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Abstract

A variety of query systems have been devel-
oped for interrogating parsed corpora, or tree-
banks. With the arrival of efficient, wide-
coverage parsers, it is feasible to create very
large databases of trees. However, existing ap-
proaches that use in-memory search, or rela-
tional or XML database technologies, do not
scale up. We describe a method for storage,
indexing, and query of treebanks that uses an
information retrieval engine. Several experi-
ments with a large treebank demonstrate ex-
cellent scaling characteristics for a wide range
of query types. This work facilitates the cu-
ration of much larger treebanks, and enables
them to be used effectively in a variety of sci-
entific and engineering tasks.

1 Introduction

The problem of representing and querying linguistic
annotations has been an active area of research for
several years. Much of the work has grown from
efforts to curate large databases of annotated text
such astreebanks, for use in developing and testing
language technologies (Marcus et al., 1993; Abeillé,
2003; Hockenmaier and Steedman, 2007). At least
a dozen linguistic tree query languages have been
developed for interrogating treebanks (see§2).

While high quality syntactic parsers are able to
efficiently annotate large quantities of English text
(Clark and Curran, 2007), existing approaches to
query do not work on the same scale. Many exist-
ing systems load the entire corpus into memory and
check a user-supplied query against every tree. Oth-
ers avoid the memory limitation, and use relational

or XML database systems. Although these have
built-in support for indexes, they do not scale up ei-
ther (Ghodke and Bird, 2008; Zhang et al., 2001)).

The ability to interrogate large collections of
parsed text has important practical applications.
First, it opens the way to a new kind of information
retrieval (IR) that is sensitive to syntactic informa-
tion, permitting users to do more focussed search.
At the simplest level, an ambiguous query term like
wind or park could be disambiguated with the help
of a POS tag (e.g.wind/N, park/V). (Existing IR
engines already support query with part-of-speech
tags (Chowdhury and McCabe, 1998)). More com-
plex queries could stipulate the syntactic category of
apple is in subject position.

A second benefit of large scale tree query is for
natural language processing. For example, we might
compute the likelihood that a given noun appears as
the agent or patient of a verb, as a measure of an-
imacy. We can use features derived from syntactic
trees in order to support semantic role labeling, lan-
guage modeling, and information extraction (Chen
and Rambow, 2003; Collins et al., 2005; Hakenberg
et al., 2009). A further benefit for natural language
processing, though not yet realized, is for a treebank
and query engine to provide the underlying storage
and retrieval for a variety of linguistic applications.
Just as a relational database is present in most busi-
ness applications, providing reliable and efficient ac-
cess to relational data, such a system would act as a
repository of annotated texts, and expose an expres-
sive API to client applications.

A third benefit of large scale tree query is to
support syntactic investigations, e.g. for develop-
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ing syntactic theories or preparing materials for lan-
guage learners. Published treebanks will usually not
attest particular words in the context of some in-
frequent construction, to the detriment of syntactic
studies that make predictions about such combina-
tions, and language learners wanting to see instances
of some construction involving words from some
specialized topic. A much larger treebank allevi-
ates these problems. To improve recall performance,
multiple parses for a given sentence could be stored
(possibly derived from different parsers).

A fourth benefit for large scale tree query is to
support the curation of treebanks, a major enter-
prise in its own right (Abeillé, 2003). Manual selec-
tion and correction of automatically generated parse
trees is a substantial part of the task of preparing a
treebank. At the point of making such decisions, it
is often helpful for an annotator to view existing an-
notations of a given construction which have already
been manually validated (Hiroshi et al., 2005). Oc-
casionally, an earlier annotation decision may need
to be reconsidered in the light of new examples,
leading to further queries and to corrections that are
spread across the whole corpus (Wallis, 2003; Xue
et al., 2005).

This paper explores a new methods for scaling up
tree query using an IR engine. In§2 we describe ex-
isting tree query systems, elaborating on the design
decisions, and on key aspects of their implementa-
tion and performance. In§3 we describe a method
for indexing trees using an IR engine, and discuss
the details of our open source implementation. In
§4 we report results from a variety of experiments
involving two data collections. The first collection
contains of 5.5 million parsed trees, two orders of
magnitude larger than those used by existing tree
query systems, while the second collection contains
26.5 million trees.

