
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 483–491,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Learning to Link Entities with Knowledge Base

Zhicheng Zheng, Fangtao Li, Minlie Huang, Xiaoyan Zhu
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
{zhengzc04,fangtao06}@gmail.com, {aihuang,zxy-dcs}@tsinghua.edu.cn

Abstract

This paper address the problem of entity link-
ing. Specifically, given an entity mentioned in
unstructured texts, the task is to link this entity
with an entry stored in the existing knowledge
base. This is an important task for informa-
tion extraction. It can serve as a convenient
gateway to encyclopedic information, and can
greatly improve the web users’ experience.
Previous learning based solutions mainly fo-
cus on classification framework. However, it’s
more suitable to consider it as a ranking prob-
lem. In this paper, we propose a learning to
rank algorithm for entity linking. It effectively
utilizes the relationship information among
the candidates when ranking. The experi-
ment results on the TAC 20091 dataset demon-
strate the effectiveness of our proposed frame-
work. The proposed method achieves 18.5%
improvement in terms of accuracy over the
classification models for those entities which
have corresponding entries in the Knowledge
Base. The overall performance of the system
is also better than that of the state-of-the-art
methods.

1 Introduction

The entity linking task is to map a named-entity
mentioned in a text to a corresponding entry stored
in the existing Knowledge Base. The Knowledge
Base can be considered as an encyclopedia for en-
tities. It contains definitional, descriptive or rele-
vant information for each entity. We can acquire the
knowledge of entities by looking up the Knowledge

1http://www.nist.gov/tac/

Base. Wikipedia is an online encyclopedia, and now
it becomes one of the largest repositories of encyclo-
pedic knowledge. In this paper, we use Wikipedia as
our Knowledge Base.

Entity linking can be used to automatically aug-
ment text with links, which serve as a conve-
nient gateway to encyclopedic information, and can
greatly improve user experience. For example, Fig-
ure 1 shows news from BBC.com. When a user is
interested in ”Thierry Henry”, he can acquire more
detailed information by linking”Thierry Henry” to
the corresponding entry in the Knowledge Base.

Figure 1: Entity linking example

Entity linking is also useful for some information
extraction (IE) applications. We can make use of
information stored in the Knowledge Base to assist
the IE problems. For example, to answer the ques-
tion ”When was the famous basketball player Jor-
dan born?”, if the Knowledge Base contains the en-

483



tity of basketball player Michael Jordan and his in-
formation (such as infobox2 in Wikipedia), the cor-
rect answer”February 17, 1963” can be easily re-
trieved.

Entity linking encounters the problem of entity
ambiguity. One entity may refer to several entries
in the Knowledge Base. For example, the entity
”Michael Jordan” can be linked to the basketball
player or the professor in UC Berkeley.

Previous solutions find that classification based
methods are effective for this task (Milne and Wit-
ten, 2008). These methods consider each candidate
entity independently, and estimate a probability that
the candidate entry corresponds to the target entity.
The candidate with the highest probability was cho-
sen as the target entity. In this way, it’s more like
a ranking problem rather than a classification prob-
lem. Learning to rank methods take into account the
relations between candidates, which is better than
considering them independently. Learning to rank
methods are popular in document information re-
trieval, but there are few studies on information ex-
traction. In this paper, we investigate the application
of learning to rank methods to the entity linking task.
And we compare several machine learning methods
for this task. We investigate the pairwise learning to
rank method, Ranking Perceptron (Shen and Joshi,
2005), and the listwise method, ListNet (Cao et al.,
2007). Two classification methods, SVM and Per-
ceptron, are developed as our baselines. In com-
parison, learning to rank methods show significant
improvements over classification methods, and List-
Net achieves the best result. The best overall per-
formance is also achieved with our proposed frame-
work.

This paper is organized as follows. In the next
section we will briefly review the related work. We
present our framework for entity linking in section
3. We then describe in section 4 learning to rank
methods and features for entity linking. A top1 can-
didate validation module will be explained in section
5. Experiment results will be discussed in section 6.
Finally, we conclude the paper and discusses the fu-
ture work in section 7.

