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Abstract

A variety of query systems have been devel-
oped for interrogating parsed corpora, or tree-
banks. With the arrival of efficient, wide-
coverage parsers, it is feasible to create very
large databases of trees. However, existing ap-
proaches that use in-memory search, or rela-
tional or XML database technologies, do not
scale up. We describe a method for storage,
indexing, and query of treebanks that uses an
information retrieval engine. Several experi-
ments with a large treebank demonstrate ex-
cellent scaling characteristics for a wide range
of query types. This work facilitates the cu-
ration of much larger treebanks, and enables
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or XML database systems. Although these have
built-in support for indexes, they do not scale up ei-
ther (Ghodke and Bird, 2008; Zhang et al., 2001)).

The ability to interrogate large collections of
parsed text has important practical applications.
First, it opens the way to a new kind of information
retrieval (IR) that is sensitive to syntactic informa-
tion, permitting users to do more focussed search.
At the simplest level, an ambiguous query term like
wind or park could be disambiguated with the help
of a POS tag (e.gwi nd/ N, par k/ V). (Existing IR
engines already support query with part-of-speech
tags (Chowdhury and McCabe, 1998)). More com-
plex queries could stipulate the syntactic category of

them to be used effectively in a variety of sci-

- , : appleis in subject position.
entific and engineering tasks.

A second benefit of large scale tree query is for
natural language processing. For example, we might
compute the likelihood that a given noun appears as
The problem of representing and querying linguisti¢he agent or patient of a verb, as a measure of an-
annotations has been an active area of research faracy. We can use features derived from syntactic
several years. Much of the work has grown fronirees in order to support semantic role labeling, lan-
efforts to curate large databases of annotated te§¢age modeling, and information extraction (Chen
such adreebanks, for use in developing and testingand Rambow, 2003; Collins et al., 2005; Hakenberg
language technologies (Marcus et al., 1993; Abeill&t al., 2009). A further benefit for natural language
2003; Hockenmaier and Steedman, 2007). At leaftrocessing, though not yet realized, is for a treebank
a dozen linguistic tree query languages have be@nd query engine to provide the underlying storage
developed for interrogating treebanks (§8% and retrieval for a variety of linguistic applications.

While high quality syntactic parsers are able toust as a relational database is present in most busi-
efficiently annotate large quantities of English texess applications, providing reliable and efficient ac-
(Clark and Curran, 2007), existing approaches t6€ss to relational data, such a system would act as a
query do not work on the same scale. Many existepository of annotated texts, and expose an expres-
ing systems load the entire corpus into memory angive API to client applications.
check a user-supplied query against every tree. Oth-A third benefit of large scale tree query is to
ers avoid the memory limitation, and use relationasupport syntactic investigations, e.g. for develop-
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ing syntactic theories or preparing materials for laneomplex and interesting task, due to several factors
guage learners. Published treebanks will usually nethich we list below.
attest particular words in the context of some in- -
P . . .Structure of the data: There are many varieties
frequent construction, to the detriment of syntactic .
. - . of treebank. Some extend the nested bracketing
studies that make predictions about such combina- . . .
. ) : syntax to store morphological information. Oth-
tions, and language learners wanting to see instances . . .
S . ers store complex attribute-value matrices in tree
of some construction involving words from some .
. . -nodes or have tree-valued attributes (Oepen et al.,
specialized topic. A much larger treebank allevi- -
. 2002), or store dependency structur€sngjrek et
ates these problems. To improve recall performance . o
. . al., 2004), or categorial grammar derivations (Hock-
multiple parses for a given sentence could be store . :
. ) . enmaier and Steedman, 2007). Others store multiple
(possibly derived from different parsers).

