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Abstract

We are interested in diacritizing Semitic lan-

guages, especially Syriac, using only dia-

critized texts. Previous methods have required

the use of tools such as part-of-speech taggers,

segmenters, morphological analyzers, and lin-

guistic rules to produce state-of-the-art results.

We present a low-resource, data-driven, and

language-independent approach that uses a

hybrid word- and consonant-level conditional

Markov model. Our approach rivals the best

previously published results in Arabic (15%

WER with case endings), without the use of

a morphological analyzer. In Syriac, we re-

duce the WER over a strong baseline by 30%

to achieve a WER of 10.5%. We also report

results for Hebrew and English.

1 Introduction

Abjad writing systems omit vowels and other di-

acritics. The ability to restore these diacritics is

useful for personal, industrial, and governmental

purposes—especially for Semitic languages. In its

own right, the ability to diacritize can aid language

learning and is necessary for speech-based assis-

tive technologies, including speech recognition and

text-to-speech. Diacritics are also useful for tasks

such as segmentation, morphological disambigua-

tion, and machine translation, making diacritization

important to Natural Language Processing (NLP)

systems and intelligence gathering. In alphabetic

writing systems, similar techniques have been used

to restore accents from plain text (Yarowsky, 1999)

and could be used to recover missing letters in the

compressed writing styles found in email, text, and

instant messages.

We are particularly interested in diacritizing Syr-

iac, a low-resource dialect of Aramaic, which pos-

sesses properties similar to Arabic and Hebrew. This

work employs conditional Markov models (CMMs)

(Klein and Manning, 2002) to diacritize Semitic

(and other) languages and requires only diacritized

texts for training. Such an approach is useful for

languages (like Syriac) in which annotated data and

linguistic tools such as part-of-speech (POS) tag-

gers, segmenters, and morphological analyzers are

not available. Our main contributions are as follows:

(1) we introduce a hybrid word and consonant CMM

that allows access to the diacritized form of the pre-

vious words; (2) we introduce new features avail-

able in the proposed model; and (3) we describe an

efficient, approximate decoder. Our models signifi-

cantly outperform existing low-resource approaches

across multiple related and unrelated languages and

even achieve near state-of-the-art results when com-

pared to resource-rich systems.

In the next section, we review previous work rel-

evant to our approach. Section 3 then motivates and

describes the models and features used in our frame-

work, including a description of the decoder. We

describe our data in Section 4 and detail our exper-

imental setup in Section 5. Section 6 presents our

results. Finally, Section 7 briefly discusses our con-

clusions and offers ideas for future work.

2 Previous Work

Diacritization has been receiving increased attention

due to the rising interest in Semitic languages, cou-
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pled with the importance of diacritization to other

NLP-related tasks. The existing approaches can be

categorized based on the amount of resources they

require, their basic unit of analysis, and of course

the language they are targeting. Probabilistic sys-

tems can be further divided into generative and con-

ditional approaches.

Existing methodologies can be placed along a

continuum based on the quantity of resources they

require—a reflection of their cost. Examples of

resources used include morphological analyzers

(Habash and Rambow, 2007; Ananthakrishnan et al.,

2005; Vergyri and Kirchhoff, 2004; El-Sadany and

Hashish, 1989), rules for grapheme-to-sound con-

version (El-Imam, 2008), transcribed speech (Ver-

gyri and Kirchhoff, 2004), POS tags (Zitouni et al.,

2006; Ananthakrishnan et al., 2005), and a list of

prefixes and suffixes (Nelken and Shieber, 2005).

When such resources exist for a particular language,

they typically improve performance. For instance,

Habash and Rambow’s (2007) approach reduces the

error rate of Zitouni et al.’s (2006) by as much as

30% through its use of a morphological analyzer. In

fact, such resources are not always available. Sev-

eral data-driven approaches exist that require only

diacritized texts (e.g., Kübler and Mohamed, 2008;

Zitouni et al., 2006; Gal, 2002) which are relatively

inexpensive to obtain: most literate speakers of the

target language could readily provide them.