2Infoboxes are tables with semi-structured information in
some pages of Wikipedia

2 Related Work

There are a number of studies on named entity dis-
ambiguation, which is quite relevant to entity link-
ing. Bagga and Baldwin (1998) used a Bag of Words
(BOW) model to resolve ambiguities among people.
Mann and Yarowsky (2003) improved the perfor-
mance of personal names disambiguation by adding
biographic features. Fleischman (2004) trained a
Maximum Entropy model with Web Features, Over-
lap Features, and some other features to judge
whether two names refer to the same individual.
Pedersen (2005) developed features to represent the
context of an ambiguous name with the statistically
significant bigrams.

These methods determined to which entity a spe-
cific name refer by measuring the similarity between
the context of the specific name and the context of
the entities. They measured similarity with a BOW
model. Since the BOW model describes the con-
text as a term vector, the similarity is based on co-
occurrences. Although a term can be one word or
one phrase, it can’t capture various semantic rela-
tions. For example, ”Michael Jordan now is the boss
of Charlotte Bobcats” and ”Michael Jordan retired
from NBA”. The BOW model can’t describe the re-
lationship betweenCharlotte BobcatsandNBA. Ma-
lin and Airoldi (2005) proposed an alternative sim-
ilarity metric based on the probability of walking
from one ambiguous name to another in a random
walk within the social network constructed from all
documents. Minkov (2006) considered extended
similarity metrics for documents and other objects
embedded in graphs, facilitated via a lazy graph
walk, and used it to disambiguate names in email
documents. Bekkerman and McCallum (2005) dis-
ambiguated web appearances of people based on the
link structure of Web pages. These methods tried to
add background knowledge via social networks. So-
cial networks can capture the relatedness between
terms, so the problem of a BOW model can be
solved to some extent. Xianpei and Jun (2009) pro-
posed to use Wikipedia as the background knowl-
edge for disambiguation. By leveraging Wikipedia’s
semantic knowledge like social relatedness between
named entities and associative relatedness between
concepts, they can measure the similarity between
entities more accurately. Cucerzan (2007) and

484



Bunescu (2006) used Wikipedia’s category informa-
tion in the disambiguation process. Using different
background knowledge, researcher may find differ-
ent efficient features for disambiguation.

Hence researchers have proposed so many effi-
cient features for disambiguation. It is important to
integrate these features to improve the system per-
formance. Some researchers combine features by
manual rules or weights. However, it is not conve-
nient to directly use these rules or weights in another
data set. Some researchers also try to use machine
learning methods to combine the features. Milne and
Witten (2008) used typical classifiers such as Naive
Bayes, C4.5 and SVM to combine features. They
trained a two-class classifier to judge whether a can-
didate is a correct target. And then when they try
to do disambiguation for one query, each candidate
will be classified into the two classes: correct tar-
get or incorrect target. Finally the candidate answer
with the highest probability will be selected as the
target if there are more than one candidates classi-
fied as answers. They achieve great performance in
this way with three efficient features. The classifier
based methods can be easily used even the feature
set changed. However, as we proposed in Introduc-
tion, it’s not the best way for such work. We’ll detail
the learning to rank methods in the next section.

3 Framework for Entity Linking

Input%a%query

Output%the%

final answerfinal%answer

Figure 2: The framework for entity linking

Entity linking is to align a named-entity men-
tioned in a text to a corresponding entry stored in
the existing Knowledge Base. We proposed a frame-
work to solve the ”entity linking” task. As illustrated
in Figure 2, when inputting a query which is an en-

tity mentioned in a text, the system will return the
target entry in Knowledge Base with four modules:

1. Query Processing. First, we try to correct the
spelling errors in the queries by using query
spelling correction supplied by Google. Sec-
ond, we expand the query in three ways: ex-
panding acronym queries from the text where
the entity is located, expanding queries with the
corresponding redirect pages of Wikipedia and
expanding queries by using the anchor text in
the pages from Wikipedia.

2. Candidates Generation. With the queries gen-
erated in the first step, the candidate genera-
tion module retrieves the candidates from the
Knowledge Base. The candidate generation
module also makes use of the disambiguation
pages in Wikipedia. If there is a disambigua-
tion page corresponding to the query, the linked
entities listed in the disambiguation page are
added to the candidate set.