, . overlapping trees (Cassidy and Harrington, 2001;
A fourth benefit for large scale tree query is tOHeid et al., 2004: Volk et al., 2007)

support the curation of treebanks, a major enter-

prise in its own right (Abeille, 2003). Manual selec-Form of results:. Do we want entire trees, or
tion and correction of automatically generated parseatching subtrees, or just a count of the number of
trees is a substantial part of the task of preparing re@sults? Do we need some indication of why the
treebank. At the point of making such decisions, iguery matched a particular tree, perhaps by show-
is often helpful for an annotator to view existing aning how query terms relate to a hit, cf. document
notations of a given construction which have alreadgnippets and highlighted words in web search re-
been manually validated (Hiroshi et al., 2005). Ocsults? Do we want to see multiple hits when a query
casionally, an earlier annotation decision may neematches a particular tree in more than one place?
to be reconsidered in the light of new examplesPo we want to see tree diagrams, or some machine-
leading to further queries and to corrections that ar@adable tree representation that can be used in ex-
spread across the whole corpus (Wallis, 2003; Xuernal analysis? Can a query serve to update the tree-
et al., 2005). bank, cf. SQL update queries?

This paper explores a new methods for scaling UR mper of results: Do we want all resullts, or the
tree query using an IR engine. 4@ we describe ex- fjot , results in document order, or the “beste-
isting tree query systems, elaborating on the desigly s where our notion of best might be based on

decisions, and on key aspects of their implement"?‘épresentativeness or distinctiveness.
tion and performance. A3 we describe a method

for indexing trees using an IR engine, and discusgescription language: Do we prefer to describe
the details of our open source implementation. lifees by giving examples of tree fragments, replac-
§4 we report results from a variety of experimentdndg some nodes replaced with wildcards (Hiroshi et
involving two data collections. The first collectional., 2005; Ichikawa et al., 2006; Mirovsky, 2006)?
contains of 5.5 million parsed trees, two orders ofr do we prefer a path language (Rohde, 2005; Lai
magnitude larger than those used by existing trednd Bird, 2010)? Or perhaps we prefer a language
query systems, while the second collection contairigvolving variables, quantifiers, boolean operators,

26.5 million trees. and negation (Koénig and Lezius, 2001; Kepser,
2003; Pajas and@tépanek, 2009)? What built-in
2 Treebank Query tree relations are required, beyond the typical par-

ent/child, ancestor/descendent, sibling and temporal
Atree query system needs to be able to identify tregslations? (E.g. last child, leftmost descendent, par-
having particular properties. On the face of it, thient's following sibling, pronoun’s antecedent.) Do
should be possible to achieve by writing simple prowe need to describe tree nodes using regular expres-
grams over treebank files on disk. The programsions, or attributes and values? Do we need a type
would match tree structures using regular expressi@ystem, a pattern language, or boolean logic for talk-
patterns, possibly augmented with syntax for matching about attribute values? The expressive require-
ing tree structure. However, tree query is a morenents of the query language have been discussed
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at length elsewhere (Lai and Bird, 2004; Mirovsky3 Indexing Trees

2008), and we will not consider them further here. ) . .
In this section we discuss two methods of stor-

Performance: What performance is acceptable,ing and indexing trees. The first uses a relational
especially as the data size grows? Do we waniatabase and linguistic queries are translated into
to optimize multiple reformulations of a query, for SQL, while the second uses an inverted index ap-
users who iteratively refine a query based on quemroach based on an open source IR engine, Lutene.
results? Do we want to optimize certain queryRelational databases are a mature technology and
types? Are queries performed interactively or irare known to be efficient at performing joins and
batch mode? Is the treebank stable, or being activeficcessing data using indexes. Information retrieval
revised, in which case indexes need to be easily upngines using term vectors, on the other hand, ef-
datable? Do we expect logically identical queriesiciently retrieve documents relevant to a query. IR
to have the same performance, so that users do reigines are known to scale well, but they do not sup-
have to rewrite their queries for efficiency? Key perport complex queries. A common feature of both
formance measures are index size and search timeéke IR and database approaches is the adoption of

Architecture: Is the query system standalone, Orso-called tree labeling” schemes.