2 Treebank Query

A tree query system needs to be able to identify trees
having particular properties. On the face of it, this
should be possible to achieve by writing simple pro-
grams over treebank files on disk. The programs
would match tree structures using regular expression
patterns, possibly augmented with syntax for match-
ing tree structure. However, tree query is a more

complex and interesting task, due to several factors
which we list below.

Structure of the data: There are many varieties
of treebank. Some extend the nested bracketing
syntax to store morphological information. Oth-
ers store complex attribute-value matrices in tree
nodes or have tree-valued attributes (Oepen et al.,
2002), or store dependency structures (Čmejrek et
al., 2004), or categorial grammar derivations (Hock-
enmaier and Steedman, 2007). Others store multiple
overlapping trees (Cassidy and Harrington, 2001;
Heid et al., 2004; Volk et al., 2007).

Form of results: Do we want entire trees, or
matching subtrees, or just a count of the number of
results? Do we need some indication of why the
query matched a particular tree, perhaps by show-
ing how query terms relate to a hit, cf. document
snippets and highlighted words in web search re-
sults? Do we want to see multiple hits when a query
matches a particular tree in more than one place?
Do we want to see tree diagrams, or some machine-
readable tree representation that can be used in ex-
ternal analysis? Can a query serve to update the tree-
bank, cf. SQL update queries?

Number of results: Do we want all results, or the
first n results in document order, or the “best”n re-
sults, where our notion of best might be based on
representativeness or distinctiveness.

Description language: Do we prefer to describe
trees by giving examples of tree fragments, replac-
ing some nodes replaced with wildcards (Hiroshi et
al., 2005; Ichikawa et al., 2006; Mı́rovský, 2006)?
Or do we prefer a path language (Rohde, 2005; Lai
and Bird, 2010)? Or perhaps we prefer a language
involving variables, quantifiers, boolean operators,
and negation (König and Lezius, 2001; Kepser,
2003; Pajas anďStěpánek, 2009)? What built-in
tree relations are required, beyond the typical par-
ent/child, ancestor/descendent, sibling and temporal
relations? (E.g. last child, leftmost descendent, par-
ent’s following sibling, pronoun’s antecedent.) Do
we need to describe tree nodes using regular expres-
sions, or attributes and values? Do we need a type
system, a pattern language, or boolean logic for talk-
ing about attribute values? The expressive require-
ments of the query language have been discussed
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at length elsewhere (Lai and Bird, 2004; Mı́rovský,
2008), and we will not consider them further here.

Performance: What performance is acceptable,
especially as the data size grows? Do we want
to optimize multiple reformulations of a query, for
users who iteratively refine a query based on query
results? Do we want to optimize certain query
types? Are queries performed interactively or in
batch mode? Is the treebank stable, or being actively
revised, in which case indexes need to be easily up-
datable? Do we expect logically identical queries
to have the same performance, so that users do not
have to rewrite their queries for efficiency? Key per-
formance measures are index size and search times.

Architecture: Is the query system standalone, or
does it exist in a client-server architecture? Is there
a separate user-interface layer that interacts with a
data server using a well-defined API, or is it a mono-
lithic system? Should it translate queries into an-
other language, such as SQL (Bird et al., 2006;
Nakov et al., 2005), or XQuery (Cassidy, 2002;
Mayo et al., 2006), or to automata (Maryns and
Kepser, 2009), in order to benefit from the perfor-
mance optimizations they provide

Indexing. The indexing methods used in individ-
ual systems are usually not reported. Many systems
display nearly constant time for querying a database,
regardless of the selectivity of a query, a strong in-
dicator that no indexes are being used. For exam-
ple, Emu performs all queries in memory with no
indexes, and several others are likely to be the same
(Cassidy and Harrington, 2001; König and Lezius,
2001; Heid et al., 2004). TGrep2 (Rohde, 2005) uses
a custom corpus file and processes it sentence by
sentence at query execution time. Other tree query
systems use hashed indexes or other types of in-
memory indexes. However, a common drawback of
these systems is that they are designed for treebanks
that are at most a few million words in size, and do
not scale well to much larger treebanks.

There are many positions to be taken on the above
questions. Our goal is not to argue for a particu-
lar data format or query style, but rather to demon-
strate a powerful technique for indexing and query-
ing treebanks which should be applicable to most of
the above scenarios.

