
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 618–626,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Not All Seeds Are Equal: Measuring the Quality of Text Mining Seeds

Zornitsa Kozareva and Eduard Hovy
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292-6695
{kozareva,hovy}@isi.edu

Abstract

Open-class semantic lexicon induction is of
great interest for current knowledge harvest-
ing algorithms. We propose a general frame-
work that uses patterns in bootstrapping fash-
ion to learn open-class semantic lexicons for
different kinds of relations. These patterns re-
quire seeds. To estimate thegoodness(the po-
tential yield) of new seeds, we introduce a re-
gression model that considers the connectiv-
ity behavior of the seed during bootstrapping.
The generalized regression model is evaluated
on six different kinds of relations with over
10000 different seeds for English and Span-
ish patterns. Our approach reaches robust per-
formance of 90% correlation coefficient with
15% error rate for any of the patterns when
predicting thegoodnessof seeds.

1 Introduction: What is a Good Seed?

The automated construction of semantically typed
lexicons (terms classified into their appropriate se-
mantic class) from unstructured text is of great im-
portance for various kinds of information extraction
(Grishman and Sundheim, 1996), question answer-
ing (Moldovan et al., 1999), and ontology popu-
lation (Suchanek et al., 2007). Maintaining large
semantic lexicons is a time-consuming and tedious
task, because open classes (such as: all singers, all
types of insects) are hard to cover completely, and
even closed classes (such as: all countries, all large
software companies) change over time. Since it is
practically impossible for a human to collect such
knowledge adequately, many supervised, unsuper-

vised, and semi-supervised techniques have been de-
veloped.

All these techniques employ some sort of context
to specify the appearance in text of the desired in-
formation. This approach is based on the general
intuition, dating back at least to the distributional
similarity idea of (Harris, 1954), that certain con-
texts are specific enough to constrain terms or ex-
pressions within them to be specific classes or types.
Often, the context is a string of words with an empty
slot for the desired term(s); sometimes, it is a regu-
lar expression-like pattern that includes word classes
(syntactic or semantic); sometimes, it is a more ab-
stract set of features, including orthographic fea-
tures like capitalization, words, syntactic relations,
semantic types, and other characteristics, which is
the more complete version of the distributional sim-
ilarity approach.

In early information extraction work, these con-
texts were constructed manually, and resembled reg-
ular expressions (Appelt et al., 1995). More re-
cently, researchers have focused on learning them
automatically. Since unsupervised algorithms re-
quire large training data and may or may not produce
the types and granularities of the semantic class de-
sired by the user, and supervised algorithms may re-
quire a lot of manual oversight, semi-supervised al-
gorithms have become more popular. They require
only a couple of seeds (examples filling the desired
semantic context) to enable the learning mechanism
to learn patterns that extract from unlabeled texts
additional instances of the same class (Riloff and
Jones, 1999; Etzioni et al., 2005; Pasca, 2004).

Sometimes, the pattern(s) learned are satisfactory
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enough to need no further elaboration. They are
applied to harvest as many additional terms of the
desired type as possible (for example, the instance-
learning pattern ‘<type> such as ?’ introduced in
(Hearst, 1992)). More often, the method is applied
recursively: once some pattern(s) have been learned,
they are used to find additional terms, which are then
used as new seeds in the patterns to search for addi-
tional new patterns, etc., until no further patterns are
found. At that point, the satisfactory patterns are se-
lected and large-scale harvesting proceeds as usual.
In an interesting variation of this method, (Kozareva
et al., 2008) describe the ‘doubly-anchored pat-
tern’ (DAP) that includes a seed term in conjunc-
tion with the open slot for the desired terms to be
learned, making the pattern itself recursive by al-
lowing learned terms to replace the initial seed terms
directly: ‘<type> such as<seed> and ?’.