3. Candidates Ranking. In the module, we rank all
the candidates with learning to rank methods.

4. Top1 Candidate Validation. To deal with those
queries without appropriate matching, we fi-
nally add a validation module to judge whether
the top one candidate is the target entry.

The detail information of ranking module and val-
idation module will be introduced in next two sec-
tions.

4 Learning to Rank Candidates

In this section we first introduce the learning to rank
methods, and then describe the features for ranking
methods.

4.1 Learning to rank methods

Learning to rank methods are popular in the area of
document retrieval. There are mainly two types of
learning to rank methods: pairwise and listwise. The
pairwise approach takes as instances object pairs in
a ranking list for a query in learning. In this way,
it transforms the ranking problem to the classifica-
tion problem. Each pair from ranking list is labeled
based on the relative position or with the score of

485



ranking objects. Then a classification model can be
trained on the labeled data and then be used for rank-
ing. The pairwise approach has advantages in that
the existing methodologies on classification can be
applied directly. The listwise approach takes can-
didate lists for a query as instances to train ranking
models. Then it trains a ranking function by min-
imizing a listwise loss function defined on the pre-
dicted list and the ground truth list.

To describe the learning to rank methods, we first
introduce some notations:

∙ Query set Q ={q(i)∣i = 1 : m}.

∙ Each queryq(i) is associated with a list of ob-
jects(in document retrieval, the objects should
be documents),d(i) = {d

(i)
j ∣j = 1 : n(i)}.

∙ Each object list has a labeled score listy(i) =

{y
(i)
j ∣j = 1 : n(i)} represents the relevance de-

gree between the objects and the query.

∙ Features vectorsx(i)
j from each query-object

pair, j = 1 : n(i).

∙ Ranking function f, for eachx(i)
j it outputs a

scoref(x
(i)
j ). After the training phase, to rank

the objects, just use the ranking function f to
output the score list of the objects, and rank
them with the score list.

In the paper we will compare two different learn-
ing to rank approaches: Ranking Perceptron for pair-
wise and ListNet for listwise. A detailed introduc-
tion on Ranking Perceptron (Shen and Joshi, 2005)
and ListNet (Cao et al., 2007) is given.

4.1.1 Ranking Perceptron

Ranking Perceptron is a pairwise learning to rank
method. The score functionf!(x

(i)
j ) is defined as

< !, x
(i)
j >.

For each pair(x(i)
j1 , x

(i)
j2 ), f!(x

(i)
j1 − x

(i)
j2 ) is com-

puted. With a given margin functiong(x
(i)
j1 , x

(i)
j2 ) and

a positive rate� , if f!(x
(i)
j1 − x

(i)
j2 ) ≤ g(x

(i)
j1 , x

(i)
j2 )� ,

an update is performed:

!t+1 = !t + (x
(i)
j1 − x

(i)
j2 )�g(x

(i)
j1 , x

(i)
j2 )

After iterating enough times, we can use the func-
tion f! to rank candidates.

4.1.2 ListNet

ListNet takes lists of objects as instances in learn-
ing. It uses a probabilistic method to calculate the
listwise loss function.

ListNet transforms into probability distributions
both the scores of the objects assigned by the ora-
cle ranking function and the real score of the objects
given by human.

Let� denote a permutation on the objects. In List-
Net algorithm, the probability of� with given scores
is defined as:

Ps(�) =
n∏

j=1

exp(s�(j))∑n
k=j exp(s�(k))

Then the top k probability ofGk(j1, j2, ..., jk) can
be calculated as:

Ps(Gk(j1, j2, ..., jk)) =
k∏

t=1

exp(sjt)∑l
l=t exp(sjl)

The ListNet uses a listwise loss function with
Cross Entropy as metric:

L(y(i), z(i)) = −
∑

∀g∈Gk

Py(i)(g)log(Pz(i) (g))

Denote asf! the ranking function based on
Neural Network model!. The gradient of
L(y(i), z(i)(f!)) with respect to parameter! can be
calculated as:

Δ! =
∂L(y(i), z(i)(f!))

∂!