does it exist in a client-server architecture? Is therg1 Tree labeling schemes

a separate user-interface layer that interacts with_la . . .
. . . ree queries specify node labels (“value con-
data server using a well-defined API, orisitamono-, ~. ) .
L . o straints”) and structural relationships between nodes
lithic system? Should it translate queries into an-_ . 3 . .
. of interest (“structural constraints”). A simple value
other language, such as SQL (Bird et al., 2006 .
. constraint could look for ah noun phrase by spec-
Nakov et al., 2005), or XQuery (Cassidy, 2002;. . ) . - )
ifying the WHNP; such queries are efficiently im-
Mayo et al., 2006), or to automata (Maryns and ST ) .
. . plemented using indexes. Structural relationships
Kepser, 2009), in order to benefit from the perfor- . . .
mance optimizations they provide cannot be indexed like node labels. A term in a
sentence will have multiple relationships with other
Indexing. The indexing methods used in individ-terms in the same sentence. Indexing all pairs of
ual systems are usually not reported. Many systenterms that exist in a given structural relationship re-
display nearly constant time for querying a databassylts in an explosion in the index size. Instead, the
regardless of the selectivity of a query, a strong instandard approach is to store position information
dicator that no indexes are being used. For exam¥ith each occurrence of a term, using a table or a
ple, Emu performs all queries in memory with noterm vector, and then use the position information
indexes, and several others are likely to be the sant@ find structural matches. Many systems use this
(Cassidy and Harrington, 2001; Konig and Leziusapproach, from early object databases such as Lore
2001; Heid et al., 2004). TGrep2 (Rohde, 2005) usgdicHugh et al., 1997), to relational representation
a custom corpus file and processes it sentence by tree data (Bird et al., 2006) and XISS/R (Hard-
sentence at query execution time. Other tree queigg et al., 2003), and native XML databases such as
systems use hashed indexes or other types of iaXist (Meier, 2003). Here, the position is encoded
memory indexes. However, a common drawback ofia node labeling schemes, and is designed so it can
these systems is that they are designed for treebarskgpport efficient testing of a variety of structural re-
that are at most a few million words in size, and ddations.
not scale well to much larger treebanks. A labeling scheme based on pre-order and post-
arder labeling of nodes is the foundation for several

There are many positions to be taken on the above

questions. Our goal is not to argue for a Ioalr,[icugzxtended schemes. It can be used for efficiently de-

lar data format or query style, but rather to demont_ectlng that two nodes are in a hierarchical (or inclu-

strate a powerful technique for indexing and quer sion) relationship. Other labeling schemes are based

ing treebanks which should be applicable to most o?n the Dewey scheme, in which each node contains

the above scenarios. http://lucene.apache.org/
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Depth Node Left Right Depth Parent

1 S A 2 4 3 2
/ \ A 1 4 2 6
2 A C A 5 8 3 8
/ \ / \ Common B 3 4 4 4
3 D A B A parent id B 4 5 3 8
| /\ ‘ SN L B 7 8 4 10
4 Wi E B Wa D C B
‘ ‘ ‘ ‘ ‘ Table 1: Node labels
5 W2 W3 Ws Ws Wy
v Sequential positions g y Table 1 illustrates the node labels assigned\to
andB nodes in Figure 1. We can see that the parent
Figure 1: Generating node labels id of the thirdA and secon® are equal because they
are siblings.

. . . . Once these numbers are assigned to each node,
a hierarchical label in which numbers are separate?1

by periods (Tatarinov et al., 2002). A child node geté € nodes can be stored independently without loss

its label by appending its position relative to its Sib_of any structural information (in either a relational

lings to its parent’s label. This scheme can be use%atabase or an inverted index). At query execution

for efficiently detecting that two nodes are in a hier-:'me’ the .:,et ?f ((jelemdentsl o?helther s(;de of ag opetLa-t
archical or sequential (temporal) relationship. s(;rti{;; tﬁ); r<.3aceiettc;arfls sozg,/ific:t?Snne(t)reesgll;rcnteers tr?e
The LPath numbering scheme assigns four integer P P

labels to each node (Bird et al., 2006). The genere[rlesu"' For example, if the operator is the child rela-

tion of these labels is explained with the help of an'on’ and the operands afeandB, then there are two

example. Figure 1 is the graphical representation atches: B{3,4,4,4}, child of A{2,4,3,2} and,
pie. Fig grapt P {7,8,4,10}, child of A{5,8,3,8}.2 This process
a parse tree for a sentence with 7 words, - - wr.

. of finding the elements of a document that match op-
Let A, B, C, D, E, and S represent the annotation g . . P
: .. . erators is nothing other than the standard join oper-
tags. Some nodes at different positions in the tree. o . . )
ation (and it is implemented differently in relational

share a common name.