Context-based information harvesting is well un-
derstood and has been the focus of extensive re-
search. The core unsolved problem is the selec-
tion of seeds. In current knowledge harvesting al-
gorithms, seeds are chosen either at random (Davi-
dov et al., 2007; Kozareva et al., 2008), by picking
the topN most frequent terms of the desired class
(Riloff and Jones, 1999; Igo and Riloff, 2009), or by
asking experts (Pantel et al., 2009). None of these
methods is quite satisfactory. (Etzioni et al., 2005)
report on the impact of seed set noise on the final
performance of semantic class learning, and Pan-
tel et al. observe a tremendous variation in the en-
tity set expansion depending on the initial seed set
composition. These studies show that the selection
of ‘good’ seeds is very important. Recently, (Vyas
et al., 2009) proposed an automatic system for im-
proving the seeds generated by editors (Pantel et al.,
2009). The results show 34% improvement in final
performance using the appropriate seed set. How-
ever, using editors to select seeds or to guide their
seed selection process is expensive and therefore not
always possible. Because of this, we address in this
paper two questions: “What is a good seed?” and
“How can the goodness of seeds be automatically
measured without human intervention?”.

The contributions of this paper are as follows:
• First, we use recursive patterns to automatically

learn seeds for open-class semantic lexicons.
• Second, we define what the ‘goodness’ of a

seed term is. Then we introduce a regression
model of seed quality measurement that, after
a certain amount of training, automatically es-
timates the goodness of new seeds with above
90% accuracy for bootstrapping with the given
relation.

• Next, importantly, we discover that training a
regression model on certain relations enables
one to predict the goodness of a seed even for
other relations that have never been seen be-
fore, with an accuracy rate of over 80%.

• We conduct experiments with six kinds of
relations and more than10000 automatically
harvested seed examples in both English and
Spanish.

The rest of the paper is organized as follows.
In the next section, we review related work. Sec-
tion 3 describes the recursive pattern bootstrap-
ping (Kozareva et al., 2008). Section 4 presents our
seed quality measurement regression model. Sec-
tion 5 discusses experiments and results. Finally, we
conclude in Section 6.

2 Related Work

Seeds are used in automatic pattern extraction from
text corpora (Riloff and Jones, 1999) and from the
Web (Banko, 2009). Seeds are used to harvest in-
stances (Pasca, 2004; Etzioni et al., 2005; Kozareva
et al., 2008) or attributes of a given class (Paşca and
Van Durme, 2008), or to learn concept-specific re-
lations (Davidov et al., 2007), or to expand already
existing entity sets (Pantel et al., 2009). As men-
tioned above, (Etzioni et al., 2005) report that seed
set composition affects the correctness of the har-
vested instances, and (Pantel et al., 2009) observe an
increment of 42% precision and 39% recall between
the best and worst performing seed sets for the task
of entity set expansion.

Because of the large diversity of the usage of
seeds, there has been no general agreement regard-
ing exactly how many seeds are necessary for a
given task. According to (Pantel et al., 2009) 10 to
20 seeds are a sufficient starting set in a distribu-
tional similarity model to discover as many new cor-
rect instances as may ever be found. This observa-
tion differs from the claim of (Paşca and Van Durme,
2008) that 1 or 2 instances are sufficient to dis-
cover thousands of instance attributes. For some
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pattern-based algorithms one to two seeds are suf-
ficient (Davidov et al., 2007; Kozareva et al., 2008),
some require ten seeds (Riloff and Jones, 1999; Igo
and Riloff, 2009), and others use a variation of 1, 5,
10 to 25 seeds (Talukdar et al., 2008).

As mentioned, seed selection is not yet well un-
derstood. Seeds may be chosen at random (Davi-
dov et al., 2007; Kozareva et al., 2008), by picking
the most frequent terms of the desired class (Riloff
and Jones, 1999; Igo and Riloff, 2009), or by ask-
ing humans (Pantel et al., 2009). The intuitions for
seed selection that experts develop over time seem
to prefer instances that are neither ambiguous nor
too frequent, but that at the same time are prolific
and quickly lead to the discovery of a diverse set of
instances. These criteria are vague and do not al-
ways lead to the discovery of good seeds. For some
approaches, infrequent and ambiguous seeds are ac-
ceptable while for others they lead to deterioration
in performance. For instance, the DAP (Kozareva et
al., 2008) performance is not affected by the ambi-
guity of the seed, because the class and the seed in
the pattern mutually disambiguate each other, while
for the distributional similarity model of (Pantel et
al., 2009), starting with an ambiguous seed leads
to ‘leakage’ and the harvesting of non-true class in-
stances. (Kozareva et al., 2008) show that for the
closed classcountry, both high-frequency seeds like
USA and low-frequency seeds likeBurkina Faso
can equally well yield all remaining instances. An
open question to which no-one provides an answer
is whether and which high/low frequency seeds can
yield all instances of large, open classes like people
or singers.