= −
∑

∀g∈Gk

∂Pz(i)(f!)(g)

∂!

Py(i)(g)

Pz(i)(f!)(g)

In each iteration, the! is updated with−� ×Δ!

in a gradient descent way. Here� is the learning
rate.

To train a learning to rank model, the manually
evaluated score list for each query’s candidate list is
required. We assign 1 to the real target entity and 0
to the others.

486



4.2 Features for Ranking

In the section, we will introduce the features used
in the ranking module. For convenience, we define
some symbols first:

∙ Q represents a query, which contains a named
entity mentioned in a text. CSet represents the
candidate entries in Knowledge Base for the
query Q. C represents a candidate in CSet.

∙ Q’s nameString represents the name string of
Q. Q’s sourceText represents the source text of
Q. Q’s querySet represents the queries which
are expansions of Q’s nameString.

∙ C’s title represents the title of corresponding
Wikipedia article of C. C’s titleExpand repre-
sents the union set of the redirect set of C and
the anchor text set of C. C’s article represents
the Wikipedia article of C.

∙ C’s nameEntitySet represents the set of all
named entities in C’s article labeled by Stan-
ford NER (Finkel et al., 2005). Q’s nameEnti-
tySet represents the set of all named entities in
Q’s sourceText.

∙ C’s countrySet represents the set of all coun-
tries in C’s article, and we detect the countries
from text via a manual edited country list. Q’s
countrySet represents the set of all countries
in Q’s sourceText. C’s countrySetInTitle rep-
resents the set of countries exist in one of the
string s from C’s titleExpand.

∙ C’s citySetInTitle represents the set of all cities
exist in one of the string s from C’s titleExpand,
and we detect the cities from text via a manual
edited list of famous cities. Q’s citySet repre-
sents the set of all cities in Q’s sourceText.

∙ Q’s type represents the type of query Q. It’s la-
beled by Stanford NER. C’s type is manually
labeled already in the Knowledge Base.

The features that used in the ranking module can
be divided into 3 groups: Surface, Context and Spe-
cial. Each of these feature groups will be detailed
next.

4.2.1 Surface Features

The features in Surface group are used to measure
the similarity between the query string and candidate
entity’s name string.

∙ StrSimSurface. The feature value is the max-
imum similarity between the Q’s nameString
and each string s in the set C’s titleExpand. The
string similarity is measured with edit distance.

∙ ExactEqualSurface. The feature value is 1 if
there is a string s in set C’s titleExpand same as
the Q’s nameString, or the Candidate C is ex-
tracted from the disambiguation page. In other
case, the feature value is set to 0.

∙ StartWithQuery. The feature value is 1 if there
is a string s in set C’s titleExpand starting with
the Q’s nameString, and C’s ExactEqualSur-
face is not 1. In other case, the feature value
is set to 0.

∙ EndWithQuery. The feature value is 1 if there
is a string s in set C’s titleExpand ending with
the Q’s nameString, and C’s ExactEqualSur-
face is not 1. In other case, the feature value
is set to 0.

∙ StartInQuery. The feature value is 1 if there is a
string s in set C’s titleExpand that s is the prefix
of the Q’s nameString, and C’s ExactEqualSur-
face is not 1. In other case, the feature value is
set to 0.

∙ EndInQuery. The feature value is 1 if there is a
string s in set C’s titleExpand that s is the post-
fix of the Q’s nameString, and C’s ExactEqual-
Surface is not 1. In other case, the feature value
is set to 0.

∙ EqualWordNumSurface. The feature value is
the maximum number of same words between
the Q’s nameString and each string s in the set
C’s titleExpand.

∙ MissWordNumSurface. The feature value is
the minimum number of different words be-
tween the Q’s nameString and each string s in
the set C’s titleExpand.

487



4.2.2 Context Features

The features in Context group are used to measure
the context relevance between query and the candi-
date entity. We mainly consider the TF-IDF similar-
ity and named entity co-occurrence.

∙ TFSimContext. The feature value is the TF-
IDF similarity between the C’s article and Q’s
sourceText.

∙ TFSimRankContext. The feature value is the
inverted rank of C’s TFSimContext in the CSet.