3 Indexing Trees

In this section we discuss two methods of stor-
ing and indexing trees. The first uses a relational
database and linguistic queries are translated into
SQL, while the second uses an inverted index ap-
proach based on an open source IR engine, Lucene.1

Relational databases are a mature technology and
are known to be efficient at performing joins and
accessing data using indexes. Information retrieval
engines using term vectors, on the other hand, ef-
ficiently retrieve documents relevant to a query. IR
engines are known to scale well, but they do not sup-
port complex queries. A common feature of both
the IR and database approaches is the adoption of
so-called “tree labeling” schemes.

3.1 Tree labeling schemes

Tree queries specify node labels (“value con-
straints”) and structural relationships between nodes
of interest (“structural constraints”). A simple value
constraint could look for awh noun phrase by spec-
ifying the WHNP; such queries are efficiently im-
plemented using indexes. Structural relationships
cannot be indexed like node labels. A term in a
sentence will have multiple relationships with other
terms in the same sentence. Indexing all pairs of
terms that exist in a given structural relationship re-
sults in an explosion in the index size. Instead, the
standard approach is to store position information
with each occurrence of a term, using a table or a
term vector, and then use the position information
to find structural matches. Many systems use this
approach, from early object databases such as Lore
(McHugh et al., 1997), to relational representation
of tree data (Bird et al., 2006) and XISS/R (Hard-
ing et al., 2003), and native XML databases such as
eXist (Meier, 2003). Here, the position is encoded
via node labeling schemes, and is designed so it can
support efficient testing of a variety of structural re-
lations.

A labeling scheme based on pre-order and post-
order labeling of nodes is the foundation for several
extended schemes. It can be used for efficiently de-
tecting that two nodes are in a hierarchical (or inclu-
sion) relationship. Other labeling schemes are based
on the Dewey scheme, in which each node contains

1http://lucene.apache.org/
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Figure 1: Generating node labels

a hierarchical label in which numbers are separated
by periods (Tatarinov et al., 2002). A child node gets
its label by appending its position relative to its sib-
lings to its parent’s label. This scheme can be used
for efficiently detecting that two nodes are in a hier-
archical or sequential (temporal) relationship.

The LPath numbering scheme assigns four integer
labels to each node (Bird et al., 2006). The genera-
tion of these labels is explained with the help of an
example. Figure 1 is the graphical representation of
a parse tree for a sentence with 7 words,w1 · · ·w7.
Let A, B, C, D, E, and S represent the annotation
tags. Some nodes at different positions in the tree
share a common name.

The first step in labeling is to identify the sequen-
tial positions between words, as shown beneath the
parse tree in Figure 1. The left id of a terminal node
is the sequence position immediately to the left of a
node, while its right id is the one to its immediate
right. The left id of a non-terminal node is the left
id of its leftmost descendant, and the right id is the
right id of its rightmost descendant. In most cases
the ancestor-descendant and preceding-following re-
lationships between two elements can be evaluated
using the left and right ids alone. The sequential ids
do not differentiate between two nodes where one is
the lone child of the other. The depth id is therefore
required in such cases and to identify the child node
(depth values are shown on the left side of Figure 1).
In order to check if two given nodes are siblings,
the above three ids will not suffice. We therefore
assign a common parent id label to siblings. These
four identifiers together enable us to identify rela-
tionships between elements without traversing trees.

Node Left Right Depth Parent
A 2 4 3 2
A 1 4 2 6
A 5 8 3 8
B 3 4 4 4
B 4 5 3 8
B 7 8 4 10

Table 1: Node labels

Table 1 illustrates the node labels assigned toA
andB nodes in Figure 1. We can see that the parent
id of the thirdA and secondB are equal because they
are siblings.

Once these numbers are assigned to each node,
the nodes can be stored independently without loss
of any structural information (in either a relational
database or an inverted index). At query execution
time, the set of elements on either side of an opera-
tor are extracted and only those node numbers that
satisfy the operator’s specification are selected as the
result. For example, if the operator is the child rela-
tion, and the operands areA andB, then there are two
matches: B{3, 4, 4, 4}, child of A{2, 4, 3, 2} and,
B{7, 8, 4, 10}, child of A{5, 8, 3, 8}.2 This process
of finding the elements of a document that match op-
erators is nothing other than the standard join oper-
ation (and it is implemented differently in relational
databases and IR engines).