3 Bootstrapping Recursive Patterns

There are many algorithms for harvesting informa-
tion from the Web. The main objective of our work
is not the creation of a new algorithm, but rather de-
termining the effect of seed selection on the gen-
eral class of recursive bootstrapping harvesting al-
gorithms for the acquisition of semantic lexicons for
open class relations. For our experiments, since it
is time-consuming and difficult for humans to pro-
vide large sets of seeds to start the bootstrapping
process, we employ the recursive DAP mechanism
introduced by (Kozareva et al., 2008) that produces

seeds on its own.
The algorithm starts with aseedof type class

which is fed into the doubly-anchored pattern
‘<class> such as<seed> and *’ and learns in the
* position new instances of typeclass. The newly
learned instances are then systematically placed into
the position of theseedin the DAP pattern, and the
harvesting process is repeated until no new instances
are found. The general framework is as follows:

1. Given:
a language L={English, Spanish}
a patternPi={e.g., [verb prep, noun, verb]}
a seedseed for Pi

2. Build a query in DAP-like fashion forPi using
templateTi of the type ‘class such asseed and
*’, ‘* and seed verb prep’, ‘* andseed noun’,
‘* and seed verb’

3. submitTi to Yahoo! or another search engine
4. extract instances occupying the * position
5. take instances from 4. and go to 2.
6. repeat steps 2–5 until no new instances are

found

At the end of bootstrapping, the harvested in-
stances can be considered to be seeds with which
the bootstrapping procedure could have been initi-
ated. We can now compare any of them to study
their relative ‘goodness’ as bootstrapping seeds.

4 Seed Quality Measurement

4.1 Problem Formulation

We define our task as:

Task Definition: Given a seed and a pattern in a
language (say English or Spanish), (1) use the boot-
strapping procedure to learn instances from the Web;
(2) build a predictive model to estimate the ‘good-
ness’ of seeds (whether generated by a human or
learned) .

Given a desired semantic class, a recursive harvest-
ing pattern expressing its context, and a seed term
for use in this pattern, we define the ‘goodness’ of
the seed as consisting of two measures:

• theyield: the total number of instances learned,
not counting duplicates, until the bootstrapping
procedure has run to exhaustion;

• thedistance: the number of iterations required
by the process to reach exhaustion.
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Our approach is to build a model of the behavior of
many seeds for the given pattern. Any new seed can
then be compared against this model, once its basic
characteristics have been determined, and its yield
and distance estimates produced. In order to deter-
mine the characteristics of the new seed, it first has
to be employed in the pattern for a small number of
iterations. The next subsection describes the regres-
sion model we employ in our approach.

4.2 Regression Model

Given a seeds, we seek to predict the yieldg of s as
defined above. We do this via a parametrized func-
tion f :ĝ = f(s;w), wherew ∈ Rd are the weights.
Our approach is to learnw from a collection ofN
training examples{< si, gi >}N

i=1, where eachsi is
a seed and eachgi ∈ R.

Support vector regression (Drucker et al., 1996)
is a well-known method for training a regression
model by solving the following optimization prob-
lem:

min
w∈Rs

1

2
||w||2 +

C

N

N∑

i=1

max(0, |gi − f(si; w)| − ǫ)
︸ ︷︷ ︸

ǫ-insensitive loss function
where C is a regularization constant andǫ con-
trols the training error. The training algorithm finds
weightsw that define a functionf minimizing the
empirical risk.

Let h be a function from seeds into some vector-
space representation⊆ Rd, then the functionf takes
the form: f(s;w) = h(s)T w =

∑N
i=1 αiK(s, si),

wheref is re-parameterized in terms of a polyno-
mial kernel functionK with dual weightsαi. K

measures the similarity between two seeds. Full de-
tails of the regression model and its implementation
are beyond the scope of this paper; for more de-
tails see (Schölkopf and Smola, 2001; Smola et al.,
2003). In our experimental study, we use the freely
available implementation of SVM in Weka (Witten
and Frank, 2005).