∙ AllWordsInSource. The feature value is 1 if all
words in C’s title exist in Q’s sourceText, and
in other case, the feature value is set to 0.

∙ NENumMatch. The feature value is the num-
ber of of same named entities between C’s
nameEntitySet and Q’s nameEntitySet. Two
named entities are judged to be the same if and
only if the two named entities’ strings are iden-
tical.

4.2.3 Special Features

Besides the features above, we also find that the
following features are quite significant in the entity
linking task: country names, city names and types
of queries and candidates.

∙ CountryInTextMatch. The feature value is the
number of same countries between C’s coun-
trySet and Q’s countrySet.

∙ CountryInTextMiss. The feature value is the
number of countries that exist in Q’s country-
Set but do not exist in C’s countrySet.

∙ CountryInTitleMatch. The feature value is the
number of same countries between C’s coun-
trySetInTitle and Q’s countrySet.

∙ CountryInTitleMiss. The feature value is the
number of countries that exist in C’s country-
SetInTitle but do not exist in Q’s countrySet.

∙ CityInTitleMatch. The feature value is the
number of same cities between C’s citySetInTi-
tle and Q’s citySet.

∙ TypeMatch. The feature value is 0 if C’s type is
not consistent with Q’s type, in other case, the
feature value is set to 1.

When ranking the candidates in CSet, the fea-
tures’ value was normalized into [0, 1] to avoid noise
caused by large Integer value or small double value.

5 Top 1 Candidate Validation

To deal with those queries without target entities in
the Knowledge Base, we supply a Top 1 candidate
validation module. In the module, a two-class classi-
fier is used to judge whether the top one candidate is
the true target entity. The top one candidate selected
from the ranking module can be divided into two
classes: target and non-target, depending on whether
it’s the correct target link of the query. According
to the performance of classification, SVM is chosen
as the classifier (In practice, the libsvm package is
used) and the SVM classifier is trained on the entire
training set.

Most of the features used in the validation mod-
ule are the same as those in ranking module, such as
StrSimSurface, EqualWordNumSurface, MissWord-
NumSurface, TFSimContext, AllWordsInSource,
NENumMatch and TypeMatch. We also design
some other features, as follows:

∙ AllQueryWordsInWikiText. The feature value
is one if Q’s textRetrievalSet contains C, and
in other case the feature value is set to zero.
The case that Q’s textRetrievalSet contains C
means the candidate C’s article contains the Q’s
nameString.

∙ CountryInTextPer. The feature is the percent-
age of countries from Q’s countrySet exist in
C’s countrySet too. The feature can be seen as
a normalization of CountryInTextMatch/Miss
features in ranking module.

∙ ScoreOfRank. The feature value is the score
of the candidate given by the ranking module.
The ScoreOfRank takes many features in rank-
ing module into consideration, so only fewer
features of ranking module are used in the clas-
sifier.

488



6 Experiment and Analysis

6.1 Experiment Setting

Algorithm Accuracy
Improvement

over SVM
ListNet 0.9045 +18.5%

Ranking Perceptron 0.8842 +15.8%
SVM 0.7636 -

Perceptron 0.7546 -1.2%

Table 1: Evaluation of different ranking algorithm

Entity linking is initiated as a task in this year’s
TAC-KBP3 track, so we use the data from this track.
The entity linking task in the KBP track is to map
an entity mentioned in a news text to the Knowl-
edge Base, which consist of articles from Wikipedia.
The KBP track gives a sample query set which con-
sists of 416 queries for developing. The test set con-
sists of 3904 queries. 2229 of these queries can’t
be mapped to Knowledge Base, for which the sys-
tems should return NIL links. The remaining 1675
queries all can be aligned to Knowledge Base. We
will firstly analyze the ranking methods with those
non-NIL queries, and then with an additional vali-
dation module, we train and test with all queries in-
cluding NIL queries.

As in the entity linking task of KBP track, the ac-
curacy is taken as

accuracy =
#(correct answered queries)

#(total queries)

6.2 Evaluation of Machine Learning Methods
in ranking

As mentioned in the section of related work, learn-
ing to rank methods in entity linking performs bet-
ter than the classification methods. To justify this,
some experiments are designed to evaluate the per-
formance of our ranking module when adopting dif-
ferent algorithms.