3.2 Relational database approach

Tree nodes can be stored in a relational database us-
ing a table structure (Bird et al., 2006). Each tree-
bank would have a single table for all nodes where
each node’s information is stored in a tuple. The
node name is stored along with other position infor-
mation and the sentence id. Every node tuple also
has a unique primary key. The parent id column
is a foreign key, referencing the parent node’s id,
speeding up parent/child join operations. In prac-
tice, queries are translated from higher level linguis-
tic query languages such as LPath into SQL auto-
matically, allowing users to use a convenient syntax,
rather than query using SQL.

Previous research on a similar database structure
for containment queries in XML databases showed

2The node labels are represented as an ordered set here for
brevity. Their positions match the headings in Table 1.
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that databases are generally slower than specialised
IR indexes (Zhang et al., 2001). In that work, the
authors provide results comparing their IR join algo-
rithm, the multi-predicate merge join (MPMGJN),
with two standard relational join algorithms. They
consider the number of comparisons performed in
the standard merge join and the index nested loop
join, and contrast these with their IR join algorithm.
They show that the IR algorithm performs fewer
comparisons than a standard merge join but greater
than the index nested loop join.

The multi-predicate merge join exploits the fact
that nodes are encountered in document order (i.e. a
node appears before its descendents). Search within
a document can be aborted as soon as it is clear that
further searching will not yield further results. Im-
portantly, this IR join algorithm is faster than both
relational join algorithms in practice, since it makes
much better use of the hardware disk cache. Our
own experiments with a large treebank stored in an
Oracle database have demonstrated that this short-
coming of relational query relative to IR query exists
in the linguistic domain (Ghodke and Bird, 2008).

3.3 IR engine approach

We transform the task of searching treebanks into a
conventional document retrieval task in which each
sentence is treated as a document. Tree node labels
are stored in inverted indexes just like words in a
text index. We require two types of indexes, for fre-
quency and position. The frequency index for a node
label contains a list of sentence ids and, for each one,
a count indicating the frequency of the node label
in the sentence. (Labels with a frequency of zero
do not appear in this index.) The position index is
used to store node numbers for each occurrence of
the node label. The numbers at each position are
read into memory as objects only when required (at
other times, the byte numbers are skipped over for
efficiency). During query processing, the frequency
indexes are first traversed sequentially to find a doc-
ument that contains all the required elements in the
query. Once a document is found, the structural con-
straints are checked using the data stored in the po-
sition index for that document. The document itself
does not need to be loaded.

Using an inverted index for searching structured
data is not new, and several XML databases already

use this method to index XML elements (Meier,
2003). However, linguistic query systems are spe-
cial purpose applications where the unit of retrieval
is usually a sentence. A given tree may satisfy a
query in multiple places, but we only identify which
sentences are relevant. Finding all matches within a
sentence requires further processing.3

Our approach has been to process each sentence
as a document. By fixing the unit of retrieval to be
the sentence, we are able to greatly reduce the size
of intermediate results when performing a series of
joins. The task is then to simply check whether a
sentence satisfies a query or not. This can be done
using substantially less resources than is needed for
finding sets of nodes, the unit of retrieval for rela-
tional and XML databases. When processing a se-
ries of joins, we use a single buffer to store the node
positions required to perform the next join in the se-
ries. After computing that join and processing an-
other operator in the query, the buffer contents is re-
placed with a new set of nodes, discarding the inter-
mediate information.

4 Experiments with IR Engine

4.1 Data

We used two data collections in our experiments.
The first collection is a portion of the English Giga-
word Corpus, parsed in the Penn Treebank format.
We used the TnT tagger and the DBParser trained
on the Wall Street Journal section of the Penn Tree-
bank to parse sentences in the corpus. The total size
of the corpus is about 5.5 million sentences. The
TGrep2 corpus file for this corpus is about 1.8 GB
and the Lucene index is 4 GB on disk. The second
data collection is a portion of English Wikipedia,
again tagged and parsed using TnT tagger and DB-
Parser, respectively. This collection contains 26.5
million parsed sentences. The TGrep2 corpus file
corresponding to this collection is about 6.6 GB and
the Lucene index is 14 GB on disk.