. . N . . IR i .
The first step in labeling is to identify the sequen-dataIbases and IR engines)

tial positions between words, as shown beneath thgy R ational database approach

parse tree in Figure 1. The left id of a terminal node

is the sequence position immediately to the left of ;— ree r;ogles ctan l;)e Stoé??j mta Telz;t(ljc())réal dé‘talfﬁse us-
node, while its right id is the one to its immediate'"9 & table structure ( Ird et al., )- Each tree-
right. The left id of a non-terminal node is the Ieﬂbank would have a single table for all nodes where

id of its leftmost descendant, and the right id is thgaCh node’s_ information is s_tored n a tL_JpIe._ The
right id of its rightmost descendant. In most caseQOdfa name is stored anng with other position infor-
the ancestor-descendant and preceding-following rg_atlon and the s_entence id. Every node_ tuple also
lationships between two elements can be evaluat §s @ unique primary ke;_/. The parent id CO',‘”T‘”
using the left and right ids alone. The sequential id§ & fqrelgn key, refergnm_ng the par_ent node's id,
do not differentiate between two nodes where one %oeedlng up parent/child join operations. In prac-

the lone child of the other. The depth id is thereforé!ce’ queries are translated from higher level linguis-

required in such cases and to identify the child nodfC query Iangu_ages such as LPath mtol SQL auto-
atically, allowing users to use a convenient syntax,

(depth values are shown on the left side of Figure 1).

In order to check if two given nodes are siblings,ather t-han query using SQIT' ]
the above three ids will not suffice. We therefore Previous research on a similar database structure

assign a common parent id label to siblings. Thed@" containment queries in XML databases showed

four identifiers together enable us to identify rela- 2the node labels are represented as an ordered set here for
tionships between elements without traversing treesrevity. Their positions match the headings in Table 1.
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that databases are generally slower than specialisege this method to index XML elements (Meier,
IR indexes (Zhang et al., 2001). In that work, the2003). However, linguistic query systems are spe-
authors provide results comparing their IR join algo<€ial purpose applications where the unit of retrieval
rithm, the multi-predicate merge join (MPMGJN),is usually a sentence. A given tree may satisfy a
with two standard relational join algorithms. Theyquery in multiple places, but we only identify which
consider the number of comparisons performed isentences are relevant. Finding all matches within a
the standard merge join and the index nested logentence requires further processifg.
join, and contrast these with their IR join algorithm. Our approach has been to process each sentence
They show that the IR algorithm performs feweras a document. By fixing the unit of retrieval to be
comparisons than a standard merge join but greatére sentence, we are able to greatly reduce the size
than the index nested loop join. of intermediate results when performing a series of

The multi-predicate merge join exploits the facfoins. The task is then to simply check whether a
that nodes are encountered in document order (i.esantence satisfies a query or not. This can be done
node appears before its descendents). Search withising substantially less resources than is needed for
a document can be aborted as soon as it is clear thiding sets of nodes, the unit of retrieval for rela-
further searching will not yield further results. Im-tional and XML databases. When processing a se-
portantly, this IR join algorithm is faster than bothries of joins, we use a single buffer to store the node
relational join algorithms in practice, since it makegpositions required to perform the next join in the se-
much better use of the hardware disk cache. Ouies. After computing that join and processing an-
own experiments with a large treebank stored in aother operator in the query, the buffer contents is re-
Oracle database have demonstrated that this shgstaced with a new set of nodes, discarding the inter-
coming of relational query relative to IR query existanediate information.
in the linguistic domain (Ghodke and Bird, 2008).