To evaluate the performance of the ranking mod-
ule, we use all the queries which can be aligned to a
target entry in the Knowledge Base. The training set
contains 285 valid queries and the test set contains
1675.

3http://apl.jhu.edu/ paulmac/kbp.html

Set Features in Set
Set1 Surface Features
Set2 Set1+TF-IDF Features
Set3 Set2+AllWordsInSource
Set4 Set3+NENumMatch
Set5 Set4+CountryInTitle Features
Set6 Set5+CountryInText Features
Set7 Set6+CityInTitleMatch
Set8 Set7+MatchType

Table 2: Feature Sets

Three algorithms are taken into comparison: List-
Net, Ranking Perceptron, and classifier based meth-
ods. The classifier based methods are trained by di-
viding the candidates into two classes: target and
non-target. Then, the candidates are ranked accord-
ing to their probability of being classified as target.
two different classifiers are tested here, SVM and
Perceptron.

!

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

A
c
c
u
ra
c
y

Feature)Set

ListNet

Ranking!Perceptron

Figure 3: Comparison of ListNet and Ranking Perceptron

As shown in Table 1, the two learning to rank
methods perform much better than the classification
based methods. The experiment results prove our
point that the learning to rank algorithms are more
suitable in this work. And the ListNet shows slight
improvement over Ranking Perceptron, but since the
improvement is not so significant, maybe it depends
on the feature set. To confirm this, we compare the
two algorithms with different features, as showed
in Table 2. In Figure 3, The ListNet outperforms
Ranking Perceptron with all feature sets except Set1,
which indicates that the listwise approach is more
suitable than the pairwise approach. The pairwise
approach suffers from two problems: first, the ob-
jective of learning is to minimize classification er-

489



Systems Accuracy of all queries Accuracy of non-NIL queries Accuracy of NIL queries
System1 0.8217 0.7654 0.8641
System2 0.8033 0.7725 0.8241
System3 0.7984 0.7063 0.8677

ListNet+SVM 0.8494 0.79 0.8941

Table 3: Evaluation of the overall performance, compared with KBP results (System 1-3 demonstrate the top three
ranked systems)

rors but not to minimize the errors in ranking; sec-
ond, the number of pairs generated from list varies
largely from list to list, which will result in a model
biased toward lists with more objects. The issues are
also discussed in (Y.B. Cao et al., 2006; Cao et al.,
2007). And the listwise approach can fix the prob-
lems well.

As the feature sets are added incrementally, it can
be used for analyzing the importance of the features
to the ranking task. Although Surface Group only
takes into consideration the candidate’s title and the
query’s name string, its accuracy is still higher than
60%. This is because many queries have quite small
number of candidates, the target entry can be picked
out with the surface features only. The result shows
that after adding the TF-IDF similarity related fea-
tures, the accuracy increases significantly to 84.5%.
Although TF-IDF similarity is a simple way to mea-
sure the contextual similarity, it performs well in
practice. Another improvement is achieved when
adding the CountryInTitleMatch and CountryInTi-
tleMiss features. Since a number of queries in test
set need to disambiguate candidates with different
countries in their titles, the features about coun-
try in the candidates’ title are quite useful to deal
with these queries. But it doesn’t mean that the
features mentioned above are the most important.
Because many features correlated with each other
quite closely, adding these features doesn’t lead to
remarkable improvement. The conclusion from the
results is that the Context Features significantly im-
prove the ranking performance and the Special Fea-
tures are also useful in the entity linking task.

6.3 Overall Performance Evaluation

We are also interested in overall performance with
the additional validation module. We use all the
3904 queries as the test set, including both NIL
and non-NIL queries. The top three results from

the KBP track (McNamee and Dang, 2009) are se-
lected as comparison. The evaluation result in Table
3 shows that our proposed framework outperforms
the best result in the KBP track, which demonstrates
the effectiveness of our methods.