To evaluate the quality of our prediction model,
we compare the actual yield of a seed with the pre-
dicted value obtained, and compute the correlation
coefficient and the relative absolute error.

5 Experiments and Results

5.1 Data Collection

We conducted an exhaustive evaluation study with
the open semantic classespeopleandcity, initiated

with the seedsJohnandLondon. For each class, we
submitted the DAP patterns as web queries to Ya-
hoo!Boss and retrieved the top 1000 web snippets
for each query, keeping only unique instances. In
total, we collected 1.5GB of snippets for people and
1.9GB of snippets for cities. The algorithm ran un-
til complete exhaustion, requiring 19 iterations for
people and 12 for cities. The total number of unique
harvested instances was3798 for people and5090
for cities. We used all instances as seeds and instan-
tiated for each seed the bootstrapping process from
the very beginning. This resulted in3798 and5090
separate bootstrapping runs for people and cities re-
spectively. For each seed, we recorded the total
number of instances learned at the end of bootstrap-
ping, the number of iterations, and the number of
unique instances extracted on each iteration. After
the harvesting part terminated, we analyzed the con-
nectivity / bootstrapping behavior of the seeds, and
produced the regression model.

5.2 Seed Characteristics

For many knowledge harvesting algorithms, the se-
lection of a non-ambiguous seeds is of great impor-
tance. In the DAP bootstrapping framework, the am-
biguity of the seed is eliminated as theclassand the
seedmutually disambiguate each other. Of great im-
portance to the bootstrapping algorithm is the selec-
tion of a seed that can yield a large number of in-
stances and can keep the bootstrapping process en-
ergized.

Figure 1: Seed Connectivity

Figure 1 shows the different kinds of seeds we
found on analyzing the results of the bootstrapping
process. Based on the yield learned on each iter-
ation, we identify four major kinds of seeds:her-
mit , one-step, mid, and high connectors. In the
figure, seed (a) is a hermit because it does not dis-
cover other instances. Seed (b) is a one-step connec-
tor as it discovers instances on the first iteration but
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then becomes inactive. Seeds (d) and (e) are high
connectors because they find a rich population of in-
stances. Seed (c) is a mid connector because it has
lower yield than (d) and (e), but higher than (a) and
(b).

Table 1 shows the results of classifying the3798
people and5090 city seeds into the four kinds of
seed. The majority of the seeds for both patterns are
hermits, from 23 to 41% are high connectors, and
the rest are one-step and mid connectors. For each
kind of seed, we also show three examples.

people such as X and * examples
#hermit 2271 (60%) Leila, Anne Boleyn, Sophocles

#one-step 329 (9%) Helene, Frida Kahlo, Cornelius
#mid 315 (8%) Brent, Ferdinand, Olivia
#high 883 (23%) Diana, Donald Trump, Christopher

cities such as X and * examples
#hermit 2393 (47%) Belfast, Najafabad, El Mirador

#one-step 406 (8%) Durnstein, Wexford, Al-Qaim
#mid 207 (4%) Bialystok, Gori, New Albany
#high 2084 (41%) Vienna, Chicago, Marrakesh

Table 1: Connectivity-based Seed Classification.

This study shows that humans are very likely to
choose non-productive seeds for bootstrapping: it is
difficult for a human to know a priori that a name
like Diana will be more productive than Leila, He-
lene, or Olivia.

Another interesting characteristic of a seed is the
speed of learning. Some seeds, such as (e), ex-
tract large quantity of instances from the very be-
ginning, resulting in fewer bootstrapping iterations,
while others, such as (d), spike much later, resulting
in more. In our analysis, we found that some high
connector seeds of the people pattern can learn the
whole population in12 iterations, while others re-
quire from15 to 20 iterations. Figure 2 shows the
speed of learning of ten high connector seeds for
the peoplepattern. They axis shows the number
of unique instances harvested on each iteration. In-
tuitively, a good seed is the one that produces a large
yield of instances in shortdistance. Thus the ‘good-
ness’ of seed (e) is better than that of seed (d).