Apart from the quantity of resources required, di-

acritization systems also differ in their basic unit of

analysis. A consonant-based approach treats each

consonant1 in a word as a potential host for one

or more (possibly null) diacritics; the goal is to

predict the correct diacritic(s) for each consonant

(e.g., Kübler and Mohamed, 2008). Zitouni et al.

(2006) extend the problem to a sequence labeling

task wherein they seek the best sequence of diacrit-

ics for the consonants. Consequently, their approach

has access to previously chosen diacritics.

Alternatively, the basic unit of analysis can be the

full, undiacritized word. Since morphological ana-

lyzers produce analyses of undiacritized words, di-

acritization approaches that employ them typically

fall into this category (e.g., Habash and Rambow,

1We refer to all graphemes present in undiacritized texts as

consonants.

2007; Vergyri and Kirchoff, 2004). Word-based,

low-resource solutions tend to treat the problem as

word-level sequence labeling (e.g., Gal, 2002).

Unfortunately, word-based techniques face prob-

lems due to data sparsity: not all words in the

test set are seen during training. In contrast,

consonant-based approaches rarely face the anal-

ogous problem of previously unseen consonants.

Thus, one low-resource solution to data sparsity is to

use consonant-based techniques for unknown words

(Ananthakrishnan et al., 2005; Nelken and Shieber,

2005).

Many of the existing systems, especially recent

ones, are probabilistic or contain probabilistic com-

ponents. Zitouni et al. (2006) show the superior-

ity of their conditional-based approaches over the

best-performing generative approaches. However,

the instance-based learning approach of Kübler and

Mohamed (2008) slightly outperforms Zitouni et

al. (2006). In the published literature for Arabic,

the latter two have the best low-resource solutions.

Habash and Rambow (2007) is the state-of-the-art,

high-resource solution for Arabic. To our knowl-

edge, no work has been done in this area for Syriac.

3 Models

In this work, we are concerned with diacritiza-

tion for Syriac for which a POS tagger, segmenter,

and other tools are not readily available, but for

which diacritized text is obtainable.2 Use of a sys-

tem dependent on a morphological analyzer such as

Habash and Rambow’s (2007) is therefore not cost-

effective. Furthermore, we seek a system that is ap-

plicable to a wide variety of languages. Although

Kübler and Mohamed’s (2008) approach is compet-

itive to Zitouni et al.’s (2006), instance-based ap-

proaches tend to suffer with the addition of new fea-

tures (their own experiments demonstrate this). We

desire to add linguistically relevant features to im-

prove performance and thus choose to use a condi-

tional model. However, unlike Zitouni et al. (2006),

we use a hybrid word- and consonant-level approach

based on the following observations (statistics taken

from the Syriac training and development sets ex-

plained in Section 4):

2Kiraz (2000) describes a morphological analyzer for Syriac

that is not publicly available and is costly to reproduce.
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1. Many undiacritized words are unambiguous:

90.8% of the word types and 63.5% of the to-

kens have a single diacritized form.

2. Most undiacritized word types have only a few

possible diacritizations: the average number of

possible diacritizations is 1.11.

3. Low-frequency words have low ambiguity:

Undiacritized types occurring fewer than 5

times have an average of 1.05 possible diacriti-

zations.

4. Diacritized words not seen in the training data

occur infrequently at test time: 10.5% of the

diacritized test tokens were not seen in training.

5. The diacritics of previous words can provide

useful morphological information such as per-

son, number, and gender.

Contrary to observations 1 and 2, consonant-level

approaches dedicate modeling capacity to an expo-

nential (in the number of consonants) number of

possible diacritizations of a word. In contrast, a

word-level approach directly models the (few) dia-

critized forms seen in training. Furthermore, word-

based approaches naturally have access to the dia-

critics of previous words if used in a sequence la-

beler, as per observation 5. However, without a

“backoff” strategy, word-level models cannot pre-

dict a diacritized form not seen in the training data.