7 Conclusions and Future Work

This paper demonstrates a framework of learning to
rank for linking entities with the Knowledge Base.
Experimenting with different ranking algorithms, it
shows that the learning to rank methods perform
much better than the classification methods in this
problem. ListNet achieves 18.5% improvement over
SVM, and Ranking Perceptron gets 15.8% improve-
ment over SVM. We also observe that the listwise
learning to rank methods are more suitable for this
problem than pairwise methods. We also add a vali-
dation module to deal with those entities which have
no corresponding entry in the Knowledge Base. We
also evaluate the proposed method on the whole data
set given by the KBP track, for which we add a bi-
nary SVM classification module to validate the top
one candidate. The result of experiment shows the
proposed strategy performs better than all the sys-
tems participated in the entity linking task.

In the future, we will try to develop more sophis-
ticated features in entity linking and design a typical
learning to rank method for the entity linking task.

Acknowledgments

This work was partly supported by the Chinese Nat-
ural Science Foundation under grant No.60973104
and No. 60803075, partly carried out with the aid
of a grant from the International Development Re-
search Center, Ottawa, Canada IRCI project from
the International Development.

490



References

Bagga and Baldwin. 1998. Entity-Based Cross-
Document Coreferencing Using the Vector Spcae
Model. in Proceedings of HLT/ACL.

Gideon S. Mann and David Yarowsky. 2003.Unsuper-
vised Personal Name Disambiguation. in Proceedings
of CONIL.

Michael Ben Fleishman. 2004.Multi-Document Person
Name Resolution. in Proceedings of ACL.

Ted Pedersen, Amruta Purandare and Anagha Kulkarni.
2005. Name Discrimination by Clustering Similar
Contexts. in Proceedings of CICLing.

B.Malin and E. Airoldi. 2005. A Network Analysis
Model for Disambiguation of Names in Lists. in Pro-
ceedings of CMOT.

Einat Minkov, William W. Cohen and Andrew Y. Ng.
2006. Contextual Search and Name Disambiguation
in Email Using Graph. in Proceedings of SIGIR.

Ron Bekkerman and Andrew McCallum. 2005.Disam-
biguating Web Appearances of People in a Social Net-
work. in Proceedings of WWW.

Xianpei Han and Jun Zhao. 2009.Named Entity Disam-
biguation by Leveraging Wikipedia Semantic Knowl-
edge. in Proceedings of CIKM.

David Milne and Ian H. Witten. 2008.Learning to Link
with Wikipedia. in Proceedings of CIKM.

Herbrich, R., Graepel, T. and Obermayer K. 1999.Sup-
port vector learning for ordinal regression. in Pro-
ceedings of ICANN.

Freund, Y., Iyer, R., Schapire, R. E. and Singer, Y. 1998.
An efficient boosting algorithm for combining prefer-
ences. in Proceedings of ICML.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N. and Hullender, G. 2005.Learning to
rank using gradient descent. in Proceedings of ICML.

Cao, Y. B., Xu, J., Liu, T. Y., Li, H., Huang, Y. L. and
Hon, H. W. 2006.Adapting ranking SVM to document
retrieval. in Proceedings of SIGIR.

Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F. and Li, H. 2007.
Learning to rank: From pairwise approach to listwise
approach. in Proceedings of ICML.

Qin, T., Zhang, X.-D., Tsai, M.-F., Wang, D.-S., Liu,
T.Y., and Li, H. 2007.Query-level loss functions for
information retrieval. in Proceedings of Information
processing and management.

L. Shen and A. Joshi. 2005.Ranking and Reranking with
Perceptron. Machine Learning,60(1-3),pp. 73-96.

Silviu Cucerzan. 2007.Large-Scale Named Entity Dis-
ambiguation Based on Wikipedia Data. in Proceed-
ings of EMNLP-CoNLL.

Razvan Bunescu and Marius Pasca. 2006.Using En-
cyclopedic Knowledge for Named Entity Disambigua-
tion. in Proceedings of EACL.

Paul McNamee and Hoa Dang. 2009.Overview
of the TAC 2009 Knowledge Base Population Track
(DRAFT). in Proceedings of TAC.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005.Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sam-
pling. Proceedings of the 43nd Annual Meeting of
the Association for Computational Linguistics (ACL
2005), pp. 363-370.

491