3Several alternate path joins and improvements to the
MPMGJN algorithm have been proposed over the years to over-
come the problem of large number of intermediate nodes and to
reduce unnecessary joins (Al-Khalifa et al., 2002; Li and Moon,
2001). Brunoet al.’s work on twig joins further improved on
those efforts by processing an entire query twig in a holistic
fashion (Bruno et al., 2002), and has since been further opti-
mized.
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Query Selectivity
Data Collection 1 (5.5M sentences) Data Collection 2 (26.5M sentences)

Full search First 10 Full search First 10
(//N1 op N2) N1-op-N2 cold warm hits cold warm cold warm hits cold warm

NP/NN L-L-L 7.326 5.533 4,814,540 0.059 0.000324.680 20.256 21,906,349 0.260 0.0003
VP/DT L-H-L 4.576 3.593 17,328 0.140 0.00413.865 11.363 91,070 0.301 0.003
NP/LST L-L-H 4.454 0.043 6,808 0.083 0.00116.864 0.077 2.974 0.270 0.003

VP/WHPP L-H-H 2.445 0.034 32 1.012 0.014 8.834 0.066 29 3.653 0.015
LST\NP H-L-L 4.444 0.043 6,808 0.080 0.00116.814 0.077 2,974 0.271 0.003

WHPP\VP H-H-L 2.461 0.034 32 0.990 0.013 8.726 0.065 29 3.611 0.015
LST/LS H-L-H 0.181 0.005 10,432 0.071 0.00010.294 0.008 8,977 0.238 0.0002
LST/FW H-H-H 0.123 0.009 4 0.103 0.011 0.348 0.012 9 0.408 0.012

Table 2: Execution times (in seconds) for queries of varyingselectivity

4.2 Types of queries

Query performance depends largely on the nature of
the individual queries, therefore we present a de-
tailed analysis of the query types and their corre-
sponding results in this section.

Selectivity: A query term that has few correspond-
ing hits in the corpus will be considered to have high
selectivity. The selectivity of whole queries depends
not only on the selectivity of their individual ele-
ments, but also on how frequently these terms satisfy
the structural constraints specified by the query.

Table 2 gives execution times for queries with
varying selectivity, using our system. We assign a
selectivity measure for the operator based on how
often the two operands satisfy the structural condi-
tion. It is clear that when elements are very common
and they frequently satisfy the structural constraints
of the operator, there are bound to be more run-time
structural checks and the performance deteriorates.
This is demonstrated by the time taken by the first
query. Note the relatively small difference in the ex-
ecution time between the second and third queries.
The third query contains a high selectivity element
and even returns fewer matches compared to the sec-
ond, but takes almost as long. This may be due to the
relative frequency of the tags within each sentence,
which we have not controled in this experiment. If
there are several LST tags in the sentences where
it appears, there are likely to be greater number of
searches within each sentence. A better join algo-
rithm would improve the performance in such cases.

A multiple regression analysis of the full search

(cold start) times for collection 2 shows that low-
selectivity labels contribute 9.5 seconds, and a low-
selectivity operator contributes 6.7 seconds, and that
this accounts for most of the variability in the timing
data (t = −1.53 + 9.51 ∗ N1 + 6.72 ∗ op + 9.44 ∗
N2, R

2 = 0.8976). This demonstrates that the dis-
tribution of full search (cold start) times is mostly
accounted for by the index load time, with the time
for computing a large join being a secondary cost.
The full search (warm start) times in Table 2 pay a
lesser index loading cost.

Query length: It is evident that the system must
retrieve and process more term vectors as we in-
crease the number of elements in a query. To find
out exactly how the query length affects processing,
we ran tests with three sets of queries. In each set we
varied the number of elements in a dominance rela-
tionship with another node of the same name. The
number of terms in the dominance relationship was
varied from 1 to 6, where the first case is equiva-
lent to just finding all terms with that name. In the
first set, queries search for nested noun phrases (NP),
while the second and third look for adjective phrases
(ADJP) and list elements (LST) respectively.