Also, low-frequency words by definition have less

information from which to estimate parameters. In

contrast, abundant information exists for each dia-

critic in a consonant-level system. To the degree

to which they hold, observations 3 and 4 mitigate

these latter two problems. Clearly a hybrid approach

would be advantageous.

To this end we employ a CMM in which we treat

the problem as an instance of sequence labeling at

the word level with less common words being han-

dled by a consonant-level CMM. Let u be the undi-

acriatized words in a sentence. Applying an order o

Markov assumption, the distribution over sequences

of diacritized words d is:

P (d|u) =

‖d‖∏

i=1

P (di|di−o...i−1,u;ω,γ, α) (1)

in which the local conditional distribution of a di-

acritized word is an interpolation of a word-level

model (ωui
) and a consonant-level model (γ):

P (di|di−o...i−1,u;ω,γ, α) =

αP (di|di−o...i−1,u;ωui
) +

(1 − α)P (di|di−o...i−1,u;γ)

We let the consonant-level model be a standard

CMM, similar to Zitouni et al. (2006), but with ac-

cess to previously diacritized words. Note that the

order of this “inner” CMM need not be the same as

that of the outer CMM.

The parameter α reflects the degree to which we

trust the word-level model. In the most general case,

α can be a function of the undiacritized words and

the previous o diacritized words. Based on our ear-

lier enumerated observations, we use a simple delta

function for α: we let α be 0 when ui is rare and 1

otherwise. We leave discussion for what constitutes

a “rare” undiacritized type for Section 5.2.

Figure 1b presents a graphical model of a sim-

ple example sentence in Syriac. The diacritiza-

tion for non-rare words is predicted for a whole

word, hence the random variable D for each such

word. These diacritized words Di depend on previ-

ous Di−1 as per equation (1) for an order-1 CMM

(note that the capitalized A, I, and O are in fact con-

sonants in this transliteration). Because “NKTA”

and “RGT” are rare, their diacritization is repre-

sented by a consonant-level CMM: one variable for

each possible diacritic in the word. Importantly,

these consonant-level models have access to the pre-

viously diacritized word (D4 and D6, respectively).

We use log-linear models for all local distribu-

tions in our CMMs, i.e., we use maximum entropy

(maxent) Markov models (McCallum et al., 2000;

Berger et al., 1996). Due to the phenomenon known

as d-separation (Pearl and Shafer, 1988), it is possi-

ble to independently learn parameters for each word

model ωui
by training only on those instances for

the corresponding word. Similarly, the consonant

model can be learned independent of the word mod-

els. We place a spherical normal prior centered at

zero with a standard deviation of 1 over the weights

of all models and use an L-BFGS minimizer to find

the MAP estimate of the weights for all the models

(words and consonant).
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Figure 1: Graphical models of Acts 20:33 in Syriac, CSIA AO DHBA AO NKTA LA RGT ‘silver or gold or

garment I have not coveted,’ using Kiraz’s (1994) transliteration for (a) the initial portion of a consonant-

level-only model and (b) a combined word- and consonant-level model. For clarity, both models assume a

consonant-level Markov order of 1; (b) shows a word-level Markov order of 1. For simplicity, the figure

further assumes that additional features come only from the current (undiacritized) word.

Note that Zitouni et al.’s (2006) model is a spe-

cial case of equation (1) where all words are rare, the

word-level Markov order (o) is 0, and the consonant-

level Markov order is 2. A simplified version of Zi-

touni’s model is presented in Figure 1a.

3.1 Features

Our features are based on those found in Zitouni et

al. (2006), although we have added a few of our own

which we consider to be one of the contributions of

this paper. Unlike their work, our consonant-level

model has access to previously diacritized words,

allowing us to exploit information noted in obser-

vation 5.