4 Experimentswith IR Engine
3.3 IR engine approach
. . %1 Data

We transform the task of searching treebanks into
conventional document retrieval task in which eachVe used two data collections in our experiments.
sentence is treated as a document. Tree node lab&Re first collection is a portion of the English Giga-
are stored in inverted indexes just like words in avord Corpus, parsed in the Penn Treebank format.
text index. We require two types of indexes, for fre\We used the TnT tagger and the DBParser trained
quency and position. The frequency index for a noden the Wall Street Journal section of the Penn Tree-
label contains a list of sentence ids and, for each onkank to parse sentences in the corpus. The total size
a count indicating the frequency of the node labedf the corpus is about 5.5 million sentences. The
in the sentence. (Labels with a frequency of zerd Grep2 corpus file for this corpus is about 1.8 GB
do not appear in this index.) The position index isaind the Lucene index is 4 GB on disk. The second
used to store node numbers for each occurrence @dta collection is a portion of English Wikipedia,
the node label. The numbers at each position aggain tagged and parsed using TnT tagger and DB-
read into memory as objects only when required (&arser, respectively. This collection contains 26.5
other times, the byte numbers are skipped over fanillion parsed sentences. The TGrep2 corpus file
efficiency). During query processing, the frequencgorresponding to this collection is about 6.6 GB and
indexes are first traversed sequentially to find a do¢he Lucene index is 14 GB on disk.

ument that contains all the required elements in t 3Several alternate path joins and improvements to the

query. Once a document is found, the structural comapmGJN algorithm have been proposed over the years to over-
straints are checked using the data stored in the paeme the problem of large number of intermediate nodes and to
sition index for that document. The document itselféduce unnecessary joins (Al-Khalifa etal., 2002; Li ancolio
does not need to be loaded. 2001). Brunoet al.’s work_ on twig joins further |mproved on
. - . . those efforts by processing an entire query twig in a halisti
Using an inverted index for searching structureghshion (Bruno et al., 2002), and has since been further opti
data is not new, and several XML databases alreadyized.

271



Data Collection 1 (5.5M sentences) | Data Collection 2 (26.5M sentences)

Query Selectivit))

Full search First 10 Full search First 10
(//IN1 op N2) N1-op-N2 cold warm hits cold Warm‘ cold warm hits cold warm
NP/NN L-L-L |7.326 5.533 4,814,540 0.059 0.00034.680 20.256 21,906,349 0.260 0.0003
VP/DT L-H-L |4.576 3.593 17,328 0.140 0.00413.865 11.363 91,070 0.301 0.003
NP/LST L-L-H |4.454 0.043 6,808 0.083 0.00116.864 0.077 2.974 0.270 0.003
VP/WHPP L-H-H | 2.445 0.034 32 1.012 0.014 8.834 0.066 29 3.653 0.015
LST\NP H-L-L | 4.444 0.043 6,808 0.080 0.00116.814 0.077 2,974 0.271 0.003
WHPP\VP H-H-L |2.461 0.034 32 0.990 0.013 8.726 0.065 29 3.611 0.015
LST/LS H-L-H ]0.181 0.005 10,432 0.071 0.00p10.294 0.008 8,977 0.238 0.0002
LST/FW H-H-H |0.123 0.009 4 0.103 0.011 0.348 0.012 9 0.408 0.012

Table 2: Execution times (in seconds) for queries of vargelgctivity

4.2 Typesof queries (cold start) times for collection 2 shows that low-

Query performance depends largely on the nature B?Iect!v!ty labels contante 9.5 seconds, and a low-
electivity operator contributes 6.7 seconds, and that

the individual queries, therefore we present a desh_ ; fth ability in the timi
tailed analysis of the query types and their correg '? acc_oun;s ;I‘ mgos';o ;Ve Vag";‘Q' ity in t9e4t£1mmg
sponding results in this section. ata ¢ = —1.53 + 9.51 « Ny + 6.72 % op + 9.44 *

Ny, R? = 0.8976). This demonstrates that the dis-

Selectivity: A query term that has few correspond-tribution of full search (cold start) times is mostly
ing hits in the corpus will be considered to have higtaccounted for by the index load time, with the time
selectivity. The selectivity of whole queries dependr computing a large join being a secondary cost.
not only on the selectivity of their individual ele- The full search (warm start) times in Table 2 pay a
ments, but also on how frequently these terms satistgsser index loading cost.

the structural constraints specified by the query.