As shown in Figure 2, for each seed, we observe
a single hump that corresponds to the point in which
a seed generates the maximum number of instances.
The peak occurs on different iterations because it is
dependent both on the yield learned with each iter-
ation and the total distance, for each seed. The oc-
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currence of a single hump reveals regularity in the
connectivity behavior of seeds, and is discussed in
the Conclusion. We model this behavior as features
in our regression model and use it to measure the
quality of new seeds. The next subsection explains
the features of the regression model and the experi-
mental results obtained.

5.3 Predicting the Goodness of Seeds

Building a pattern specific model: For each pat-
tern, we buildN different regression models, where
N corresponds to the total number of bootstrapping
iterations of the pattern. For regression modelRi,
we use the yield of a seed from iterations1 to i as
features. This information is used to model the ac-
tivity of the seed in the bootstrapping process and
later on to predict the extraction power of new seeds.
For example, in Figure 1 on the first iteration seeds
(b), (c), and (d) have the same low connectivity com-
pared to seed (e). As bootstrapping progresses, seed
(d) reaches productive neighbors that discover more
instances, while seeds (b) and (c) become inactive.
This example shows that the yield in the initial stage
of bootstrapping is not sufficient to accurately pre-
dict the quality of the seeds. Since we do not know
exactly how many iterations are necessary to accu-
rately determine the ‘goodness’ of seeds, we model
the yield learned on each iteration by each seed and
subsequently include this information in the regres-
sion models.

The yield of a seedsk at iterationi is computed as
yield(sk)i =

∑n
m=1(sm), wheren is the total num-

ber of unique instancessm harvested on iterationi.
Y ield(sk)i is high whensk discovers a large number
of instances (new seeds), and small otherwise. For
hermit seeds,yield=0 at any iteration, because the
seeds are totally isolated and do not discover other
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instances (seeds). For example, when building the
second regression modelR2 using seeds (d) and (e)
from Figure 1, the feature values corresponding to
each seed inR2 are:yield(sd)1=1 andyield(sd)2=2
for seed (d), andyield(se)1=3 andyield(se)2=5 for
seed (e).
Results: Figure 3 shows the correlation coefficients
(cc) and the relative absolute errors of each regres-
sion modelRi for thepeopleandcity patterns. The
results are computed over ten-fold cross validation
of the3798 people and5090 city seeds. Thex axis
shows the regression modelRi,. They axis in the
two upper graphs shows the correlation coefficient
of the predicted and the actual total yield of the seeds
using Ri, and in the two lower graphs, they axis
shows the error rate of eachRi.
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Figure 3: Regression for People and City.

We consider as a baseline model the regression
R1 which uses only the yield of the seeds on first
iteration. The prediction ofR1 has cc=0.6 with
50% error for people and cc=0.4 with 70% error
for cities. These results confirm our previous obser-
vation that the quality of the seeds cannot be accu-
rately measured in the very beginning of bootstrap-
ping. However, by the ninth iteration, the regres-
sion models for people and cities reach cc=1.0 with
5% error rate. To make such an accurate prediction,
the model uses around one half of all bootstrapping
iterations—generally, just past the hump in Figure 2,
once the yield starts dropping.

Often in real applications or when under limited

resources (e.g., a fixed amount of Web queries per
day), running half the bootstrapping iterations is not
feasible. This problem can be resolved by employ-
ing different stopping criteria, at the cost of lower
cc and greater error. For example, one cut-off point
can be the (averaged) iteration number of the hump
for the given pattern. For people, the average hump
occurs at the seventh iteration, and for the city at
the fifth iteration. At this point, both patterns have a
cc=0.9 with 15% error rate. An alternative stopping
point can be the fourth iteration, where cc=0.7–0.8
with 35% error.

Overall, our study shows that it is possible to
model the behavior of seeds and use it to accurately
predict the ‘goodness’ of previously unseen seeds.
The results obtained for bothpeopleand city pat-
terns are very promising. However, a disadvantage
of this regression is that it requires training over the
whole extent of the given pattern. Also, each regres-
sion model is specific to the particular pattern it is
trained over. Next, we propose a generalized regres-
sion model which surmounts the problem of training
pattern-specific regression models.

5.4 Generalized Model for Goodness of Seeds

We built a generalized regression model (RG) com-
bining evidence from the people and city patterns.
We generated the features of each model as previ-
ously described in Section 5.3. From each pattern,
we randomly picked1000 examples which resulted
in 30% of the people and 20% of the city seeds. We
used these seed examples to train theRGi models.
In total, we built 15 RGi, which is the maximum
number of overlapping iterations between the two
patterns. We tested ourRG model with the remain-
ing 2798 people and 4090 city seeds.