Each of the word-level models shares the same set

of features, defined by the following templates:

• The prefixes and suffixes (up to 4 characters) of

the previously diacritized words.

• The string of the actual diacritics, including the

null diacritic, from each of the previous o dia-

critized words and n-grams of these strings; a

similar set of features is extracted but without

the null diacritics.

• Every possible (overlapping) n-gram of all

sizes from n = 1 to n = 5 of undiacritized

words contained within the window defined by

2 words to the right and 2 to the left. These

templates yield 15 features for each token.

• The count of how far away the current token

is from the beginning/end of the sentence up

to the Markov order; also, their binary equiva-

lents.

The first two templates rely on diacritizations of pre-

vious words, in keeping with observation 5.

The consonant-level model has the following fea-

ture templates:

• The current consonant.

• Previous diacritics (individually, and n-grams

of diacritics ending in the diacritic prior to the

current consonant, where n is the consonant-

level Markov order).

• Conjunctions of the first two templates.

• Indicators as to whether this is the first or last

consonant.

• The first three templates independently con-

joined with the current consonant.

• Every possible (overlapping) n-gram of all

sizes from n = 1 to n = 11 consisting of con-

sonants contained within the window defined

by 5 words to the right and 5 to the left.

• Same as previous, but available diacritics are

included in the window.

• Prefixes and suffixes (of up to length 4) of pre-

viously diacritized words conjoined with previ-

ous diacritics in the current token, both individ-

ually and n-grams of such.
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This last template is only possible because of our

model’s dependency on previous diacritized words.

3.2 Decoder

Given a sentence consisting of undiacritized words,

we seek the most probable sequence of diacritized

words, i.e., arg maxd P (d|u...). In sentences con-

taining no rare words, the well-known Viterbi algo-

rithm can be used to find the optimum.

However, as can be seen in Figure 1b, predictions

in the consonant-level model (e.g., C5,1...4) depend

on previously diacritized words (D4), and some dia-

critized words (e.g., D6) depend on diacritics in the

previous rare word (C5,1...4). These dependencies

introduce an exponential number of states (in the

length of the word) for rare words, making exact de-

coding intractable. Instead, we apply a non-standard

beam during decoding to limit the number of states

for rare words to the n-best (locally). This is ac-

complished by using an independent “inner” n-best

decoder for the consonant-level CMM to produce

the n-best diacritizations for the rare word given the

previous diacritized words and other features. These

become the only states to and from which transitions

in the “outer” word-level decoder can be made. We

note this is the same type of decoding that is done in

pipeline models that use n-best decoders (Finkel et

al., 2006). Additionally, we use a traditional beam-

search of width 5 to further reduce the search space

both in the outer and inner CMMs.

4 Data

Although our primary interest is in the Syriac lan-

guage, we also experimented with the Penn Arabic

Treebank (Maamouri et al., 2004) for the sake of

comparison with other approaches. We include He-

brew to provide results for yet another Semitic lan-

guage. We also apply the models to English to show

that our method and features work well outside of

the Semitic languages. A summary of the datasets,

including the number of diacritics, is found in Fig-

ure 2. The number of diacritics shown in the table

is less than the number of possible predictions since

we treat contiguous diacritics between consonants as

a single prediction.

For our experiments in Syriac, we use the New

Testament portion of the Peshitta (Kiraz, 1994) and

lang diacs train dev test

Syriac 9 87,874 10,747 11,021

Arabic 8 246,512 42,105 51,664

Hebrew 17 239,615 42,133 49,455

English 5 1,004,073 80,156 89,537

Figure 2: Number of diacritics and size (in tokens)

of each dataset

treat each verse as if it were a sentence. The diacrit-

ics we predict are the five short vowels, as well as

Se̊yāmē, Rukkākhā, Quššāyā, and linea ocultans.