Table 2 gives execution times for queries withQuery length: It is evident that the system must
varying selectivity, using our system. We assign &trieve and process more term vectors as we in-
selectivity measure for the operator based on howease the number of elements in a query. To find
often the two operands satisfy the structural condut exactly how the query length affects processing,
tion. It is clear that when elements are very commowe ran tests with three sets of queries. In each set we
and they frequently satisfy the structural constraintgaried the number of elements in a dominance rela-
of the operator, there are bound to be more run-timéonship with another node of the same name. The
structural checks and the performance deteriorategdumber of terms in the dominance relationship was
This is demonstrated by the time taken by the firstaried from 1 to 6, where the first case is equiva-
query. Note the relatively small difference in the exlent to just finding all terms with that name. In the
ecution time between the second and third queriefirst set, queries search for nested noun phrag@s (
The third query contains a high selectivity elemenyhile the second and third look for adjective phrases
and even returns fewer matches compared to the séADJP) and list elementsL(ST) respectively.
ond, but takes almost as long. This may be due to the These terms have been chosen to simultaneously
relative frequency of the tags within each sentencetudy the effects of selectivity and query length, with
which we have not controled in this experiment. IfNP being the least selective (or most common), fol-
there are several LST tags in the sentences whetgved byADIP, then withLST being the most selec-
it appears, there are likely to be greater number afve (or least common)NP is also more frequently
searches within each sentence. A better join algself-nested than the others. Figure 2 plots query
rithm would improve the performance in such casesength (-axis) against query execution timg-éxis,

A multiple regression analysis of the full searcHog scale) for the three sets, using our system. With
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Figure 2: Variation of query execution time with query lemgt data collection 1

Time (seconds)

0.1
1

o /INP
X /IADJP
+ JLST

0.01

0.001

Number of elements

Figure 3: Variation of query execution time with query lemgt data collection 2

each step on the-axis, a query will have an extra 4.3 Measurement techniques
descendant node. For example, at position 3 for ele-
mentA, the query would bé/ A/ / A/ A, The measurement techniques vary for TGrep and
The circles on the plot are proportional to the loghe IR based approach. In TGrep the corpus file is

of the result set size. The biggest circle is féNP  loaded each time during query processing, but in the
which is of the order of 5.4 million, while there areR approach an index once loaded can operate faster
only 4 trees in whichLST is nested 4 timesLST is  than a cold start.
not nested 5 or more times. SimilarRop returns In order to understand the variations in the operat-
0 results for the 6th test query and hence there are no BN

) . S |Pg speed we plot the variation in times from a cold
circles at these locations. The thick lines on the plo .
- . start to a repeat query, as shown in Table 3.
indicate the average cold start run time over three
runs, while the dashed line shows the minimum av-
grage 'run time of 4 sets, with the qu_ery executed tween cold start and warm start correlates with query length
times In eaCh_ Set-. quether, the pairs O_f unbquefhe length experiment here use a single term repeated multi-
and dashed lines indicate the variation in run timele times. However, there is a possibility that the resuléy m

depending on the state of the systé‘m. vary when the terms are different, because it would invoble a
ditional time to load the term vectors of distinct elememt® i

“We can observe from the results that the variation bememory.

273



Data collection 1 Data collection 2 Acknowl edgmentS

Query TGrep2 IR TGrep2 IR
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INPWHPP 509 297 8743 883 Proc. 22nd Intl Conf on Data Engineering, page 52.
IIWHPP/IN 25.75 444 8848 16.81 IEEE Computer Society.

ztgm% 225-;86 g-fg 88;5% 32793 Nicolas Bruno, Nick Koudas, and Divesh Srivastava.
ILSTIFW 2551 012 8727 035 2002. Holistic twig joins: optimal XML pattern

matching. InSS GMOD '02: Proc. 2002 ACM S G-

Table 3: Comparison of TGrep2 and IR Engine cold start MOD Intl Conf on Management of Data, pages 310~

query times (seconds) 321. ACM. . .
Steve Cassidy and Jonathan Harrington. 2001. Multi-

level annotation of speech: an overview of the Emu
Speech Database Management Syst&peech Com-
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Steve Cassidy. 2002. Xquery as an annotation query lan-
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memory search, or custom indexes, or relationdpdur Chowdhury and M. Catherine McCabe. 1998.
database systems, or XML database systems. WePerformance improvements to vector space informa-
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