Figure 4 shows the results of theRGi models for
the people and city patterns. In the first two itera-
tions, the predictions of theRG model are poorer
compared to the pattern-specific regression. On the
fourth iteration, both models have cc=0.7 and 0.8 for
the people and city patterns respectively. The error
rates of the generalized model are 41% and 35% for
people and city, while for the pattern-specific model
the errors are 37% and 32%. The early iterations
show a difference of around 4% in the error rate of
the two models, but around the ninth iteration both
models have comparable results.
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Figure 4: Generalized Regression for People and City.

This study shows that it is possible to combine
evidence from two patterns harvesting different se-
mantic information to predict accurately the behav-
ior of unseen seed examples for either of the two
patterns.

5.5 Evaluating the Generalized Model on
Different Languages and Kinds of Patterns

So far, we have studied the performance of the gen-
eralized seed quality prediction method for specific
patterns in English. However, the connectivity be-
havior of the seeds might change for other languages
and kinds of patterns, making the generalized model
impractical to use in such cases. To verify this,
we evaluated the generalized model (RG) from Sec-
tion 5.4 with the people and city patterns in Spanish
(‘ gente como X y *’ and ‘ ciudades como X y *’), as
well as with two new kinds of patterns (‘* and X fly
to’ and ‘ * and X work for’1). For each pattern, we
ran the bootstrapping process from Section 3 until
exhaustion and collected all seeds.

First, for each pattern we studied the connectivity
behavior of the seeds. Table 2 shows the obtained
results. The distribution is similar to the seed distri-
bution for the English people and cities patterns. Al-
though the total number of harvested instances (i.e.,
seeds) is different for each pattern, the proportion of
hermits to other seeds remains larger. From 20%
to 37% of the seeds are high connectors, and the
rest are one-step and mid connectors. This analysis
shows that the connectivity behavior of seeds across
different languages and patterns is similar, at least
for the examples studied. In addition to the seed
analysis, we show in the table the total number of
bootstrapping iterations for each pattern. The ‘work

1The X indicates the position of the seed and (*) corresponds
to the instances learned during bootstrapping.

for’ and ‘fly to’ patterns run for a longer distance
compared to the other patterns. While for the ma-
jority of the patterns the hump is observed on the
fifth or seventh iteration, for these two patterns the
average peak is observed on the fifteenth.

gente como X y ciudades como X y

#hermit 318 (56%) 1061 (51%)
#one-step 58 (10%) 150 (8%)

#mid 79 (14%) 79 (4%)
#high 117 (20%) 795 (38%)

tot#iter 20 16

and X fly to and X work for

#hermit 389 (45%) 1262 (48%)
#one-step 87 (9%) 238 (9%)

#mid 75 (8%) 214 (8%)
#high 322 (37%) 922 (35%)

tot#iter 26 33

Table 2: Seed Classification for Spanish and Verb-Prep
Patterns.

Second, we test theRGi models from Section 5.4,
which were trained on people and cities, to predict
the total yield of the seeds in the new patterns. Fig-
ure 5 shows the correlation coefficient and the rela-
tive absolute error results of each pattern forRGi.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Generalized Regression Model RGi

Work For
Fly To

Ciudades
Gente

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

R
el

at
iv

e 
A

bs
ol

ut
e 

E
rr

or
 (

%
)

Generalized Regression Model RGi

Work For
Fly To

Ciudades
Gente

Figure 5: Generalized Regression for Different Lan-
guages and Patterns.

Interestingly, we found that our generalized
method has consistent performance across the dif-
ferent languages and patterns. On the twelfth iter-
ation, the model is able to predict the ‘goodness’
of seeds with cc=1.0 and from 0.4% to 8.0% error
rate. Around the fifth and sixth iterations, all pat-
terns reach cc=0.8 with error of 5% to 15%. The
higher error bound is for patterns like ‘work for’ and
‘fly to’ which run for a longer distance. This experi-
mental study confirms the robustness of our general-
ized model which is trained on the behavior of seeds
from one kind of pattern and tested with seeds in dif-
ferent languages and on completely different kinds
of patterns.
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6 Conclusions and Future Work

It would, a fortiori, seem impossible to estimate the
goodness of a seed term used in a recursive boot-
strapping pattern for harvesting information from
the web. After all, its eventual total yield and dis-
tance depend on the cumulation of the terms pro-
duced in each iteration of the bootstrapping, and
there are no external constraints or known web lan-
guage structure to be exploited.