For Arabic, we use the training/test split defined

by Zitouni et al. (2006). We group all words having

the same P index value into a sentence. We build our

own development set by removing the last 15% of

the sentences of the training set. Like Zitouni, when

no solution exists in the treebank, we take the first

solution as the gold tag. Zitouni et al. (2006) report

results on several different conditions, but we focus

on the most challenging of the conditions: we pre-

dict the standard three short vowels, three tanween,

sukuun, shadda, and all case endings. (Preliminary

experiments show that our models perform equally

favorably in the other scenarios as well.)

For Hebrew, we use the Hebrew Bible (Old Tes-

tament) in the Westminster Leningrad Codex (Zefa-

nia XML Project, 2009). As with Syriac, we treat

each verse as a sentence and remove the paragraph

markers (pe and samekh). There is a large number

of diacritics that could be predicted in Hebrew and

no apparent standardization in the literature. For

these reasons, we attempt to predict as many dia-

critics as possible. Specifically, we predict the di-

acritics whose unicode values are 05B0-B9, 05BB-

BD, 05BF, 05C1-C2, and 05C4. We treat the follow-

ing list of punctuation as consonants: maqaf, paseq,

sof pasuq, geresh, and gershayim. The cantillation

marks are removed entirely from the data.

Our English data comes from the Penn Treebank

(Marcus et al., 1994). We used sections 0–20 as

training data, 21–22 as development data, and 23–

24 as our test set. Unlike words in the Semitic lan-

guages, English words can begin with a vowel, re-

quiring us to prepend a prosthetic consonant to every

word; we also convert all English text to lowercase.
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5 Experiments

For all feature engineering and tuning, we trained

and tested on training and development test sets, re-

spectively (as specified above). Final results are re-

ported by folding the development test set into the

training data and evaluating on the blind test set. We

retain only those features that occur more than once.

For each approach, we report the Word Error Rate

(WER) (i.e., the percentage of words that were in-

correctly diacritized), along with the Diacritic Er-

ror Rate (DER) (i.e., the percentage of diacritics, in-

cluding the null diacritic, that were incorrectly pre-

dicted). We also report both WER and DER for

only those words that were not seen during training

(UWER and UDER, respectively). We found that

precision, recall, and f-score were nearly perfectly

correlated with DER; hence, we omit this informa-

tion for brevity.

5.1 Models for Evaluation

In previous work, Kübler et al. (2008) report the

lowest error rates of the low-resource models. Al-

though their results are not directly comparable to

Zitouni et al. (2006), we have independently con-

firmed that the former slightly outperforms the latter

using the same diacritics and on the same dataset

(see Figure 4), thereby providing the strongest pub-

lished baseline for Arabic on a common dataset. We

denote this model as kübler and use it as a strong

baseline for all datasets.

For the Arabic results, we additionally include Zi-

touni et al.’s (2006) lexical model (zitouni-lex)

and their model that uses a segmenter and POS

tagger (zitouni-all), which are not immediately

available to us for Syriac. For yet another point of

reference for Arabic, we provide the results from the

state-of-the-art (resource-rich) approach of Habash

and Rambow (2007) (habash). This model is at an

extreme advantage, having access to a full morpho-

logical analyzer. Note that for these three models

we simply report their published results and do not

attempt to reproduce them.

Since kübler is of a different model class than

ours, we consider an additional baseline that is a

consonant-level CMM with access to the same in-

formation, namely, only those consonants within a

window of 5 to either side (ccmm). This is equiva-

lent to a special case of our hybrid model wherein

both the word-level and the consonant-level Markov

order are 0. The features that we extract from this

window are the windowed n-gram features.

In order to assess the utility of previous diacritics

and how effectively our features leverage them, we

build a model based on the methodology from Sec-

tion 3 but specify that all words are rare, effectively

creating a consonant-only model that has access to

the diacritics of previous words. We call this model

cons-only. We note that the main difference be-

tween this model and zitouni-lex are features

that depend on previous diacritized words.

