.3 +6.2

Table 3: GLOSSY’s extracted glosses can be used to create an unsupervised WSDsystem that achieves an accu-
racy within 3% of a supervised system.Our WSD system outperforms our BASELINE system, widely recognized
as a difficult baseline for unsupervised WSD, by 16.9% and 3.3%on two different datasets.

to the SVM in the GLOSSY system. We run our un-
supervised systems on all of the unlabeled data, and
then intersect the resulting clusters with the docu-
ment set that we randomly sampled.

The last four columns of Table 3 show our results.
The sampled data set appears to be a significantly
harder test, since even the supervised SVM achieves
only a 6% gain over the BASELINE. The SEN-
SATIONAL system does significantly worse on this
data, where there is a wider variation in the distri-
bution of senses. The GLOSSY system outperforms
both the SENSATIONAL system and the BASELINE.

7 Conclusion and Future Work

Gloss Extraction is an important, and difficult task of
extracting definitions of words from unlabeled text.
The GLOSSY system succeeds at a more feasible re-
finement of this task, the Sense Indicator Extrac-
tion task. GLOSSY’s extractions have proven use-

ful as seed definitions in an unsupervised WSD task.
There is a great deal of room for future work in ex-
panding the ability of Gloss Extraction systems to
extract sense glosses that more closely match the
meanings of a word. An important first step in this
direction is to extract relations, rather than ngrams,
that make up the definition a word’s senses.
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