These terms have been chosen to simultaneously
study the effects of selectivity and query length, with
NP being the least selective (or most common), fol-
lowed byADJP, then withLST being the most selec-
tive (or least common).NP is also more frequently
self-nested than the others. Figure 2 plots query
length (x-axis) against query execution time (y-axis,
log scale) for the three sets, using our system. With
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Figure 2: Variation of query execution time with query length in data collection 1
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Figure 3: Variation of query execution time with query length in data collection 2

each step on thex-axis, a query will have an extra
descendant node. For example, at position 3 for ele-
mentA, the query would be//A//A//A.

The circles on the plot are proportional to the log
of the result set size. The biggest circle is for//NP

which is of the order of 5.4 million, while there are
only 4 trees in whichLST is nested 4 times.LST is
not nested 5 or more times. Similarly,ADJP returns
0 results for the 6th test query and hence there are no
circles at these locations. The thick lines on the plot
indicate the average cold start run time over three
runs, while the dashed line shows the minimum av-
erage run time of 4 sets, with the query executed 5
times in each set. Together, the pairs of unbroken
and dashed lines indicate the variation in run time
depending on the state of the system.4

4We can observe from the results that the variation be-

4.3 Measurement techniques

The measurement techniques vary for TGrep and
the IR based approach. In TGrep the corpus file is
loaded each time during query processing, but in the
IR approach an index once loaded can operate faster
than a cold start.

In order to understand the variations in the operat-
ing speed we plot the variation in times from a cold
start to a repeat query, as shown in Table 3.

tween cold start and warm start correlates with query length.
The length experiment here use a single term repeated multi-
ple times. However, there is a possibility that the results may
vary when the terms are different, because it would involve ad-
ditional time to load the term vectors of distinct elements into
memory.
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Query
Data collection 1 Data collection 2
TGrep2 IR TGrep2 IR

//NP 25.28 8.15 89.35 15.53
//NP//NP 25.44 10.42 88.36 35.95
//NP//NP//NP 25.45 14.96 87.48 52.81
//NP. . . //NP (4 times) 25.34 18.38 88.28 66.80
//NP. . . //NP (5 times) 25.46 20.94 87.38 70.80
//NP. . . //NP (6 times) 25.41 23.23 86.92 75.05
//ADJP 25.48 0.69 86.83 1.03
//ADJP//ADJP 25.36 0.73 86.42 1.61
//ADJP//ADJP//ADJP 25.29 0.84 86.89 1.89
//ADJP. . . //ADJP (4 times) 25.45 0.90 87.39 2.11
//ADJP. . . //ADJP (5 times) 25.23 1.03 86.50 2.49
//ADJP. . . //ADJP (6 times) 25.74 1.11 89.24 2.79
//LST 25.29 0.17 87.73 0.26
//LST//LST 25.49 0.20 87.09 0.27
//LST//LST//LST 25.38 0.20 87.66 0.28
//LST. . . //LST (4 times) 25.43 0.19 87.17 0.29
//LST. . . //LST (5 times) 25.40 0.19 88.02 0.31
//LST. . . //LST (6 times) 25.32 0.19 89.01 0.32
//NP/NN 25.66 7.33 87.63 24.68
//VP/DT 25.53 4.58 89.85 13.86
//NP/LST 25.62 4.45 86.39 16.86
//VP/WHPP 25.09 2.97 87.43 8.83
//WHPP/IN 25.75 4.44 88.48 16.81
//LST/JJ 25.46 2.46 86.57 8.73
//LST/LS 25.38 0.18 87.40 0.29
//LST/FW 25.51 0.12 87.27 0.35

Table 3: Comparison of TGrep2 and IR Engine cold start
query times (seconds)

5 Conclusions

We have shown how an IR engine can be used to
build a high performance tree query system. It
outperforms existing approaches using indexless in-
memory search, or custom indexes, or relational
database systems, or XML database systems. We
reported the results of a variety of experiments to
demonstrate the efficiency of query for a variety of
query types on two treebanks consisting of around
5 and 26 million sentences, more than two orders
of magnitude larger than what existing systems sup-
port. The approach is quite general, and not limited
to particular treebank formats or query languages.
This work suggests that web-scale tree query may
soon be feasible. This opens the door to some in-
teresting possibilities: augmenting web search with
syntactic constraints, the ability discover rare exam-
ples of particular syntactic constructions, and as a
technique for garnering better statistics and more
sensitive features for the purpose of constructing
language models.

Acknowledgments

We gratefully acknowledge support from Microsoft
Research India and the University of Melbourne.

References
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