Finally, we present results using our full hybrid

model (hybrid). We use a Markov order of 2 at

the word and consonant level for both hybrid and

cons-only.

5.2 Consonant-Level Model and Rare Words

The hybrid nature of hybrid naturally raises the

question of whether or not the inner consonant

model should be trained only on rare words or on

all of the data. In other words, is the distribution

of diacritics different in rare words? If so, the con-

sonant model should be trained only on rare words.

To answer this question, we trained our consonant-

level model (cons-only) on words occurring fewer

than n times. We swept the value of the threshold n

and compared the results to the same model trained

on a random selection of words. As can be seen in

Figure 3, the performance on unknown words (both

UWER and UDER) using a model trained on rare

words can be much lower than using a model trained

on the same amount of randomly selected data. In

fact, training on rare words can lead to a lower error

rate on unknown words than training on all tokens

in the corpus. This suggests that the distribution of

diacritics in rare words is different from the distri-

bution of diacritics in general. This difference may

come from foreign words, especially in the Arabic

news corpus.

While this phenomenon is more pronounced in

some languages and with some models more than

others, it appears to hold in the cases we tried. We

found the WER for unknown words to be lowest for

a threshold of 8, 16, 32, and 32 for Syriac, Arabic,

Hebrew, and English, respectively.
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Figure 3: Learning curves showing impact on consonant-level models when training on rare tokens for

Syriac and Arabic. Series marked “rare” were trained with the least common tokens in the dataset.

Approach WER DER UWER UDER

S
y

ri
ac

kübler 15.04 5.23 64.65 18.21

ccmm 13.99 4.82 54.54 15.18

cons-only 12.31 5.03 55.68 19.09

hybrid 10.54 4.29 55.16 18.86

A
ra

b
ic

zitouni-lex 25.1 8.2 NA NA

kübler 23.61 7.25 66.69 20.51

ccmm 22.63 6.61 57.71 16.10

cons-only 15.02 5.15 48.10 15.76

hybrid 17.87 5.67 47.85 15.63

zitouni-all 18.0 5.5 NA NA

habash 14.9 4.8 NA NA

H
eb

re
w

kübler 30.60 12.96 89.52 36.86

ccmm 29.67 12.05 80.02 29.39

cons-only 23.39 10.92 75.70 33.34

hybrid 22.18 10.71 74.38 32.40

E
n

g
li

sh

kübler 10.54 4.38 54.96 16.31

ccmm 11.60 4.71 58.55 16.34

cons-only 8.71 3.87 58.93 17.85

hybrid 5.39 2.38 57.24 16.51

Figure 4: Results for all languages and approaches

6 Discussion of Results

Since Syriac is of primary interest to us, we begin

by examining the results from this dataset. Syriac

appears to be easier to diacritize than Arabic, con-

sidering it has a similar number of diacritics and

only one-third the amount of data. On this dataset,

hybrid has the lowest WER and DER, achieving

nearly 30% and 18% reduction in WER and DER,

respectively, over kübler; it reduces both error

rates over cons-only by more than 14%. These

results attest to the effectiveness of our model in ac-

counting for the observations made in Section 3.

A similar pattern holds for the Hebrew and En-

glish datasets, namely that hybrid reduces the

WER over kübler by 28% to upwards of 50%;

cons-only also consistently and significantly out-

performs kübler and ccmm. However, the reduc-

tion in error rate for our cons-only and hybrid

models tends to be lower for DER than WER in

all languages except for English. In the case of

hybrid, this is probably because it is inherently

word-based. Having access to entire previous dia-

critized words may be a contributing factor as well,

especially in cons-only.

When comparing model classes (kübler and

ccmm), it appears that performance is comparable

across all languages, with the maxent approach en-

joying a slight advantage except in English. Interest-

ingly, the maxent solution usually handles unknown

words better, although it does not specifically target

this case. Both models outperform zitouni-lex

in Arabic, despite the fact that they use a much

simpler feature set, most notably, the lack of pre-

vious diacritics. In the case of ccmm this may be at-

tributable in part to our use of an L-BFGS optimizer,

convergence criteria, feature selection, or other po-

tential differences not noted in Zitouni et al. (2006).