We have shown that it is possible to create, using
regression, a model of the grown behavior of seeds
for a given pattern, and fitting it with an indication of
a new seed’s growth (considering its grown behavior
in a limited number of bootstrapping iterations) in
order to obtain a quite reliable estimate of the new
seed’s eventual yield and distance.

Going further, we are delighted to observe that
the regularity of the single-hump harvesting behav-
ior makes it possible to learn a regression model that
enables one to predict, with some accuracy, both the
yield and the distance of a new seed, even when the
pattern being considered is not yet seen. All that is
required is the indication of the seed’s growth be-
havior, obtained through a number of iterations us-
ing the pattern of interest.

Our ongoing analysis takes the following ap-
proach. LetTi be the set of all new terms (terms
not yet found) harvested during iterationi. Then
T0 = {t0,1}, just the initial seed term. LetNY (ti,j)
be the novel yield of termti,j, that is, the number
of as yet undiscovered terms produced by a single
application of the pattern using the termti,j. Notice
that bootstrapping ceases when for somei = d (the
distance),

∑

j NY (td,j) = 0. Since the total number

of terms that can be learned,
∑d

i=0

∑

j NY (ti,j) =
N , is finite and fixed, there are exactly three al-
ternatives for the growth of the NY curve when
it is shown summed over each iteration: (i) either
∑

j NY (ti,j) =
∑

j NY (ti+1,j) and there is no
larger NY sum for any iteration; or (ii)

∑

j NY (ti,j)
grows to a maximal value for some iterationi =
m and then decreases again; or (iii)

∑

j NY (ti,j)
reaches more than one locally maximal value at dif-
ferent iterations. The first case, in which exactly
the same number of new terms is harvested every
iteration for several or all iterations, would require
that each new term once learned yields precisely and

only one subsequent new term, or that the number
of hermits is exactly balanced by the NY of one or
more of the other terms in that iteration. This situa-
tion is so unlikely as to be dismissed outright. Case
(ii), in which there is a single hump, appears to be
how text is written on the web, as shown in Fig-
ure 2. Case (iii), the multi-hump case, would re-
quire that the terms be linked in semi-disconnected
‘islands’, with a relatively much smaller inter-island
connectivity than intra-island one. Given our stud-
ies, it appears that language on the web is not orga-
nized this way, at least not for the patterns we stud-
ied. However, it is not impossible: this two-hump
case would have to have occurred in (Kozareva et
al., 2008) when the ambiguous seed termGeorgia
was used in the DAP ‘states such as Georgia and *’,
where initially the US states were harvested but, at
some point, the learned term Georgia also initiated
harvesting of the ex-USSR states. Such ‘leakage’
into a new semantic domain requires not only ambi-
guity of the seed but also parallel ambiguity of the
class term, which is highly unlikely as well.

Accepting case (ii), therefore, we postulate that
for any (or all regular) patterns there is some iter-
ation m in which

∑

j NY (tm,j) is maximal. The
question is how rapidly the summed NY curve ap-
proaches it and then abates again. This depends on
the out-degree connectivity of terms overall. In the
population ofN terms for a given semantic pattern,
is the distribution of out-degrees Poisson (or Zip-
fian), or is it normal (Gaussian)? In the former case,
there will be a few high-degree connector terms and
a large number (the long tail) of one-step and hermit
terms; in the latter, there will be a small but equal
number of low-end and high-end connector terms,
with the bulk of terms falling in the mid-connector
range. One direction of our ongoing work is to deter-
mine this distribution, and to empirically derive its
parameters. It might be possible to discover some in-
teresting regularities about the (preferential) uses of
terms within semantic domains, as reflected in term
network connectivity.

Although not all seeds are equal, it appears to
be possible to treat them with a single regression
model, regardless of pattern, to predict their ‘good-
ness’.
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