We note that the maxent-based approaches are much

more time and memory intensive.

Using the Arabic data, we are able to com-

pare our methods to several other published results.
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The cons-only model significantly outperforms

zitouni-all despite the additional resources to

which the latter has access. This is evidence sup-

porting our hypothesis that the diacritics from pre-

vious words in fact contain useful information for

prediction. This empirically suggests that the inde-

pendence assumptions in consonant-only models are

too strict.

Perhaps even more importantly, our low-resource

method approaches the performance of habash. We

note that the differences may not be statistically sig-

nificant, and also that Habash and Rambow (2007)

omit instances in the data that lack solutions. In fact,

cons-only has a lower WER than all but two of

the seven techniques used by Habash and Rambow

(2007), which use a morphological analyzer.

Interestingly, hybrid does worse than

cons-only on this dataset, although it is still

competitive with zitouni-all. We hypothesize

that the observations from Section 3 do not hold

as strongly for this dataset. For this reason, using

a smooth interpolation function (rather than the

abrupt one we employ) may be advantageous and is

an interesting avenue for future research.

One last observation is that the approaches that

use diacritics from previous words (i.e., cons-only

and hybrid) usually have lower sentence error rates

(not shown in Figure 4). This highlights an advan-

tage of observation 5: that dependencies on previ-

ously diacritized words can help ensure a consistent

tagging within a sentence.

7 Conclusions and Future Work

In this paper, we have presented a low-resource so-

lution for automatic diacritization. Our approach is

motivated by empirical observations of the ambigu-

ity and frequency of undiacritized and diacritized

words as well as by the hypothesis that diacrit-

ics from previous words provide useful informa-

tion. The main contributions of our work, based

on these observations, are (1) a hybrid word-level

CMM combined with a consonant-level model for

rare words, (2) a consonant-level model with depen-

dencies on previous diacritized words, (3) new fea-

tures that leverage these dependencies, and (4) an

efficient, approximate decoder for these models. As

expected, the efficacy of our approach varies across

languages, due to differences in the actual ambigu-

ity and frequency of words in these languages. Nev-

ertheless, our models consistently reduce WER by

15% to nearly 50% over the best performing low-

resource models in the literature. In Arabic, our

models approach state-of-the-art despite not using a

morphological analyzer. Arguably, our results have

brought diacritization very close to being useful for

practical application, especially when considering

that we evaluated our method on the most difficult

task in Arabic, which has been reported to have dou-

ble the WER (Zitouni et al., 2006).

The success of this low-resource solution natu-

rally suggests that where more resources are avail-

able (e.g., in Arabic), they could be used to further

reduce error rates. For instance, it may be fruitful to

incorporate a morphological analyzer or segmenta-

tion and part-of-speech tags.

In future work, we would like to consider using

CRFs in place of MEMMs. Also, other approximate

decoders used in pipeline approaches could be ex-

plored as alternatives to the one we used (e.g., Finkel

et al., 2006). Additionally, we wish to include our

model as a stage in a pipeline that segments, dia-

critizes, and labels morphemes. Since obtaining data

for these tasks is substantially more expensive, we

hope to use active learning to obtain more data.

Our framework is applicable for any sequence la-

beling task that can be done at either a word or a

sub-word (e.g., character) level. Segmentation and

lemmatization are particularly promising tasks to

which our approach could be applied.

Finally, for the sake of completeness, we note that

more recent work has been done based on our base-

line models that has emerged since the preparation

of the current work, particularly Zitouni et al. (2009)

and Mohamed et al. (2009). We wish to address any

improvements captured by this more recent work

such as the use of different data sets and addressing

problems with the hamza to decrease error rates.
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